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Abstract—We investigate the problem of designing delay-aware
joint flow control, routing, and scheduling algorithms in general
multi-hop networks for maximizing network utilization. Since
the end-to-end delay performance has a complex dependence
on the high-order statistics of cross-layer algorithms, earlier
optimization-based design methodologies that optimize the long
term network utilization are not immediately well-suited for
delay-aware design. This motivates us in this work to develop
a novel design framework and alternative methods that take
advantage of several unexploited design choices in the routing
and the scheduling strategy spaces. In particular, we reveal and
exploit a crucial characteristic of back pressure-type controllers
that enables us to develop a novel link rate allocation strategy
that not only optimizes long-term network utilization, but also
yields loop free multi-path routes between each source-destination
pair. Moreover, we propose a regulated scheduling strategy, based
on a token-based service discipline, for shaping the per-hop
delay distribution to obtain highly desirable end-to-end delay
performance. We establish that our joint flow control, routing,
and scheduling algorithm achieves loop-free routes and optimal
network utilization. Our extensive numerical studies support our
theoretical results, and further show that our joint design leads
to substantial end-to-end delay performance improvements in
multi-hop networks compared to earlier solutions.

I. INTRODUCTION

Communication networks are expected to serve a variety
of essential applications that demand high long-term through-
put and low end-to-end delay. Over the last decade, we
have witnessed the development of increasingly sophisticated
optimization and control techniques targeting flow control,
routing and scheduling components to address the cross-layer
resource allocation problems for communication networks.
Among various different developed policies, an important class
of throughput-optimal policies has evolved from the seminal
work [1] of Tassiulas and Ephremides, where they proposed
the well-known back-pressure scheduling/routing policy. This
policy utilizes properly maintained queue-length information
to dynamically determine scheduling and routing decisions
that optimize the long-term maximal throughput levels be-
tween all source-destination pairs. More recent works (e.g.
[21, [3], [4], [5]; also see [6], [7], [8] and references therein)
extended this framework by developing an optimization-based
design methodology for the development of joint flow control,
routing, and scheduling algorithms to maximize the long-term
utilization of the network resources, measured through proper
functions of throughput.
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However, existing works have dominantly concentrated only
on the long-term performance metrics of throughput or utiliza-
tion, while ignoring the end-to-end delay metric that is crucial
to many essential applications. This restriction allowed for
the formulation of the design problem as a static optimiza-
tion problem in terms of the mean behavior of the network
algorithm operation. In particular, long-term design objectives
can easily be described in terms of the mean flow rates and
the mean link rates that the network algorithm provides to
the applications. Unfortunately, this approach is no longer
applicable when end-to-end delay is taken into account as end-
to-end delay is a complex stochastic process that depends on
the higher order statistics of the network algorithm operation.
This calls for a more sophisticated delay-aware cross-layer
design framework, and novel strategies that provide favorable
end-to-end delay performance, while preserving long-term
optimality characteristics.

With this motivation, in this paper, we are interested in
the well-founded design of cross-layer network algorithms
for general multi-hop networks that not only utilizes the
network resources for long-term throughput optimality, but
also exhibits desirable end-to-end delay characteristics. Our
contributions in this direction can be summarized as follows:

e We propose a novel design paradigm that decouples
the objectives of long-term utility maximization from the
end-to-end delay-aware resource allocation. This framework
is expected to enable the systematic development of future
schemes, in addition to the one we develop in this paper.

e We reveal the solution given by the back-pressure policy
has a unique structure which facilitate us to establish loop-
free multi-path routes that guarantee long-term network utility
maximization. This new routing-scheme not only inherits the
adaptive and optimal nature of the long-term optimal algo-
rithms, but also eliminates the unnecessary loops to reduce
the end-to-end delay without sacrificing from throughput.

e We combine this loop-free route construction strategy with
a token-based scheduling discipline that regulates the higher-
order statistics of service processes to achieve drastic reduc-
tions in the end-to-end delay performance, while guaranteeing
long-term optimality characteristics.

The above points also constitute the main differences of this
work from the recent efforts in the design of algorithms with
low end-to-end delay performance (e.g. [9], [10]). We also
note that there has been recent interest in deriving fundamental
bounds on the delay performance ([11], [12], [13]). In our
future work, we are interested in utilizing and extending these
results to study the gap between these fundamental bounds
and the delay performance of our algorithms.



The remainder of the paper is organized as follows. Sec-
tion II introduces our system model and objectives together
with the description of several existing algorithms. In Sec-
tion III, we propose our delay-aware design framework that
describes the desired characteristics and interconnections of
the routing, scheduling, and flow control components of the
network algorithm. In Section IV, we build upon the proposed
design framework to construct a delay-aware cross-layer algo-
rithm that performs the desired tasks. The numerical result
of the policy and our concluding remarks are provided in
Section V and VI, respectively.

II. SYSTEM MODEL AND OBJECTIVE

In this work, we study wired networks to concentrate
on the delay behavior of network algorithms without the
additional complications of interference limited wireless com-
munications. Discussion of possible extension of our proposed
frameworks to interference limited networks is provided in
the conclusions. We consider a fixed multi-hop network rep-
resented by graph G = (N, L, ¢), where N is the set of nodes,
L is the set of bidirectional links (i,7) where 7,5 € N. We
use ¢ = (¢ij){(i,j)ec} to denote the vector of bidirectional link
capacities in packets per slot, i.e., both ¢;; and c;; refer to the
bidirectional link capacity of the bidirectional link (3, j). For
clarity, we use (4, j) to denote the directed link from node 4
to node j. Time is slotted in our system, and external packets
arrive at the beginning of each time slot.

The network resources are to be shared by a set of
commodities. We distinguish different commodities by their
destinations. We define D to be the set of all destination
nodes. In this paper, we are interested in designing joint flow-
control, scheduling, and routing policies with desirable long-
term throughput and short-term delay characteristics. Our dual
goal will be discussed in further detail after we introduce some
notations.

In each time slot, the service on the link (i, j) of commodity
d is denoted by R{.[t], which is assumed to be a stationary
ergodic stochastic process. It is determined by the scheduling
and routing policy. We let rflj = limy %Zizo E(Rflj [7])
to be the link rate of commodity d on link (¢, j), and define
r = (rfj)i,j’d to be the vector of all such link rates. Under
flow control mechanism, the number of the exogenous packets
that arrives at node s destined to node d at time slot ¢ is
denoted by X9[t], which is also assumed to be stationary
and ergodic. Similarly, ¢ = lim;_,o 1 Zi:o E(X2[7]) is the
corresponding rate, and we let * = (2%), 4 to be exogenous
arrival rate vector. A utility function Uy (x?) is associated with
each source-destination pair (s,d). We make the following
typical assumption on the utility function:

Assumption 1: The utility functions {Usq(z%)}sq are
strictly concave, twice differentiable and increasing functions.!

A. Objective

Our goal is to develop a joint flow-control, scheduling, and
routing algorithm that not only optimizes long-term network

I'This is not a critical assumption, but will make our analysis clear.

utilization, but also provides desirable delay characteristics.
We discuss these two goals next.

Utility Maximization: For the network (N, L, c), the net-
work utilization maximization optimization problem is defined
as:

max Us xgl (1)
(X[1].R[1)} Zd: (@)
s.t. X1[t] >0, Vs,d e N, ¥t >0, 2)
RL[E > 0,Y(i,j) € L, ¥ >0,  (3)
ZR%[t] + ZRﬁ:[t] < cij,
d d
V(i,j) € L, d €D, Vt >0, (4)
acfl—|— Z r;im < Z rfj,
(m,i)eL (i,4)EL
Vie N,VdeD,i#d. ®)

We define the feasible solution as:

Definition 1: (Feasible solution) A solution (X [t], R][t]) is
feasible if it satisfies conditions (2) to (5). o

We use { X *[t], R*[t]} to denote the optimal solution to (1),
and we define

1 t—1
r* = lim - X*[7], (6)
t—oo t
7=0
t—1
r* = tlggog _OR [7] @)

Note that under Assumption 1, * is unique while 7* generally
belongs to a set of optimal link rates denoted by R*.

In this paper, we define the stability as follows:

Definition 2: (Network stability) We say the network is sta-

ble in the mean sense if for any queue (price) Pffj, Vn,j €N,

Vd € N, we have limsup,_, %Zi;loE[ng [T]] <oo. ©

Delay Improvement: A step beyond just solving the above
optimization, our second goal is to develop a new mechanism
that reduces the end-to-end delay experienced by the traffic
while maintains the utility maximizing nature. The end-to-end
delay experienced by one packet is defined as the difference
between the time instance of injection at the source and
reception at the destination, which is a short-term metric
instead of a long-term throughput. We also aim to find a new
architecture that can decouple the different objectives.

B. Background

The back-pressure algorithm maintains a queue for each
commodity d in each node ¢ whose length at time ¢ is denoted
by PZ[t]. The algorithm is proposed for a general network
model, and specifically, the back-pressure algorithm under our
system model is given by

The Discrete Time Back-Pressure (DTBP) Policy ([14],
(5D

e Queue (Price) Evolution:
Each queue evolves as

>
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« Rate control:
In time slot ¢, the flow controller determines the mean of
the injection as

E(X2[t] | PAt]) = min{U,; (PA]/K), Xmas

where X,,q, 1s some finite upper bound for the arrival
rate.

¢ Scheduling and Routing:
Each link I = (i, j) selects

dj[t] = argmax !Pid [t] — P;-i [t]],1 €L, 9
d
and assign
cij, if d = dj[t]and P[] — P 0;
jo [t] = { 0, otherwisel. i E = (10)

In the event of multiple commodities satisfying Equa-
tion (9), we arbitrarily choose one such commodity with
equal probability as a tie-breaking rule.

The constant K in the algorithm is a design parameter that
determines how close the algorithm can converge to its optimal
solution (see [14], [5]). Also we shall see in Section IV this
solution is related to dual decomposition.

Remark 1: In our model, since there is no interference
between links, the back-pressure algorithm reduces to making
decisions on each link independently. Since each link can only
transmit in one direction at a given time slot, it is necessary
to use the weight defined in Equation (9) to determine which
one of the directional links should transmit.

Remark 2: Note that the rate assignment in Equation (10)
implies that we only allow transmission on those links with
strictly positive maximum back-pressure. This does not affect
the optimality of the DTBP algorithm.

Remark 3: The price evolution in Equation (8) implies that
in the case of a node has less packets than scheduled service,
dummy packets are transmitted. Thus the allocated service
RY,[t] always equals to number of packets transmitted over
link (i, j) at time ¢ as suggested in Equation (8).

There are many follow up works of the back-pressure algo-
rithm. In particular, in [10], an interesting min-resource algo-
rithm is proposed based on the back-pressure algorithm. In this
implementation, instead of using the queue-length difference
| P2[t] — P£[t]| as the weight of a link, (| PA[t] — PI[t]| — M)
is used, where M is some positive constant. This modification
discourages the use of links unless the queue-length differ-
ences are sufficiently high, and hence reduces possible loops
in the network.

III. DELAY-AWARE DESIGN FRAMEWORK

In this section, we expose the delay deficiencies of long-
term utility maximizing designs such as DTBP and its vari-
ants, both conceptually and through numerical studies. In
particular, we reveal that both the multi-path routing and
the scheduling components of the earlier designs must be
significantly changed or enhanced to obtain favorable end-
to-end delay performance. Based on the observations, we
propose a general delay-aware design framework whereby the
utility maximization is combined with delay-aware routing and
scheduling components to achieve our dual objective.

A. Deficiencies in multi-path routing

Long-term performance optimizing algorithms share the
common characteristic of continuously searching for routes to
maximize the end-to-end throughput of the flows. However,
this potentially causes loops and unnecessarily long routes for
a large subset of the packets, as we shall demonstrate in the
following example.

Consider a 6 x 6 grid with unit capacity links serving two
commodities as shown in Fig. 1. The source-destination node
pair for Commodity 1 and Commodity 2 are marked with
square and circle respectively. Under the operation of DTBP,
the hop-count distribution of Commodity 1 packets converges
to the plotted distribution. We can observe that the hop count
exceeds the maximum possible loop-free path length of 35
for a non-negligible fraction of the packets. It turns out that
such behavior is typical for similar long-term optimal policies
under different setups. In this work, we are interested in
preserving the long-term optimality of such solutions, but also
eliminating loops and hence significantly improving the delay
performance. We will explore the diversity in the set of optimal
link rates R* to achieve this.
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Fig. 1. The distribution of hop-count for flow 1 packets indicates the presence
of unnecessary loops in their routes

B. Deficiencies in scheduling and flow control

Long-term utility maximizing policies such as DTBP con-
verge to a set of mean flow and link rates that solves (1). Yet,
the end-to-end delay of these policies is a complex function
of higher order moments of the packet arrival and service
processes that are determined by the flow controller and the
scheduler.

As a simple example, it is well-known ([15]) that in a G/G/1
queueing system, the mean waiting time W is bounded by

2 2
o, + 0}

BT "

where og is the variance of inter-arrival time, JE is the variance
of service time, t is the mean of inter-arrival time, and p
is the utility factor. This formulation suggests that reducing
the variance of the arrival and service processes is crucial in
reducing the delay.

In a large scale multi-hop network, it is not possible to
formulate the end-to-end delay as a function of the arrival
and service processes. However, motivated by the above ob-
servation, in this work, we are interested in regulating the flow



controller and scheduling components of the long-term optimal
design to improve delay performance.

C. Proposed multi-layer design framework

The previous two subsections expose deficiencies in the
routing, scheduling, and flow control components of existing
long-term utility maximizing algorithms, and reveal new op-
portunities in the design of delay-aware cross layer algorithms.
These motivate us in this section, to propose a novel multi-
layer design framework for multi-purpose policy design.

Long Term Utility Maximization

- -

Delay-Aware Routing

Enhanced
Link Rate Vector

Delay-Aware Scheduling

An Optimal
Optimal Link Rate Vector
Flow

Rates

Fig. 2. Multi-Layer Design Framework

The qualitative structure of our proposed framework is
shown in Fig. 2, where the goals of long-term optimality, loop-
free routing, and regulated flow control and scheduling are
decoupled into different layers of the conceptual framework.

In the first layer, we solve the problem of utility maximiza-
tion. Note that under Assumption 1, the optimal solution for
flow rates, * is unique, while 7* may have multiple solutions.
The delay-aware routing layer exploits the freedom amongst
these link-rate solutions and obtains a set of more desirable
link rates that improves delay performance while preserving
the utility maximization. Acquiring the utility maximization
flow rates form the first layer and the delay-aware link-rates
form the second layer, the delay-aware scheduler regulates
the arrival and service process to achieve better delay per-
formance. As such, this establishes a design framework for
developing delay-aware cross-layer algorithms that possess the
above characteristics and hence is expected to be useful for
algorithm designs for diverse network scenarios. In particular,
we shall next present specific algorithms with attractive delay
characteristics.

IV. DELAY-AWARE ROUTING AND SCHEDULING

In this section, we present our delay-aware routing and
delay-aware scheduling algorithms for our proposed frame-
work. Our delay-aware routing algorithm preserves utility
maximizing properties while avoiding loops. Our delay-aware
scheduling algorithm implements a network stabilizing token-
based scheme that significantly reduces queue lengths for any
feasible rate assignment. We then combine these two schemes
in our delay-aware, cross layer congestion control, routing
and scheduling policy following our proposed architecture of
Section III-C.

A. Delay-aware route construction

To overcome the disadvantages observed in the back-
pressure algorithm, a natural idea is to restrict the direction

in which packets can be transmitted over a link for a certain
commodity. To achieve this, we first introduce a fluid approx-
imation associated with (1) for the following discussion.

max Z Usa(z?) (12)

’T s,d
st. x1>0,Vs,de N, (13)
rd; > 0,9(i,5) € L, (14)

Sord+ > 0t < ey, V(L) € £, d €D, (15)

d d

i D TS D T
(m,i)eL (i,§)EL

Vie N,VdeD,i+d.

Note that if an optimal solution of (1) is { X *[¢], R [t]}, it
is shown in previous works (e.g. [14], [5]) that the associated
(z*,r*) defined in (6) and (7) is an optimal solution of (12)
2

(16)

An Alternate Optimal Solution: To ensure the optimality
of the proposed algorithm, we explore the solution space for
an alternate optimal solution with a particular structure. First,
we define the following mapping of the link rates:

Definition 3: (Delay-aware link rate mapping) The delay-
aware link rate mapping Rfj [t] on the directed link (7, j) for
commodity d at time ¢ is defined as

t—1

.
i - 1 (z (7 - R;w) ,

T7=0

a7

where d € N, (i,7) € £ and (Z)" = max(0, Z). Note that
this measures the running average of the net rate of commodity
d traffic traversing link (7, j). o

Suppose we use Rfj[t] = R;“jd[t] in (17). Let ffjd =
limy o0 Rfj [t] and 7" = (ffj‘-i)i’j’d then 7" is related to r*
as:

o= e (18)
= (rd )" (19)

We shall show that the link rate mapping (18) and (19)
preserves flow rate optimality.

Proposition 1: If (x*,r*) is an optimal solution to (12),
then (&*,7") with £* = z* and 7" being as defined in
Equations (18) and (19) is also an optimal solution.

Proof: The detailed proof is provided in Appendix A. H

Remark: Note that under this link rate assignment, for each
(i,5) € L. at least one of 7} and #7{ equals to zero as if
the corresponding bidirectional link becomes a unidirectional
link. Clearly, those links with equal rates on both directions
will have a net rate of (0. Also, note that this link rate
mapping preserves the optimality of (Z*,7") when applied
to any optimal solution (x*,7*) to problem (1) which is not
necessarily given by the DTBP algorithm.

ZMore precisely, (z*,r*) is within O(1/K) of the optimal solution of
(12). Nevertheless, we still call (&*,r*) an optimal solution of (12) since
the converge can be precise if a diminishing step-size (in our notation, if K
grows linearly with time ¢) is used.



The Steady-State Behavior of the DTBP Algorithm:
Previous works (e.g. [14]) also show the stability of the DTBP
algorithm. In other words, the Markov chain with the queue-
lengths P = (P?); 4 being its states is positive recurrent and
ergodic under the DTBP algorithm. We use 7(P) to denote
the steady state distribution under the DTBP algorithm, i.e.,
the probability of the queue-lengths being P is w(P) after
the convergence of the DTBP algorithm and ), 7(P) = 1.
Also, for queue Pd, the following holds:

: dp d
i BRI = 3 P

(20)

and we use
¢=>"pin(P Q1)
P
to denote the optimal average queue-length of queue P{.
Intuitively, the link rate assignment equation (10) of the
DTBP algorithm implies that if there is a positive net flow
rate from node ¢ to node j for destination d, then the average
queue-lengths should be strictly decreasing, i.e., P¥? > Pr4,
since i can send a packet to j only when PI[t] > PP
In certain simple topologies, this statement can be proven
rigorously. For a tandem network (see Fig. 3 for an example)
with unit link capacities and one end-to-end flow, we have the
following results:
Lemma 1: In such a tandem network with no more than
3 hops, the average queue-length of the DTBP algorithm is
strictly decreasing from the source to the destination for any
arrival rate ¢ € (0,1) under a Bernoulli arrival process.
Proof: This lemma can be proven by constructing the
queue-evolution Markov chain and solve for its steady distri-
bution. The detailed proof is provided in [16]. ]

Fig. 3. A tandem network with N — 1 hops.

The method used in the proof of Lemma 1 can be extended
to a k-hop tandem network with a Bernoulli arrival. However
the analysis becomes cumbersome as k increases. Thus we
take a different approach to extend the above result to a more
general k-hop tandem network.

Lemma 2: In a tandem network under our model with unit
link capacities and one end-to-end flow with a Bernoulli arrival
with rate a € (3, 1), the average queue-length Py is strictly
decreasing from the source to the destination under DTBP.

Proof: The detailed proof is provided in [16]. ]

Due to the complex interactions in the dynamics of the
queue-length in the neighboring nodes in a general network, a
rigorous proof of a generalization of Lemma 2 remains an open
research problem. However it can be observed from numerical
studies (see [16] for more examples) of more general networks
that, under the DTBP algorithm, the average queue-lengths are
strictly decreasing over links with a positive net flow rate.

With such results and observations, we present the following
assumption on the DTBP algorithm:

Assumption 2: Under our system model, the DTBP algo-
rithm converges to a optimal solution of (1) {X*[t], R*[¢]}

and the corresponding queue evolution P*[t] as defined in
(8). The optimal solutions satisfy the following property:

If 7";";1 > r;ff then P4 > ij“d, V(i,j) € L,deD,

where T;"jd and r;‘fid are defined as in (7), and P;¢ and p;d are
defined as in (21).

Remark: Note that the converse of Assumption 2 is not
necessarily true, i.e., P4 > P*d does not necessarily imply
that 73 > r%¢, which can be dlsproved by counter examples.

Loop Free Route Construction: Consider the network
G = (N, L, c). For each commodity d, we define a subgraph
Gl = (N4, Ed &) as:

N = N;
L = L\{(i,j) e L7 =0}

P 0 if (4,5) ¢ £? and (j,i) ¢ £
A ¢;j otherwise.

This G is the restricted network topology that commodity d
sees after applying the delay-aware link rate assignment.

Then we have the following proposition:

Proposition 2: Under Assumption 2, given a network G =
(N, L, ¢) and its optimal solution (x*, 7*) given by the back-
pressure algorithm to problem (12), the subgraph G4 defined
as above is loop-free Vd € D.

Proof: Assume G4 has a cycle that is composed of links
{(neysney ), (Reys ney ), (nq ey )y (e, e )} S L4
By the definition of subgraph G4, we can assume without loss
of generality that 7% >0 for 0 <i < k—1and rfl‘f(] > 0.
Then by Assumption 2, we have P;? > Prd > ... > prd >
P*d which is impossible. Therefore G4 is loop -free. [ ]
Remark As mentioned in the proposition itself, the loop-
freeness holds only when the delay-aware link rate assignment
is applied to the optimal solution given by DTBP.

Example: We use the topology shown in Fig. 4(a) as an
example to illustrate how the delay-aware link rate assignment
works with the optimal solution given by DTBP. Each link in
the network is assumed to have unit capacity. Node 1 is the
source and Node 3 is the destination.

LN P,
O=O=6) O»O»0O
(a) (b) (c)

Fig. 4.  An example to illustrate the DTBP solution with delay-aware link
rate assignment.

Shown in Fig. 4(b) is a possible optimal solution of the
problem, with 7190 = 793 = 1 and req = r45 = r50 = 7, Where

€ (0, 1]. Note that there exists a loop (2 -4 — 5 — 2) in
this optimal solution. However, analyzing the corresponding
Markov chain shows that the DTBP algorithm can never con-
verge to such an optimal solution. In fact, the DTBP converges
to a solution shown in Fig. 4(c), where ri5 = 193 = 1,
link (2,4) and (2,5) have equal and non-zero transmission
rate in either direction, and there is no transmission on link
(4,5). Note that this confirms Assumption 2 in this particular
topology, and also confirms that the optimal solutions given



by DTBP is a subset of all optimal solutions with a special
structure.

If we were to apply the delay-aware link rate assignment
to the optimal solutions shown in Fig. 4(b), it can be verified
that the loop (2 — 4 — 5 — 2) still exists in the resulting
topology. On the other hand, Fig. 4(d) shows the resulting
topology when the delay-aware link rate assignment being
applied to the optimal solution given by DTBP algorithm,
which is a loop-free route.

B. Delay-aware scheduler design

Using the delay-aware routing of Section IV-A, utility
maximization can be achieved while avoiding loops, which
leads to lower average end-to-end delays. Here, we seek to
improve the delay performance further through delay-aware
scheduling at each link. As argued in Section III-B, significant
per hop delay improvement can be achieved by reshaping the
service distribution through regulating the scheduler opera-
tion. In previous works [17], the notion of regulators were
introduced to help stabilize the network with fixed single-
path routing. Adopting a similar concept, we propose a delay-
aware scheduler with regulated service that stabilizes (N, £, ¢)
when there exists a loop-free R[t] such that X[t] satisfies
x € int(A(N, L, c)). We assume that the arrivals take place
after the service in each time slot, i.e., the arrivals cannot be
served in the arriving time slot. We further assume that from
now on all links have the same link capacity denoted by c.

d Rijl (1]
Al R
Ad
E Ad t Rijm[] § -I |
[ nH] Smen BE [t]+ J
Fig. 5. Delay-Aware Scheduler Structure

Definition 4: (Delay-aware scheduler with regulated ser-
vice) The delay-aware scheduler consists of per-neighbor-per-
commodiry queues, i.e., the scheduler at node n maintains
queues Q for each next-hop neighbor j and each commodity
d. The servers apply regulated service discipline to shape the
traffic. Let the service and departure of the server be S(t) and
D(t), respectively.

Let A%[t] denote the commodity d packets entering node n
in slot . Mathematically,

d d
An[t] = X [ ]]l{ne./\/w,“w} + Z Dkn[t]
keN
where N .. denotes the source node set with respect to

commodity d. Let A2 [t ;[t] denote the number of packets of

commodity d arriving at queue Qi in slot ¢ and Ad[t] =

djen Ad.[t]. The queue dynamics for each queue is given
as:

L1 = (@4 - DLyi) AL,

Vn # d, (22)

The server of the delay-aware scheduler operates with a
token-based service discipline which consists of three compo-
nents:

« Arrival Splitting:
Each commodity d packet arriving at node n goes into the
per-neighbor-per-commodity queue Q with probability
Ry [t]

m, resultlng mn

Ry, [t]
_ Ad nj
B 45,0 | A00] = Al — 5 @9
where Rﬁj[ | = Zt \RY ;[7]. This splitting preserves

the same mean hnk rates as the original R[t]. As an
example, the arrival splitting can be done using a token-
based scheme.

o Token Generation:
For each link (i,j) € L, the system maintains roken
counters m{; for each regulator queue Qi as shown
in Fig. 5. As the input to the delay-aware scheduler is
loop-free, the transmissions can only be unidirectional
for certain commodity d over link (i, ). Hence mfw and
fn cannot be non zero simultaneously. Then we define
My d = mn] + m . The token arrives at each counter
With rate
L1
where 6 > 0. Note that the token arrival rates are enlarged

by § which is allowed by the excess capacity from the
utility maximizing solution for (N, L, ¢ — €).

Sa; =E[AL[] +4, (24)

o Service:
In each time slot ¢, the token-based server chooses a
winner commodity dy, ; with a non-zero backlog for each
link (n,j) as follows:
argmax, (M,‘fj [t] — c) ,
if maxg [M;[t] —
, otherwise.

dy;lt] = ] >0; (25

The server serves the commodity with the largest token
count that exceeds the link capacity c. Note that the link
capacity c is shared by transmissions on link (n,j) in both
directions. Then

Dd [ ] _ C, if d = d:”7 (26)
0, i d # d7,.

In case of insufficient packets in queue, the server sends
out dummy packets to ensure a deParture of ¢ packets.
After service, the token counter M "] for the commodity
dy,; is decreased by c. o



The above algorithm does not require the knowledge of R]t]
as long as R[t] := (jo [t])n,j.a is provided. Next we define
the network capacity region for multihop networks.

Definition 5: (Network capacity region) The network ca-
pacity region is AN,L,¢) = Co{x}, where x is the
exogenous arrival rate vector such that > 0 and such that
there exists a link rate vector r satisfying

r >0,
rfllj =0, VY(n,j) ¢ L,
rd =0,VneN,

nn
rfl’j =0, Vn =d,

d d d
g, < Zrnj — Zrmn, Vn # d,
7 n

ngj + erd’n < Cnj, V(n,]) €L o
d d

Notice that the solution (X[t], R[t]) is feasible if (x,r)
satisfies Definition 5 such that € € AN, L, c), where x =
limy o0 7 ZZ_:}) X[7], r = lims— oo %Zt;:lo RJr].

Based on the defined network capacity region, we now
introduce the following proposition:

Proposition 3: The delay-aware scheduler operating in the
network (N, L, ¢) stabilizes the queues (Q%j)nyj,d, if there
exists any loop-free solution (XT[t], R[t]) such that & €
AN, L,c—¢€), Ve = 0.

Proof: The detailed proof is provided in [16]. Due to the
limited space, here we briefly outline the proof. We first define
the foken count process, which describes the token counter
behavior. We prove the lemma on the fact that the token
count process keeps track of the assigned token generation
rate and the deviation is always bounded. From the design
of the delay-aware scheduler, the service rate of the next-hop
neighbor is larger than its previous-hop neighbor by 4. And
this § is allowed by the excess capacity when the solution
of the network (N, L,c — €) is used as input to control the
network (N, £, ¢). We make use of the service rate difference
to prove that the T-step drift of the Lyapunov function is
negative, where 7' is a finite value. Then applying the previous
results in [14], we manage to prove the proposition. ]

Remark: To stabilize the network, the proposed delay-aware
scheduler benefits from the special properties of the token
count process. In fact, we have proved that the delay-aware
scheduler structure can be extended to utilize a general service
process that satisfies certain regulation constraints and still
achieves network stability. The existence and characterization
of other delay-aware service processes remains an open re-
search problem.

C. Delay-aware cross-layer policy

The approaches we proposed in Section IV-A and IV-B can
be used in the multi-layer architecture of Section III-C. To
attain a utility maximization solution that reduces the expected
end-to-end delay, we incorporate back-pressure solution to
problem (1) together with delay-aware routing and delay-
aware scheduling in the policy design. In the following policy,
we call the queue length seen by DTBP the price, which is

a value reflecting the queue length price instead of being an
actual queue.

Delay-Aware Cross-Layer Policy

e The first layer runs DTBP policy (see Section II-B)
to generate (X|[t], R[t]) for (N,L,c — €) in a virtual
implementation using counters for prices.

e The second layer performs the delay-aware link rate
mapping from the first layer and generates R[t] asin (17)
with R[t] = R[t].

e The third layer uses delay-aware schedulers with regu-
lated service in the network (N, L, c). Solution X [t] =
X [t] is received from the first layer. Solution R[t| = R]t]
is received from the second layer. Then the delay-aware
scheduling is performed as described in Section IV-B
which determines the actual queueing dynamics.

This cross-layer policy is an online policy that starts to
function while the DTBP is converging. All layers run different
algorithms in parallel and dynamic solution updates can be
performed among layers.

The cross-layer policy inherits optimality (Proposition 1)
and loop-freeness (Proposition 2) characteristics of the routing
component, and the stability (Proposition 3) of the delay-
aware scheduling component, which lead to the following
fundamental result:

Theorem 1: Delay-aware cross-layer policy results in loop-
free and stable rate assignments that arbitrarily approaches
maximum utility solutions for a network (N, £, ¢).

V. NUMERICAL RESULTS

In this section, we present numerical results for our pro-
posed delay-aware cross-layer policy. We compare the delay
performance of our policy with the back-pressure policy,
which has long term optimality guarantees, and the more
recent min-resource algorithm (see Section II-B), which has
superior routing characteristics over back-pressure policy. As
a representative topology, simulations are carried out in a 6 X 6
grid network. Simulation duration is 30000 time slots. Moving

average method is used to update R[t] as follows:
+

‘o Ri[r] - R [r
M Jto<t<ty+T,

2w

T=to—W

Rij [t] =

where W is the window size and 7' is update period. W
and T are both set to 5000. We assume that all links have
unit capacity. The K parameter for the flow controller of
the back-pressure policy is chosen to be 200. We implement
min-resource algorithm as described in Section II-B with
M = 3. For fair comparison, all queues are implemented as
per-commodity queues.

The simulated scenario has parallel traffics with two com-
modities. For better demonstration, the routing information
is embedded in delay distribution graph. Since the source-
destination pairs are symmetric, results are given for one
commodity only. Squares and circles indicate source and
destination locations for commodity 1 and 2, respectively, both
flowing from top to bottom. As is shown in Fig. 6(a), the
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Fig. 6. (a) Back-Pressure Policy (b) Min-Resource Algorithm (c) Delay-Aware Cross-Layer Policy

back-pressure policy results in loops. The delay distribution is
heavy-tailed which also indicates that packets may experience
looping. Fig. 6(b) demonstrates that the min-resource algo-
rithm utilizes minimal number of links, thus attaining shortest
paths from source to destination for each commodity. Since
loops are avoided, the delay distribution is improved with the
delay peaks moved towards lower values. Fig. 6(c) shows the
network topology for our policy where the selected paths are
loop-free. From the delay distribution, one observes that the
majority of packets follow the shortest path and the others
are routed over longer paths. The mean delay performance is
improved over other two solutions.

We further study the effect of the design parameter K used
in the DTBP policy. It is known that the allocated flow rates
approach the optimal rate * as K — oo. However, this
also increases the equilibrium queue lengths in the DTBP and
causes delay degradation ([18], [4], etc.)
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Fig. 7. End-to-End Delay under Different K Values

The delay-aware cross-layer policy offers a solution to this
dilemma. In multi-layer architecture, the delay-aware cross-
layer policy keeps real layer queue length separated from
back-pressure layer queue length. Then the dependence on K
is relaxed. Fig. 7 shows that in the simulated scenario, the
sensitivity of the delay on K is significantly reduced with
delay-aware cross-layer policy. As expected, the delay under
back-pressure policy grows as K increases. In this figure,
we also show that the end-to-end delay can be reduced by
eliminating loops alone. However, further delay improvement
can be achieved by utilizing the delay-aware scheduling with
delay-aware routing.

VI. CONCLUSION

In this work, we exposed the delay deficiencies of many
long-term optimal policies when operated in multi-hop net-
works, and identified several unexploited design choices within
the routing and scheduling strategy spaces that yield drastic
delay improvements. In particular, we exploit: the flexibility in
link rate assignments to eliminate loops in routing; and the ser-
vice shaping opportunities in scheduling to reduce queue-sizes,
while preserving the long-term optimality characteristics.

Along with these algorithms, we also present a generic
delay-aware design framework that can be used to develop
other long-term optimal algorithms with favorable delay char-
acteristics. This framework provides a unique and methodical
approach to the design of modular solutions where end-to-
end delay characteristics can be improved without sacrificing
from long-term optimality. As such, our framework offers a
promising direction for tackling the challenging problem of
delay-aware algorithm design for wireless multi-hop networks,
as well. To that end, in our future work, we will extend
the insights and techniques developed in this work to the
wireless domain, while accounting for the intrinsic challenges
associated with the interference-limited nature of wireless
communications.
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APPENDIX
A. Proof of Proposition 1

Since & = x*, the optimal value of the objective function
(12) is not affected. Thus, to show that (£*,7") is also an
optimal solution to (12), it is sufficient to show that the pair
(z*,7") satisfies the constraints (13)—(16).

e Verifying Equation (13) and (14): #*¢ > 0 because 2} >
0 for all 5,d € D; 7 > 0 for all (i,5) € £ and d € D by its
definition in Equations (18) and (19).

e Verifying Equation (15): By the definition of f;‘j-d and
the fact that r;}d > 0, V(i,j) € L, Vd € D, we have
ffjd < r;-*;i, V(i,j) € L,Vd € D. Then }_, f;-*;i <> r;‘]d.
So Zd TA’:(Jd S Cij-

e Verifying Equation (16): Notice that for any real num-
ber Z, (Z)* = 4(Z + |Z|), Equations (18) and (19) can
be rewritten as: 75 = ((rif — i)+ [rf —r3d]) /2 and
Frd = (3¢ — i) + 5t — rit]) /2. Subtracting these two
equations, we have f:‘]d — 7 ;‘jd — r;id. Thus, we have the
following

*d

ji =T

~xd ~xkd Axd
T, + Toni — E T4
(m,iyeLl (i,5)eL
_ ~xd Axd Axd
= +§:(Tz‘j —755)
J

= x:(d+z (T;(j-dfr;fid) <0.
J

Therefore, (", 7") is also an optimal solution to (12).



