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Abstract—In this paper, we consider the dayahead load and
supply allocation problem in an electrical microgrid which
consists of a system manager, consumers, and suppliers. We
do not impose any mathematical, operational, and economic as-
sumptions on the consumers and suppliers other than restricting
them to have finite number of load and supply schedules. For
example, a consumer can have arbitrary forms of flexibilities in its
demand, such as deferrability or intermittence, and the user can
choose from a set of predetermined load allocations that represent
these flexibilities. Thus, our system model can accommodate
heterogeneous user requirements and constraints in the same
problem formulation. Under this system model, we formulate a
welfare maximization problem, and derive a distributed primal-
dual pricing algorithm. In our algorithm, the system manager
generates prices for the load and supply allocations of the
users, and given these prices the users independently choose
the schedules to their best operational and economic interests.
Furthermore, the pricing algorithm incentivizes the users so that
their decisions benefit the system performance, and it achieves
the optimal load and supply allocation. Finally, we study the
algorithm’s performance via simulations, and demonstrate how
the demand-side flexibilities are utilized for the system’s benefit.

I. INTRODUCTION

THe electrical grid is a complex heterogeneous networked
system that is composed of entities with quite different

characteristics in both supply and demand sides. Smart grid,
towards which the electrical grid is evolving, encompasses
even more heterogeneity with the emerging concepts such as
distributed generation, renewable supply, and demand flexibil-
ity [1]. In this work, we design pricing and resource allocation
techniques for a smart electrical grid where demand and supply
side entities have arbitrary and heterogeneous requirements.

We consider a microgrid that comprises a system manager,
consumers, and suppliers. The system manager aggregates
its subscribers’ demand, and serves their load by procuring
electricity from suppliers. The system manager’s goal is to
determine energy prices that coordinate demand and supply
toward efficient social welfare. The system manager can be
thought of as a Load Aggregator (LA) [2], and we are
particularly interested in the LA’s dayahead load and supply
allocation problem. The LA can manage a broad range of
large-scale consumers such as data centers, supermarkets, and
factories [3], [4]. On the other hand, suppliers can be local
power plants, renewable generation companies, or retailers
which have quite different operational and economic con-
straints [5], [6]. Overall, we consider a system in which both
supply and demand sides are composed of participants with
arbitrary and heterogeneous characteristics.
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The load and supply management, and pricing problem has
been extensively studied in both traditional and smart electrical
grid contexts under various cost, utility, and demand flexibility
models. For example, convex cost functions are used to model
generation costs [7]–[10], cost of procurement from wholesale
markets [11], load shedding cost for demand response [12],
distribution costs [13], storage costs [14]. Moreover, concave
utility functions are employed to model consumer satisfaction
[7], [10]–[12], [14], and disutilities associated with service
delays [15], [16]. On the other hand, flexibilities in consumer
demand are modeled by shifting load in time [16]–[19], defer-
ring the time of service [15], [20]–[23], setting maximum and
minimum consumption constraints over a finite period of time
[24], [25], enforcing average consumption goals [26]. Fur-
thermore, under the aforementioned models and constraints,
pricing strategies are employed in the literature to incentivize
demand and supply toward system manager’s goals: [7], [9]–
[11], [17] implement optimization based marginal pricing,
[12], [13] derive prices based on competitive equilibrium
and game theoretic analysis. We note that despite providing
tractable problem formulations and solutions, these models and
constraints restrict the system model and its participants to
have quite specific structures and features.

In this paper, we are interested in the LA’s dayahead load
and supply allocation problem under arbitrary cost, utility,
and flexibility models. In our problem formulation, we do not
assume any particular structure for the consumer utility and
supplier cost functions. For example, consumers can choose
arbitrary mappings that assign usage to utility values. On the
supplier side, generators can incorporate unit start up costs and
ramp constraints into their supply cost structures, or retailers
can simply adopt their wholesale market payments as their
supply cost. Furthermore, demand flexibilities can take various
forms to represent heterogeneous consumer models in the
same problem formulation. For instance, some of the users can
shift their demand in time or simply delay their consumption,
some of the users may only need to adjust the amount of their
load, and some other users can choose between intermittent
and consecutive service.

In particular, we formulate a social welfare maximization
problem for the LA. Due to the arbitrary cost and utility
structures and heterogeneous demand flexibilities, the welfare
maximization problem does not have a closed form solution.
Instead, by a series of transformations, we convert the opti-
mization problem into a linear problem that can be solved
by iterative and distributed algorithms. Then, we design a
primal-dual algorithm which assigns prices to consumers’ and
suppliers’ load allocations. The generated prices incentivize
consumers and suppliers to allocate their load and supply,
respectively, so that the aggregate load and supply allocation



benefits the whole system performance.
The rest of the paper is organized as follows: In Sec-

tion II-A, we present the system model and describe its
participants in detail. In Section II-B, we formulate the social
welfare maximization problem of the LA. Then, we transform
the problem into a linear program by introducing auxiliary
variables, and feasible consumption and supply schedules. In
Section III, the dayahead pricing algorithm, which achieves the
optimal load and supply allocation, is derived. The algorithm
is distributed and assumes that the system participants inde-
pendently act to their own benefits. In Section IV, we study the
algorithm’s performance via numerical investigations. Simula-
tions show that our algorithm assign prices to consumers’ and
suppliers’ schedules so that they are incentivized to choose the
schedules that benefit the system performance.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the system model and introduce
the participants of the system: the LA, consumers, and suppli-
ers. Then, we formulate the demand and supply management
problem of the LA as a welfare maximization problem.

A. System Model

We consider an LA whose aim is to serve its consumers’
daily energy demand by providing electricity from suppliers.
The LA manages its consumers’ demand and decides on their
daily loads, and procures the matching amount of supply one
day ahead. A day is divided into T control slots, thus the LA is
responsible for determining T -hour load and supply schedules
for the consumers and suppliers for each day, one day before
the load and supply are actually realized.

Consumers can be factories with industrial loads who are
willing to alter the time and amount of their energy consump-
tion. Hence, the consumers’ demand is said to be flexible. On
the other hand, suppliers can be local power plants, or retailers
who are willing to procure electricity. In the following, we
describe the system participants in more detail.
1. Load Aggregator (LA): The LA aggregates its consumers’
demand, and serves the total load by procuring electricity from
the suppliers [2]. The LA is responsible for the benefits of all
parties involved in the system. In particular, the objective of the
LA is to maximize the social welfare which is defined as the
total utility obtained by consumers for using electricity minus
the total cost incurred on suppliers for procuring electricity.
2. Suppliers: There are M suppliers that interact with the LA.
Each supplier has a finite number of supply schedules which
determine the amount of procurement at each slot throughout
a day. A supply schedule of supplier m is denoted by sm,
which is a length T vector. The set of all feasible schedules
of supplier m is denoted by Sm. The feasible schedules chosen
by a supplier take into account its operational constraints.
Supplying the schedule sm incurs the cost Cm(sm). We
do not assume any structure for Cm such as convexity or
differentiability; Cm is an arbitrary mapping from Sm to
R. For instance, it can include the unit start up costs of a
generator, or it can represent wholesale market purchases of
a retailer. The objective of each supplier is to maximize its

profit that is defined as the payment it receives minus the cost
of procurement.
3. Consumers: There are N consumers that interact with the
LA. Consumers have flexible demand, of which time and con-
sumption amount can be altered. Each consumer has a finite
number of consumption schedules which is composed of the
possible realizations of load over T time slots for the flexible
demand. Thus, a consumer’s choice of its feasible schedules
encompasses the flexibilities that its demand bears, such as
shiftability, deferrability, and intermittence. A consumption
schedule of consumer n is denoted by xn, which is a length
T vector. The set of all schedules of consumer n is denoted
by Xn. By consuming the load xn, consumer n obtains the
utility Un(xn). We do not assume any structure for Un; Un

is an arbitrary mapping from Xn to R. The objective of
each consumer is to maximize its welfare which is defined
as the utility it obtains from consumption minus the payment
it makes for the consumption.

Under the described system model, both consumers and
suppliers determine their load and supply schedules, utility
and cost functions, before the LA generates prices. Users can
employ prediction methods in the process of determining their
schedules and corresponding utility and cost functions, but this
process is out of this paper’s scope.

B. Problem Formulation

We formulate the social welfare maximization problem of
the LA as follows:

max
{xn},{sm}

N∑
n=1

Un(xn)−
M∑
m=1

Cm(sm) (1)

s.t.
N∑
n=1

xnt =

M∑
m=1

smt , ∀t ∈ {1, . . . , T} (2)

xn ∈ Xn, ∀n
sm ∈ Sm, ∀m.

where (2) is the load-supply matching constraint. The opti-
mization is over the discrete and finite feasible schedule sets
of consumers and suppliers, Xn and Sm respectively, which
encompass the operational and economic constraints of the
users. In order to guarantee the existence of a feasible solution
that satisfies (2), we assume that each user’s set contains the
schedule which have 0 at all slots t, i.e. xn = 0.

The problem in (1) can be reformulated in a compact form
by including the constraint (2) in the following set definition.

F ,

{
(x, s) : x = (xn : xn ∈ Xn), s = (sm : sm ∈ Sm),

∑
n

xnt =
∑
m

smt , ∀n,m, t

}
.

Then, the problem (1) becomes

max
F

N∑
n=1

Un(xn)−
M∑
m=1

Cm(sm) (3)



Problem (1) is a nonlinear optimization problem over a
discrete and finite set, and it does not have any particular
structure such as convexity or linearity due to the arbitrary
choice of utility and cost functions. Furthermore, the knowl-
edge of the utility and cost functions is private to consumers
and suppliers, and hence it is practically not available to the
LA. Consequently, due to the complexity of the problem and
the privacy of the utility and cost functions, it is not possible
for the LA to solve problem (1) centrally. Therefore, we are
interested in distributed and possibly iterative solutions to
problem (1).

Now, consider the following linear problem which is equiv-
alent to (3):

min
γ

γ (4)

s.t. γ ≥
N∑
n=1

Un(xn)−
M∑
m=1

Cm(sm), ∀(x, s) ∈ F

Observe that at the optimal solution of the above problem, γ is
equal to the maximum objective value of the original welfare
maximization problem in (1).

Next, we define πnx ≥ Un(xn) − pn(xn) and πms ≥
pm(sm) − Cm(sm) where πnx and πms are the surplus terms
for consumer n and supplier m, respectively, and pn(xn) and
pm(sm) are the bundle prices communicated to consumer n
for schedule xn and to supplier m for schedule sm, respec-
tively. We note that prices pn(xn) and pm(sm) are assigned to
schedules of users; they do not represent the price of energy
at a certain time slot. As described in Section II-A, a schedule
is a bundle of consumption or supply amounts for all time
slots from t = 1 to t = T . Thus, we refer to these prices,
that are assigned to schedules, as bundle prices. Consequently,
the price of energy at a time slot is not defined under this
formulation.

Define Φ , {γ, πnx , πms , pn(xn), pm(sm)} as the set of
problem variables. Using the surplus terms and bundle prices,
we rewrite problem (4) as

min
Φ

γ (5)

s.t. γ ≥
N∑
n=1

(πnx + pn(xn))−
M∑
m=1

(pm(sm)− πms ) ,

∀(x, s) ∈ F
πnx ≥ Un(xn)− pn(xn), ∀n,xn ∈ Xn

πms ≥ pm(sm)− Cm(sm), ∀m, sm ∈ Sm

We further simplify the constraint on γ by defining π ≥∑
n p

n(xn)−
∑
m p

m(sm):

min
Φ

γ (6)

s.t. γ ≥ π +

N∑
n=1

πnx +

M∑
m=1

πms

π ≥
∑
n

pn(xn)−
∑
m

pm(sm), ∀(x, s) ∈ F

πnx ≥ Un(xn)− pn(xn), ∀n,xn ∈ Xn

πms ≥ pm(sm)− Cm(sm), ∀m, sm ∈ Sm

where the set Φ includes the newly defined variable π as well.
Finally, by dropping γ we obtain

min
Φ

π +

N∑
n=1

πnx +

M∑
m=1

πms (7)

s.t. π ≥
∑
n

pn(xn)−
∑
m

pm(sm), ∀(x, s) ∈ F (8)

πnx ≥ Un(xn)− pn(xn), ∀n,xn ∈ Xn (9)
πms ≥ pm(sm)− Cm(sm), ∀m, sm ∈ Sm (10)

where Φ is redefined as Φ , {π, πnx , πms , pn(xn), pm(sm)}.

III. OPTIMAL BUNDLE PRICING

Note that problem (7) is a linear program over the set Φ.
However, it is still difficult to be solved by the LA, because Un

and Cm are arbitrary functions, and also their knowledge is
not available to the LA. Thus, in order to obtain an algorithm
that can efficiently solve the optimization problem without
requiring the knowledge of the utility and cost functions, we
apply primal-dual decomposition techniques [27]. To that end,
we first obtain the dual problem of (7) as follows:

max
λ,µn,µm

∑
n

∑
Xn

µn(xn)Un(xn)−
∑
m

∑
Sm

µm(sm)Cm(sm)

(11)

s.t.
∑
F
λ(x, s) = 1∑

Xn

µn(xn) = 1, ∀n∑
Sm

µm(sm) = 1, ∀m

µn(xn) =
∑
F

s.t. xn∈x

λ(x, s), ∀n,xn ∈ Xn

µm(sm) =
∑
F

s.t. sm∈s

λ(x, s), ∀m, sm ∈ Sm

λ(x, s), µn(xn), µm(sm) ≥ 0

where λ(x, s), µn(xn), µm(sm) are the dual variables corre-
sponding to the constraints in (7), respectively.

We observe that the dual problem (11) coincides with
the standard primal problems that are usually formulated in
combinatorial auction settings [28]. Hence, the primal problem
(7) resembles the dual of a combinatorial auction problem.
However, we begin designing the pricing mechanism with (7)
as it explicitly states the prices that are of primary interest.

The dual problem (11) is linear in the dual variables,
so any feasible primal-dual pair is optimal if it satisfies
the corresponding complementary slackness (CS) conditions.
Thus, given a primal-feasible solution of (7), the set of
equations derived from the CS conditions can be solved
for dual-feasible variables. If such dual variables exist, they
constitute the primal-dual optimal pair with the given primal
variables. Otherwise, a restricted primal problem and its dual
are constructed for the CS conditions. The restricted problem
measures the amount of violation of the CS conditions, and it



provides feasible primal-dual update directions which strictly
improve the objective value and guarantee convergence to an
optimal solution [27].

CS conditions for (7) and (11) are as follows:

λ(x, s) = 0, for (x, s) ∈ F

s.t. π >
∑
n

pn(xn)−
∑
m

pm(sm) (12)

µn(xn) = 0, for n,xn ∈ Xn

s.t. πnx > Un(xn)− pn(xn)

µm(sm) = 0, for m, sm ∈ Sm

s.t. πms > pm(sm)− Cm(sm)

Primal constraints in (7) and Dual constraints in (11)

Restricted problem for (12), which we call the restricted
dual problem, is given as

min
λ,µ,a,b

a(π) + b(π) +
∑
n

a(πnx ) + b(πnx )

+
∑
m

a(πms ) + b(πms ) +
∑
n

∑
Xn

a (pn(xn)) + b (pn(xn))

+
∑
m

∑
Sm

a (pm(sm)) + b (pm(sm)) (13)

s.t. λ(x, s) = 0, for (x, s) ∈ F

s.t. π >
∑
n

pn(xn)−
∑
m

pm(sm)

µn(xn) = 0, for n,xn ∈ Xn

s.t. πnx > Un(xn)− pn(xn)

µm(sm) = 0, for m, sm ∈ Sm

s.t. πms > pm(sm)− Cm(sm)∑
F
λ(x, s)− a(π) + b(π) = 1∑

Xn

µn(xn)− a(πnx ) + b(πnx ) = 1∑
Sm

µm(sm)− a(πms ) + b(πms ) = 1

µn(xn)− a(pn(xn)) + b(pn(xn))

=
∑
F

s.t. xn∈x

λ(x, s), ∀n,xn ∈ Xn

µm(sm)− a(pm(sm)) + b(pm(sm))

=
∑
F

s.t. sm∈s

λ(x, s), ∀m, sm ∈ Sm

a(π), b(π), a(πnx ), b(πnx ), a(πms ), b(πms ),

a (pn(xn)) , b (pn(xn)) , a (pm(sm)) , b (pm(sm)) ≥ 0

where the positive variables a and b measure the violation
of the constraints given the primal variables. Thus, objective
value of problem (13) is strictly positive if there does not
exist a solution of dual variables to the CS equations in (12)
given the primal variables. Otherwise, the objective value is
0. Hence, problem (13) can be solved for the dual variables
instead of the set of CS equations in (12) for verifying primal-
dual optimality. Furthermore, the restricted dual problem to-
gether with its primal provide a way to obtain update directions

for the primal variables π, πnx , πms , pn(xn), pm(sm). For that
purpose, we write the primal of the restricted dual problem
(13) as follows

max
π̄,p̄

− π̄ −
∑
n

π̄nx −
∑
m

π̄ms (14)

s.t. − 1 ≤ π̄ ≤ 1

− 1 ≤ π̄nx ≤ 1, ∀n
− 1 ≤ π̄ms ≤ 1, ∀m
− 1 ≤ p̄n(xn) ≤ 1, ∀n,xn ∈ Xn

− 1 ≤ p̄m(sm) ≤ 1, ∀m, sm ∈ Sm

π̄nx + p̄n(xn) ≥ 0, for xn s.t. πnx = Un(xn)− pn(xn)
(15)

π̄ms + p̄m(sm) ≥ 0, for sm s.t. πms = pm(sm)− Cm(sm)
(16)

π̄ −
∑
n

p̄n(xn)−
∑
m

p̄m(sm) ≥ 0,

for (x, s) s.t. π =
∑
n

pn(xn)−
∑
m

pm(sm)

(17)

where π̄, π̄nx , π̄ms , p̄n(xn), p̄m(sm) are the dual variables
corresponding to the constraints in (13). For convenience, the
dual variables are named after the variables specifying the
condition in each constraint equation, e.g. π̄ is the dual variable
corresponding to the fourth constraint in (13).

The update directions for the primal variables are obtained
by solving the restricted primal problem in (14). In particular,
the primal variables π, πnx , πms , pn(xn), pm(sm) are updated,
respectively, by appropriately scaled values of π̄, π̄nx , π̄ms ,
p̄n(xn), p̄m(sm) which solve the restricted primal problem
(14). The following lemma states the feasibility of such update
directions and shows that the objective value of (7) is strictly
improved towards its optimal value.

Lemma 1. Let π, πnx , πms , pn(xn), pm(sm) be primal-feasible
for (7). Given these primal variables suppose there is no
solution to the set of equations in (12) (or equivalently the
objective value of the restricted dual problem (13) is positive).
Also, let π̄, π̄nx , π̄ms , p̄n(xn), p̄m(sm) be a solution to the
restricted primal problem (14). Then, π + δπ̄, πnx + δπ̄nx ,
πms +δπ̄ms , pn(xn)+δp̄n(xn), pm(sm)+δp̄m(sm) are feasible
for (7) for sufficiently small δ > 0. Furthermore, the objective
value of (7) strictly decreases with the updated variables.

Proof. First, we show the feasibility, i.e. the updated vari-
ables satisfy the constraints (8)-(10). Here, we consider
the proof for the constraint (8); the proofs for the con-
straints (9), (10) follow the same line of reasoning. If
π =

∑
n p

n(xn) −
∑
m p

m(sm), then π̄ ≥
∑
n p̄

n(xn) −∑
m p̄

m(sm) from (17). Summing together we obtain π +
δπ̄ ≥

∑
n(pn(xn) + δp̄n(xn)) −

∑
m(pm(sm) + δp̄m(sm)).

On the other hand, if π >
∑
n p

n(xn) −
∑
m p

m(sm),
then for sufficiently small δ we have π ≥

∑
n p

n(xn) −∑
m p

m(sm) − δ (π̄ −
∑
n p̄

n(xn) +
∑
m p̄

m(sm)), and π +
δπ̄ ≥

∑
n(pn(xn) + δp̄n(xn)) −

∑
m(pm(sm) + δp̄m(sm)).

A a result, constraint (8) is satisfied for the updated variables.
Following the same approach, we can show that constraints



(9)-(10) also hold for the updated dual variables for sufficiently
small δ.

Second, we show that the objective value of (7) strictly
decreases with the updated variables. Observe that strong
duality holds for the problems (13) and (14). Also, observe
that the objective value of (13) is strictly positive if there is
no solution for the CS conditions in (12). Thus, objective value
of (14) is also positive. We obtain

π +
∑
n

πnx +
∑
m

πms > π +
∑
n

πnx +
∑
m

πms

−

(
−π̄ −

∑
n

π̄nx −
∑
m

π̄ms

)
= (π + π̄) +

∑
n

(πnx + π̄nx ) +
∑
m

(πms + π̄ms ). (18)

Up to this point, we demonstrated how to obtain the optimal
primal-dual solution for the problems (7) and (11) by solving
the CS equations in (12) or by solving the restricted dual
problem in (13). We also provided update directions, as the
solution of the restricted primal problem (14), which guarantee
feasibility after the update and also ensure an improved ob-
jective value that strictly decreases towards the optimal value
of (7). However, solving the CS equations or the problems
(13) and (14) requires the knowledge of the utility and cost
functions Un and Cm. Furthermore, the arbitrary structure of
these functions makes this task quite difficult even if they are
known by the LA. Fortunately, we obtain the following lemma
characterizing additional properties for the problem constraints
and update directions obtained from (14).

Lemma 2. Let π, πnx , πms , pn(xn), pm(sm) be primal-
feasible for (7). Given these primal variables suppose there
is no solution to the set of equations in (12) (or equivalently
the objective value of the restricted dual problem in (13)
is positive). Also suppose that the following relations hold:
πnx = maxxn Un(xn)−pn(xn), and πms = maxsm pm(sm)−
Cm(sm). If the primal variables are updated with an appro-
priate step size δ using the solution of the restricted primal
problem, then the above conditions continue to hold.

Proof. Let x̂n ∈ arg maxxn Un(xn)− pn(xn). By definition,
πnx = Un(x̂n)− pn(x̂n). Observe that constraint (15) is bind-
ing for x̂n, because otherwise π̄nx could be further decreased to
obtain a better objective value. Using the expression in (15) as
equality we obtain πnx +δπ̄nx = Un(x̂n)− (pn(x̂n)+ p̄n(x̂n)).
Furthermore, for all xn ∈ Xn other than x̂n, we have
πnx > Un(xn)−pn(xn). Then, for sufficiently small step size
δ we can obtain πnx + δπ̄nx ≥ Un(xn) − (pn(xn) + p̄n(xn)).
As a result, for sufficiently small δ, we have πnx + δπ̄nx =
maxXn Un(xn) − pn(xn), which completes the proof. The
same result can be proven for πms in the same manner.

Lemma 2 suggests that if the conditions mentioned in the
lemma are satisfied at one iteration, they can be preserved
for the rest of the iterations by requiring the suppliers and
consumers to choose their schedules to maximize their own
benefits given the bundle prices pn(xn) and pm(sm). By doing

so, at each step of the primal-dual update process, we will
know that the constraints in (9) and (10) are binding only for
the schedules that are chosen by the suppliers and consumers.
Hence, checking the CS conditions will be trivial for the
rest of the elements of the feasible schedule set, because the
corresponding dual variables will be zero. Bringing together
the observations on Lemma 1 and 2, we propose the distributed
primal-dual algorithm in Algorithm BP.

Algorithm BP Bundle Pricing Algorithm
At iteration ` = 0, initialize pn(xn) and pm(sm).
At iteration ` > 0:

• Consumer n computes x̂n = arg maxXn Un(xn)− pn(xn),
and communicates the set of x̂n to the LA.
• Supplier m computes ŝm = arg maxSm pm(sm)−Cm(sm),
and communicates the set of ŝm to the LA.
• The LA solves the restricted primal problem (14):

If the objective value is 0, then the optimal solution is found.
If the objective value is positive, the LA computes pn(xn)+

δp̄n(xn), pm(sm) + δp̄m(sm), and communicates the updated
prices pn(xn) and pm(sm) to the consumers and suppliers.

In Algorithm BP, at each iteration, the consumers and
suppliers receive bundle prices generated by the LA. Then,
they submit to the LA the schedules that maximize their own
welfare. Note that this is the opposite of what is being done in
wholesale energy markets where participants submit bids and
receive load and supply schedules. However, Algorithm BP
is designed to be implemented internally in a microgrid, and
it does not concern the LA’s interaction with the wholesale
market. Furthermore, an implicit assumption that is necessary
for the proper operation of Algorithm BP is that the consumers
and suppliers do not try to game the system and they truthfully
report their schedules to the LA.

The following observations on Algorithm BP are immediate:
First, the constraints (9) and (10) of the primal problem (7)
are binding for only the set of schedules that are chosen by the
consumers and suppliers. Therefore, the number of inequality
constraints (15), (16) is equal to the number of these schedules.
Furthermore, since these schedules are communicated to the
LA by the system participants the LA does not need to keep
track of the binding and non-binding constraints. Second, the
market participants are required to solve their own welfare
problems and they are assumed to truthfully report their
schedules. It should be noted that these local problems can
be hard to solve due to the arbitrary structure of the utility
and cost functions. Nevertheless, the highly complex problem
in (1) is decomposed into smaller problems that are more
manageable by Algorithm BP. Third, the values of π, πnx , πms ,
which require the knowledge of the utility and cost functions,
are not needed by the mechanism. Instead, they are implicitly
defined by the maximizations at the consumer and suppliers
sides. Fourth, the update directions obtained via restricted
primal and dual problems ensure that the algorithm converges
to an optimal solution as stated in the following proposition.

Proposition 1. Assume that the step size is chosen appro-
priately so that Lemma 1 and 2 hold. Then Algorithm BP



converges to the optimal solution of problem (1).

Proof. In Section II-B, it is already shown that problem (7) is
equivalent to problem (1). Since (7) is a linear program, and
update directions computed by Algorithm BP satisfy Lemma 1,
it can be shown that the algorithm converges to the optimal
solution of problem (7) using the same technique in [27].

A. The Step Size Choice
Note that the step size δ must be chosen by the LA

appropriately for both Lemma 1 and Lemma 2 to hold.
However, utility and cost functions are not known by the LA,
and an appropriate choice of δ depends on the values of these
functions. Next lemma provides a method for choosing the step
size without the knowledge of the utility and cost functions
under a mild assumption on these functions. In particular, we
show that if the utility and cost functions take integer values,
the LA can choose the step size using only the knowledge of
the price values pn(xn) and pm(sm).

Before stating the lemma, we introduce the following def-
initions and notations. Denote the set of schedules chosen by
consumer n with Xn∗ ; the set of schedules chosen by supplier
m with Sm∗ ; the set of schedules that maximize

∑
n p

n(xn)−∑
m p

m(sm) with F∗. Note that the complements of these sets
are given by X̃n∗ = Xn\Xn∗ , S̃m∗ = Sm\Sm∗ , F̃∗ = F\F∗. Let
schedule variables with a star belong to the maximizing sets,
and schedule variables with a tilde belong to the complements
of the maximizing sets, i.e. for the schedules of consumer n
we have xn∗ ∈ Xn∗ and x̃n∗ ∈ X̃n∗ . Define the following metrics:

∆n
X =

{
1, if pn(x̃n∗ )− pn(xn∗ ) is integer,
pn(x̃n∗ )− pn(xn∗ )− bpn(x̃n∗ )− pn(xn∗ )c, o.w.

∆m
S =

{
1, if pm(s̃m∗ )− pn(sm∗ ) is integer,
pm(s̃m∗ )− pm(sm∗ )− bpm(s̃m∗ )− pm(sm∗ )c, o.w.

Lemma 3. Assume that the functions Un and Cm take integer
values for all n and m, respectively. Denote

∆n
X ,min = min

Xn
∗ ,X̃n

∗

∆n
X , ∆m

S,min = min
Sm
∗ ,S̃m

∗

∆m
S ,

Choose δnx > 0 and δms > 0 such that they are the largest real
numbers that satisfy

δnx (p̄n(x̃n∗ )− p̄n(xn∗ )) ≥ −∆n
X ,min (19)

δms (p̄m(s̃m∗ )− p̄m(sm∗ )) ≥ −∆m
S,min.

Then, choosing δ = min {minn δ
n
x , minm δ

m
s , δ0}, where 0 <

δ0 <∞, guarantees that Lemma 1 and Lemma 2 hold.

Proof. The proof for the consumer-side is given here. The
proof for the supplier-side is similar.

First, note that πnx = Un(xn∗ ) − pn(xn∗ ). Also, due to (15)
π̄nx + p̄n(xn∗ ) ≥ 0. Combining these two together we have
πnx + δπ̄nx ≥ Un(xn∗ ) − pn(xn∗ ) − δp̄n(xn∗ ) for all values of
δ > 0. Hence, both Lemma 1 and Lemma 2 hold for xn∗ ∈ Xn∗
regardless of the step size choice.

Now, consider the set X̃n∗ . From the definition of ∆n
X , and

due to the assumption that Un are integer valued we have

pn(x̃n∗ )− pn(xn∗ )−∆n
X ≥ Un(x̃n∗ )− Un(xn∗ ).

Rearranging the terms we obtain

Un(xn∗ )− pn(xn∗ ) ≥ Un(x̃n∗ )− pn(x̃n∗ ) + ∆n
X

≥ Un(x̃n∗ )− pn(x̃n∗ ) + ∆n
X ,min (20)

We have

πnx + δπ̄nx ≥ Un(xn∗ )− pn(xn∗ )− δp̄n(xn∗ )

≥ Un(xn∗ )− pn(xn∗ )− δp̄n(x̃n∗ )−∆n
X ,min

≥ Un(x̃n∗ )− pn(x̃n∗ ) + ∆n
X ,min

− δp̄n(x̃n∗ )−∆n
X ,min

= Un(x̃n∗ )− pn(x̃n∗ )− δp̄n(x̃n∗ ) (21)

where the first inequality follows from the above-proved fact
that this relation holds for any value of the step size δnx > 0 for
xn∗ ∈ Xn∗ ; second inequality follows from using (19) by noting
that δ satisfies (19); third inequality follows from (20). This
proves that both Lemma 1 and Lemma 2 hold, if the step size
δnx is chosen as this lemma suggests for schedules x̃n∗ ∈ X̃n∗ .
Remembering that the lemmas hold regardless of the step size
for xn∗ ∈ Xn∗ , and noting that choosing the minimum of the
step sizes among all consumers and suppliers preserve the
above relationships, the lemmas hold for all n and m. Note
that δnx , δ

m
s > 0 and taking the minimum together with δ0

assures that 0 < δ <∞.

B. Algorithm Implementation and Complexity

The welfare maximization problem of the LA (1) and its
linear form over the feasible schedules sets (7) are difficult
to solve due to the arbitrary structures of the utility and cost
functions, and also due to the unavailability of their infor-
mation at the LA. Algorithm BP, alleviates these difficulties
by separating the problem into smaller ones that are solved
independently by the consumers and suppliers via a distributed
pricing mechanism. We note that the optimization problems
solved by the consumers and suppliers are still difficult due to
arbitrary utility and cost functions. However, these problems
are much smaller compared to the LA’s problem in (7) as they
scale with the number of feasible schedules a user has. From a
practical point of view, the number of feasible schedules need
not be large. For example, a few schedules for different times
of consumption during a day can be enough for an industrial
load. Section IV demonstrates different flexibility models and
corresponding consumption schedules in a typical scenario.

Another point worth mentioning is the LA’s computational
requirements. Note that in Algorithm BP, the LA should
keep track of prices for all consumption and supply sched-
ules. Although this is not a restrictive burden, identifying
consumption-supply combinations that satisfy the constraint
(8) has exponential complexity. Therefore, Algorithm BP is
more appropriate for a system where the number of consumers
is small, and the consumers are large entities with small
number of schedules such as supermarkets, industrial loads,
and data centers.

Finally, the convergence rate of Algorithm BP regarding
the system size is of interest. Algorithm BP is derived using



primal-dual decomposition methods. As it is usual with de-
composition methods it takes hundreds or thousands of itera-
tions for the algorithm to converge. Furthermore, problem (7)
has O(k(M + N)) variables, and O(k(M + N) + kM+N )
constraints, where k is the number of feasible schedules for
each user. Thus, it takes exponential time in the number of
users to verify whether the constraints are binding or not. Yet,
the difficulty of solving these problems is independent of the
horizon length T , and provided that there are a small number
of suppliers/consumers, the algorithm is expected to have a
good performance.

Additionally, in settings with large number of suppli-
ers/consumers, the formulations (and the performance of the
algorithm) can be improved by eliminating “infeasible” sched-
ules before the algorithm is run. For instance, if the load
aggregator chooses schedules (by setting the appropriate λ
variable to one) for which the induced supply in a given period
cannot meet the induced demand in the same period, then this
tuple of schedules are not feasible in (11). Thus, the corre-
sponding λ variable can be dropped, and in the primal problem
the associated constraint can be ignored. Identifying and
pruning such infeasible schedules is an interesting algorithmic
question, which would further improve the performance of the
algorithm provided in our paper. This algorithmic question is
a natural future direction to pursue.

Furthermore, the number of schedules (k) that the LA col-
lects from suppliers and consumers can be viewed as a design
variable. That is, if the algorithmic performance is a primary
concern, the load aggregator can limit the number of different
schedules that can be reported by the suppliers/consumers
(thereby effectively limiting k). In light of the complexity
of the underlying optimization problems provided above, this
observation suggests that the LA can overcome the algorithmic
difficulty by designing k appropriately.

IV. NUMERICAL RESULTS

In this section, we present numerical results to assess the
performance of Algorithm BP. We consider a system that
consists of 2 suppliers and 10 consumers. There are 9 flexible
consumers and each consumer belongs to one of 3 different
groups according to the type of flexibility they have in their
demand. Note that there are 3 consumers in each flexibility
type group. Also, there is another consumer whose demand
is inflexible. This consumer is interested only in a given fixed
schedule, or not receiving service at all, i.e., the consumer
has two feasible schedules, one of which is the all-0 schedule.
Flexible consumers of type 1, 2, and 3 have 2, 10, and 6
feasible schedules, respectively. On the other hand, the first
supplier’s cost is composed of linear cost of production and
cost of ramping, i,e,

∑
t cps(t) + cr|s(t + 1) − s(t)|. This

cost function introduces temporal dependency and does not
bear simple analytic properties such as differentiability and
convexity in its variable s. The second supplier’s cost is
chosen to be quadratic in the supply amount, i.e.

∑
t cts(t)

2.
Furthermore, the values of cost functions are rounded to the
nearest integer in order to implement the algorithm in the
distributed way. Both suppliers have 23 × 103 × 63 feasible

schedules so that for every load combination there is a feasible
supply schedule. The algorithm is run on a Windows computer
with Intel Core i7-2600 CPU at 3.4 GHz and 16GB of ram.
With the given size of the system, it took approximately 4
minutes for Algorithm BP to converge to the optimal solution.

In Figure 1, feasible load schedules of one consumer from
each of the three flexibility groups are plotted. Consumer 1
has demand which can be served intermittently with regular
periods throughout the day according to 2 feasible schedules.
This type of consumer and demand can represent the air-
conditioning demand of a supermarket or a data-center. On the
other hand, consumer 2 prefers all of its demand to be served
at a particular period of the day. The flexibility it bears is the
amount of load that can be adjusted. Consumer 3 has constant
amount of load that can be shifted in time. This demand profile
exemplifies a factory task that requires significant amount of
energy and that should be carried out one time a day, such
as metal welding. We note that the utilities corresponding to
the plotted consumption schedules are chosen to be arbitrary
mappings from the schedule sets to real numbers.
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Fig. 1. Feasible schedules of 3 users and optimum total load allocation
achieved by Algorithm BP.

At the bottom of Figure 1, the optimum load allocation
achieved by Algorithm BP is plotted. The consumption sched-
ules chosen by consumers and their placements over the
time slots are highlighted by dotted ellipses and arrows. We
observe that the algorithm actually exploits the flexibilities in
consumers’ demand and exhibits a waterfilling behavior. In
particular, the schedules that fit the valleys of the inflexible
load are chosen by the flexible consumers so that a flat
aggregate load is obtained.

In Figure 2, prices computed by Algorithm BP for the
feasible schedules of user 3 are plotted. Note that consumers
make their load allocation decisions so that they maximize
their own welfare which is defined as the utility obtained
minus the payment made. In the figure, we observe that
Algorithm BP assigns the lowest price value to the schedule
of user 3 that is located at the lowest inflexible load periods.



Consequently, user 3 chooses its schedule which is assigned
the lowest price (the utilities corresponding to this user’s
schedules are chosen to be close to each other, so the price
is the determining factor). Thus, Algorithm BP successfully
incentivizes the consumers to choose the schedules that fit
the valleys of the inflexible load. As a result, decentralized
decisions of the consumers are guided through Algorithm BP
to maximize welfare of the whole system.
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Fig. 2. Prices and allocations obtained by Algorithm BP for the feasible
schedules of user 3.

In order to get a comparison for Algorithm BP, we simu-
lated a simple pricing strategy for the LA. In this setup, the
number and type of flexible users and their characteristics are
kept the same as the previous simulations. Differently, there is
one supplier whose cost function is given by

∑
t

1
4s(t)

2. We
assume that the LA has the knowledge of the supplier’s cost
function. In this setup, the LA determines hourly prices by
setting them to the marginal cost of supply at inflexible load
levels at each time slot. Therefore, the hourly prices reflect
the system load levels. Then, given these prices flexible users
determine their schedules that maximize their welfare as they
do in Algorithm BP. It is also worth noting that negative prices
can appear in the solution of the problem as they also can in
dynamic electricity markets. These negative prices enable the
creation of extra incentives for the flexible users to shift their
load to more preferred slots.

The resulting load allocation determined by the described
strategy and also the load allocation achieved by Algorithm BP
are plotted in Figure 3. Note that the allocation achieved by
Algorithm BP results in optimal welfare. In Figure 3, we
observe that the allocations achieved by the two algorithms
are different.

Since Algorithm BP achieves the optimal allocation, the
comparison strategy does not achieve optimal welfare. Al-
though, the comparison strategy does a good job in coordi-
nating the flexible demand to be allocated at the time slots
where inflexible load is lower (hence the marginal prices
are lower), it fails to achieve a more balanced allocation as
Algorithm BP does. In particular, the optimal BP algorithm
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Fig. 3. Comparison of total load allocation. Marginal prices are set by using
a convex supply cost function on inflexible load.

exhibits a dual improvement: (i) it yields higher user utilities
due to its optimal utilization of specific user flexibilities for
allocation; and (ii) it yields lower supply costs due its more
balanced allocation of load over time. Overall, even for the
small setup in our investigations (a total of 9 flexible users),
BP achieves ≈ 2.5% improvement in global welfare over the
marginal allocation. These gains can be expected to increase as
the diversity and the amount of flexibilities increase. Similarly,
assume that the cost function of the supplier is modified
to allow for increased marginal cost (e.g., by replacing the
coefficient 1/4 with a larger coefficient), or ramp constraints
which are practically important. In this case, the flexibility of
shifting load using prices obtained from Algorithm BP helps
decrease costs, thereby further improving welfare.

V. CONCLUSION

In this work, we investigated the dayahead load and sup-
ply allocation problem in a microgrid. We did not assume
any structure for demand and supply sides’ operational and
economic constraints other than restricting the users to have
finite number of schedules to choose from. For example,
consumer utility and supplier cost functions can be arbitrary
and they do not have to have convexity or linearity properties.
Furthermore, we let the consumer demand to be flexible in
its amount, service time, and duration. Thus, our model can
cover heterogeneous consumer and supplier bases in the same
problem formulation.

Under the described system model, we formulate a social
welfare maximization problem. Then, we derive a distributed
primal-dual pricing algorithm. Under our algorithm, con-
sumers and suppliers independently choose the schedules that
fit best to their operational and economic interests. However,
the prices generated by the algorithm coordinate the system
participants in such a way that the whole system performance
is improved. In particular, our algorithm achieves the optimal
load and supply allocation. We demonstrate the dynamics of
our algorithm via numerical results, and show that consumers
and suppliers are incentivized to choose their schedules so that
the overall system performance is optimized.

There are a number of directions in which this work
can be extended and improved in future research. One such
direction is the consideration of low-complexity variations of
the bundle pricing approach that can yield close-to-optimal



performance in large-scale operations. We have already noted
in this paper several potential avenues of exploration in this
direction. Another interesting direction of future research is the
elimination of possible dishonest behavior including collusion
of different parties (e.g., suppliers) in the economic interaction.
While these can be imposed by enforcing legal laws in markets
involving small number of suppliers and load aggregators, it
would be of interest to release these assumptions in view
of large markets involving many small parties, and therefore
merits careful investigation.
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