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Abstract—Least-recently-used (LRU) caching and its variants
have conventionally been used as a fundamental and critical
method to ensure fast and efficient data access in computer
and communication systems. Emerging data-intensive applica-
tions over unreliable channels, e.g., mobile edge computing and
wireless content delivery networks, have imposed new challenges
in optimizing LRU caching systems in environments prone to
failures. Most existing studies focus on reliable channels, e.g., on
wired Web servers and within data centers, which have already
yielded good insights with successful algorithms on how to reduce
cache miss ratios. Surprisingly, we show that these widely held
insights do not necessarily hold true for unreliable channels.

We consider a single-hop multi-cache distributed system with
data items being dispatched by random hashing. The objective is
to achieve efficient cache organization and data placement. The
former allocates the total memory space to each of the involved
caches. The latter decides data routing strategy and data repli-
cation scheme. Analytically we characterize the unreliable LRU
caches by explicitly deriving their asymptotic miss probabilities.
Based on these results, we optimize the system design.

Remarkably, these results sometimes are counterintuitive,
differing from the ones obtained for reliable caches. We discover
an interesting phenomenon: asymmetric cache organization is
optimal even for symmetric channels. Specifically, even when
cache unreliability probabilities are equal, allocating the cache
spaces unequally can achieve a better performance. We also
propose an explicit unequal allocation policy that outperforms
the equal allocation. In addition, we prove that splitting the
total cache space into separate LRU caches can achieve a lower
asymptotic miss probability than resource pooling that organizes
the total space in a single LRU cache.

These results provide new and even counterintuitive insights
that motivate novel designs for caching systems over unreliable
channels. They can potentially be exploited to further improve
the system performance in real practice.

I. INTRODUCTION

Caching is a fundamental and critical method in modern
computer and communication systems that can efficiently
accelerate data access [1], [2], [3], [4], [5] at the expense
of a dedicated fast memory space. As default algorithms, the
least-recently-used (LRU) caching and its variants [6], [7], [8]
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have been predominantly used to manage the allocated cache
space in various computer systems [3], [4], [9]. Under the LRU
algorithm, only the most recently used data items are stored
in the cache. If the cache is full and the requested data items
cannot be found therein, the data item that has not been used
for the longest time will be moved out of the cache to make
room for the newly requested one. To design efficient caching
systems that minimize the miss ratios, a fundamental problem
is to optimize cache organization and data placement. The
former decides the optimal memory allocation to the involved
cache spaces and the latter dispatches data requests to the right
caches.

Most of the existing work on cache optimization focus on
improving the performance over reliable channels, e.g., within
data centers and on wired Web servers [10], [11], [12]. These
studies have yielded good insights with successful algorithms
in real systems [3], [13]. However, with the increasing popu-
larity of emerging data applications over wireless and mobile
networks, e.g., mobile edge computing and content delivery
networks, cached data delivered over unreliable channels be-
come substantial in data-intensive applications [14], [15], [16],
[17]. Due to mobility, fading, communication errors, etc, the
access to caches could fail intermittently or be significantly
delayed. Consequently, a high fetching cost can be incurred
on unreliable channels even when the requested data items
are indeed in the cache. This fact is significantly different
from reliable channels. Thus, caching the same data item in
multiple caches, i.e., data replications, should almost always be
considered in presence of channel failures. All these features
impose new challenges in optimizing cache organization and
data placement in environments prone to failures. It merits a
deeper investigation on whether the insights and engineering
practices that are optimized for reliable caches can still work
well in unreliable environments. If not, what to change?

We consider a single-hop multi-cache distributed system
with data items being dispatched through random hashing
to multiple cache spaces. One important decision is to route
the data items to the right cache space. The current practice
unanimously relies on an effective scale-out method that is
called consistent hashing [18]. Under consistent hashing, data
requests are routed to different caches according to a hash
function. To be general and analytically tractable for our



modeling analysis, we consider a dispatching scheme based on
hashing that satisfies the Simple Uniform Hashing Assumption
(SUHA). To support data replication for unreliable channels,
we assume the random hash function maps each data item to
a set of caches instead of a single one. Then, we optimize
the data replications by carefully designing the hash functions
and the cache space allocation. In particular, we make the
following contributions to the literature on LRU caching:
• We propose a tractable model for LRU caching over

unreliable channels, which considers cache organization
and data placement simultaneously. More importantly, we
derive the asymptotic miss probability in a closed form,
which provides an effective tool to optimize caching
system performance.

• We characterize the property of the optimal cache space
allocation and the data replication. Surprisingly, the re-
sults are quite different from those for reliable channels.
A counterintuitive phenomenon is discovered: allocating
the cache spaces unequally is better than the equal
arrangement even when the channels have identical unre-
liability probabilities. Moreover, we propose an explicit
non-identical separation policy that outperforms the iden-
tical separation policy. These new insights deepen our
understandings on LRU caching over unreliable channels
and can potentially be applied in real practice to further
improve the system performance.

Related work: For reliable LRU caches, the miss probability
can be accurately approximated when the cache space is
sufficiently large [19], [20], [21], [10], [22], [23], [24], [25].
Extensive studies have been conducted to optimize cache
space allocation with different objectives. In order to maximize
the utility functions based on miss probabilities, it is proved
in [11] that splitting the total memory space into separate
LRU caches is at least as good as resource pooling when
the whole memory space is allocated to a single LRU cache.
In addition, when data sizes, popularity distributions, request
rates and data overlaps are considered jointly, complex results
can be obtained such that cache space separation can be
asymptotically better than, equal to or worse than resource
pooling depending on the afore-mentioned four factors [10].
For caching over unreliable channels, most existing work focus
on optimizing data placement to improve caching gains [16],
[26], [27]. For example, in [28], it is shown that the ubiquitous
path replication algorithm combined with LRU replacement
policy is suboptimal in caching networks, and novel adaptive
algorithms with optimality guarantees are proposed to decide
which data item should be stored in the cache. However,
few existing work consider cache space allocation and data
placement simultaneously in one framework. How to allocate
cache space and dispatch data requests for LRU caching over
unreliable channels still remains unexplored and deserves a
thorough investigation.

II. MODEL DESCRIPTION

Consider a set of infinite data items D = {d1, d2, · · · } and
a data flow which is a sequence of data requests on the data

set D. Assume the size of each data item is identical and
normalized to 1. Assume the requests arrive according to a
Poisson process. Let {τn,−∞ < n < +∞} denote the time
points that the requests arrive. Define Rn as the data item
that is requested at time τn, Rn ∈ D. Assume Rn’s are
i.i.d random variables and define P[Rn = di] = qi, i ≥ 1
as the popularity distribution. Empirical studies on real data
traces have shown that the popularities often follow a Zipf’s
distribution. Therefore, we assume

qi ∼ c/iα, α > 1, i ≥ 1.

Note f(z) ∼ g(z) means limz→∞ f(z)/g(z) = 1. To char-
acterize the miss ratio of the system, it is sufficient to focus
on the request at one time point saying τ0 when the system
reaches stationarity, because the requests are assumed to be
independent. Consider a set of M LRU caches C = {Cm :

Fig. 1. Distributed caching over unreliable channels

1 ≤ m ≤M}. Assume the cache Cm can be accessed with a
probability p independently at time τn. Define a hash function
H : D → 2C\∅ which hashes a data item to a nonempty subset
of all M caches. For example, in Fig. 1, the data request d2
is hashed to {C1, CM−1}, but only C1 can be accessed at
that time. Let Ni denote the number of elements in the set
H(di), i ≥ 1. We assume H(·) is randomly selected from a
set of hash functions H = {hw(·), w = 1, 2, · · · } that satisfies
Assumption 1 (i.e., SUHA property). Note that although H(·)
is random, once a hash function hw(·) is selected, each data
item will be mapped to a subset of caches deterministically
by hw(·).

Assumption 1 (SUHA). Assume Ni’s are i.i.d. random vari-
ables with P[Ni = m] = µm, 1 ≤ m ≤ M ,

∑M
m=1 µm = 1.

Given Ni, assume H(di)’s are randomly chosen from all
(
M
Ni

)
possible sets with an equal probability for each.

Let In , H(Rn), In ⊆ C. Let Jn = {Cm : Cm ∈
In, Cm is accessible at τn, 1 ≤ m ≤ M}. When the request
arrives at time τn, the system will fetch the data item Rn
from the caches in the set Jn. A cache hit occurs if and
only if Rn is stored in at least one cache of Jn. Otherwise,
we call it a miss. Only the caches in Jn will be updated by
the request Rn according to the LRU algorithm. We assume
that the updating process can be completed as long as the
cache is accessible when the request arrives. Let x denote the
total cache space and xm = bmx denote the space of cache
Cm, 0 < bm < 1,

∑M
m=1 bm = 1, 1 ≤ m ≤ M . Without

loss of generality, we assume the caches are sorted such that



xm is non-increasing with m. The objective of this paper is
to characterize the optimal hashing mechanism ~µ∗ and cache
space allocation ~b∗ under different settings.

III. COUNTERINTUITIVE INSIGHTS FROM ANALYSIS

The performance of reliable LRU caching (p = 1) has
been investigated for a long time. Let Q(x) denote the miss
probability of a single LRU cache with a cache space x.
According to Theorem 3 of [20], we have for Zipf’s popularity
distributions (i.e., qi ∼ c/iα, α > 1),

Q(x) ∼ Γ(1− 1/α)α

α

c

xα−1
, as x→∞, (1)

where Γ(1− 1/α) =
∫∞
0
t−1/αe−tdt is the gamma function.

For multiple LRU caches over reliable channels organized
by the hashing mechanism described in Section II, the miss
probability of the system can be accurately approximated
by [25]. In Lemma 1, we show that pooling the total cache
space into a single LRU cache can achieve a better asymptotic
miss probability than splitting the cache space to multiple
caches, when channels are reliable.

Lemma 1. For M LRU caches organized by the hashing
mechanism described in Section II, if p = 1, then as x→∞,
we have almost surely for all H ,

P[Miss for R0|H] & Q(x),

where the equality holds asymptotically if and only if bm =
1/M , 1 ≤ m ≤M .

The proof is presented in Section VII-A. Lemma 1 implies
two insights for LRU caching over reliable channels:
• The asymptotic miss ratio under resource pooling is

always better than or equal to that under resource sep-
aration.

• Allocating cache space unequally will achieve a worse
asymptotic miss probability than allocating equally.

Interestingly, when channels are not reliable (i.e., p < 1),
none of these insights will hold. In Section IV, we rigorously
prove the following counterintuitive results for distributed
LRU caching over unreliable channels, all building on The-
orem 1.
• When the cache spaces are required to be the same,

splitting the total memory space into multiple LRU caches
can achieve a better miss probability than resource pool-
ing (cf. Theorem 2). We further characterize the splitting
required to minimize the miss probability as a function
of the channel unreliability level and the total available
memory space (cf. Theorem 3).

• When the cache spaces are allowed to be different,
allocating the total memory space unequally to the caches
can achieve a better miss probability than the equal
cache space allocation, even when the unreliability level
is identical for each channel (cf. Theorem 4). We further
develop a cache allocation policy that can yield signifi-
cant improvements on the miss probability compared to
the equal cache space allocation (cf. Theorem 5).

These contradictory results for reliable and unreliable chan-
nels indicate the importance to consider channel reliability
when organizing caching systems. They reveal that previously
successful engineering methods for optimizing caches over
reliable channels may not work well in unreliable environ-
ments. Fortunately, new insights are provided in this paper
and can be potentially exploited to modify existing algorithms
and further improve the system performance. Detailed proofs
of our statements are provided in Section VII.

IV. PERFORMANCE ANALYSIS

In this section, we first derive the asymptotic miss probabil-
ity for the distributed LRU caching over unreliable channels
modeled in Section II, and then characterize the optimal cache
space allocation and hashing mechanism with the objective to
minimize the miss probability.

A. Miss probability

In this section, we derive accurate approximations for the
cache miss probability. Given a set of M caches C, there are(
M
m

)
different subsets that contain m caches, 1 ≤ m ≤ M .

Let S(m)
k , 1 ≤ k ≤

(
M
m

)
denote the subsets that contain

m caches, and I
(m)
k,i , 1 ≤ i ≤ m be the indices of the

caches in set S(m)
k . Assume I

(m)
k,i are sorted as an increas-

ing sequence in i. For example, if S(3)k = {C9, C4, C10},
then (I

(3)
k,1, I

(3)
k,2, I

(3)
k,3) = (4, 9, 10). Define W

(m)
k , P[I0 =

S(m)
k |H] =

∑
i∈{i:H(di)=S(m)

k } qi. We derive the miss proba-
bility in Theorem 1.

Theorem 1. Under the model described in Section II, as the
total cache space x→∞, we have almost surely for all H ,

P[Miss for R0|H] ∼
M∑
m=1

(M
m)∑
k=1

(1− p)mW (m)
k

+

(
M∑
m=1

L
(
m,~b

)
µm

)(
M∑
m=1

mµm

)α−1
Q(x),

and

P[Miss for R0] ∼ P
(
x; ~µ,~b

)
,

M∑
m=1

(1− p)mµm

+

(
M∑
m=1

L
(
m,~b

)
µm

)(
M∑
m=1

mµm

)α−1
Q(x),

where Q(x) is defined in (1) and

L
(
m,~b

)
=

1(
M
m

) (M
m)∑
k=1

∑
(j,l):S(l)

j ⊆S
(m)
k

 pl(1− p)m−l

·

(
l∑
i=1

(1− p)i−1
(
Mb

I
(l)
j,i

)α)1/α−1 .

The detailed proof of Theorem 1 is presented in Sec-
tion VII-B. For a given total memory space x, a hashing



mechanism ~µ and a space allocation strategy ~b, the asymp-
totic miss probability can be explicitly approximated by the
function P (x; ~µ,~b) defined in Theorem 1. With this effective
tool, next we characterize the optimal LRU caching policy over
unreliable channels. Specifically, for a given total cache space
x, let ~µ∗(x), ~b∗(x) denote the optimal hashing mechanism
and the optimal cache space allocation that minimize the miss
probability. We aim to characterize the asymptotic behavior of
the optimal solutions, i.e., limx→∞ ~µ∗(x) and limx→∞~b

∗(x).

B. Equal cache space allocation

In this section, assuming the total memory space is equally
allocated to each cache, i.e., b1 = b2 = · · · = bM = 1/M , we
optimize the hashing mechanism ~µ as well as the cache space
allocation by determining the number of caches M .

Applying Theorem 1, we derive the asymptotic miss prob-
ability for equal cache space allocation in Corollary 1.

Corollary 1. For b1 = b2 = · · · = bM = 1/M , as the total
caches space x→∞, we have almost surely for all H ,

P[Miss for R0] ∼ P
(
x; ~µ,~b

)
=

M∑
m=1

(1− p)mµm

+

(
M∑
m=1

L(m,~b)µm

)(
M∑
m=1

mµm

)α−1
Q(x),

where

L(m,~b) =

m∑
i=1

(
m

i

)
pi(1− p)m−i

(
p

1− (1− p)i

)1−1/α

.

Next, assuming the number of caches M is finite and
fixed, we optimize the hashing mechanism by considering the
following optimization problem.

min
~µ

P (x; ~µ, (1/M, · · · , 1/M))

subject to
M∑
m=1

µm = 1, (2)

0 ≤ µm ≤ 1, m = 1, 2, · · · ,M.

Let ~µ∗(x) denote the optimal solution to Problem (2) for a
given total cache space x. We define two policies as:
Resource Pooling (RP) Policy: Allocate the total cache space
to a single LRU cache.
Equal Allocation (EA) Policy: Set ~b = ( 1

M , 1
M , · · · , 1

M ), and
~µ = ~µ∗(x).

Letting P RP
miss and P EA

miss denote the miss probability under
the RP and EA policy, respectively, we have the following
theorem.

Theorem 2. The optimal solution to Problem (2) satisfies

lim
x→∞

µ∗m(x) = 0 for 1 ≤ m ≤M − 1,

lim
x→∞

µ∗M (x) = 1,

under which, we have

lim
x→∞

P RP
miss = 1− p, lim

x→∞
P EA

miss = (1− p)M .

The proof is provided in Section VII-C. For sufficiently
large cache space, simply hashing the data item to all M
caches can achieve the optimal miss probability. Moreover, as
the total cache space goes to infinity, the miss ratio of RP and
EA policies will converge to the probability that all channels
fail when the request arrives. Consequently, compared to
resource pooling, allocating the total cache space to multiple
caches can reduce the miss probability dramatically when the
cache space is large enough. This conclusion is contradictory
to the results for reliable caches in Lemma 1, where the
asymptotic miss probability achieved by resource pooling is
always smaller than or equal to that achieved by resource
separation.

In addition, the limiting miss probability of the EA policy
decreases exponentially with the number of caches M . Does it
indicates that a larger number of caches can always guarantee
a better miss probability for a given total memory space? Let
M∗(x) denote the optimal number of caches for the EA policy
given the total cache space x. We characterize the limiting
behavior of M∗(x) in the following theorem.

Theorem 3. Assuming the data items are hashed to all M
caches and limx→∞ x/M =∞, we have, as x→∞

M∗(x) ∼ 1− α
log(1− p)

log x.

See Section VII-D for the proof. Theorem 3, in conjunction
with Theorem 2, implies that the miss probability under the
EA policy tends to zero for large x, which is better than the
RP policy that will always have a positive lower limit (i.e.,
1 − p). When the number of caches increases, although the
probability that channels fail decreases, a miss will be more
likely to happen in each cache. The optimal cache number
M∗(x) balances this trade-off.

C. Unequal cache space allocation
In this section, we answer the following question. Given

a total memory space and M caches, if the cache spaces are
allowed to be unequal, can we achieve a better miss probability
than allocating the total memory space equally? For LRU
caching over reliable channels (p = 1), it is shown in Lemma 1
that bm = 1/M , 1 ≤ m ≤ M is the optimal solution. Will
this result still hold when channels are not reliable (p < 1)? In
this section, we show that if p < 1, choosing bm’s unequally
can further reduce the asymptotic miss probability.

For a fixed M and any given space allocation method ~b
satisfying bm 6= 0 for ∀1 ≤ m ≤ M , similar to the equal
allocation case (Theorem 2), the optimal hashing mechanism
is µ∗M = 1, µ∗m = 0, 1 ≤ m ≤M −1, when the total memory
space x is large enough. To minimize P (x; ~µ∗,~b) which is
defined in Theorem 1, we formulate the following problem.

min
~b

P
(
x; (0, · · · , 0, 1),~b

)
subject to

M∑
m=1

bm = 1, (3)

0 ≤ bm ≤ 1, m = 1, 2, · · · ,M.



It can be verified that Problem (3) is nonconvex. Finding the
global optimum~b∗(x) still remains an open problem. However,
we prove that allocating cache space equally is not the optimal
solution and provide an easy-to-implement policy to improve
the performance of equal allocation.

Theorem 4. For M caches with p ∈ (0, 1), the optimal
solution to Problem (3) satisfies b∗i (x) > b∗j (x) for ∀1 ≤ i <
j ≤M .

The proof is presented in Section VII-E. Theorem 4 shows
a very counterintuitive result that allocating cache space
unequally can achieve a better miss probability than equal
allocation, even when the unreliable probability p is identical
for each channel. To understand why equal separation is not
the optimal, let us take a look at the optimal static caching
policy. Under a static policy, the popularity of each data
item is pre-known, based on which the cache space allocation
and the data placement are designed. For reliable caches, the
optimal static policy stores the most popular data items in
one of the caches. For unreliable caches, however, the static
optimal policy is nontrivial due to the potential benefits of data
replications. Let x◦m, 1 ≤ m ≤ M , denote the memory space
allocated to the cache Cm under the optimal static policy.
Let b◦m = x◦m/

∑M
i=1 x

◦
i , 1 ≤ m ≤ M . The solution of x◦m,

1 ≤ m ≤ M , is not unique. In the following lemma, we
characterize one optimal static policy for unreliable channels.

Lemma 2 (Characteristics of an Optimal Static Policy). If the
popularity of each content were known a priori, the following
static policy minimizes the miss probability for M caches with
a total memory space x:
Cache space allocation: Set x◦1 ≥ x◦2 ≥ · · · ≥ x◦M , satisfying

x◦m = 0 or x◦m ≥ 1, 1 ≤ m ≤M,

(1− p)j−1

(bx◦jc)
α ≥ (1− p)k−1

(bx◦kc+ 1)α
for ∀x◦j ≥ 1, x◦k ≥ 1,

M∑
m=1

x◦m = x;

Data placement: Store data items {di : 1 ≤ i ≤ bx◦mc} in
cache Cm, if x◦m ≥ 1.

As the cache space goes to infinity, the optimal static
allocation can be explicitly calculated as

lim
x→∞

b◦m(x) = (1− p)(m−1)/α 1− (1− p)1/α

1− (1− p)M/α
. (4)

Based on Lemma 2, we summarize the following key insights,
which intuitively explain why unequal allocation can achieve
better miss ratios than equal allocation.
Key insights: The above optimal static policy explicitly char-
acterizes how many caches that each item must be stored in.
While the most popular items in the set {di : 1 ≤ i ≤ bx◦Mc}
are stored in all M caches, progressively less popular items
are stored in decreasing number of caches, as described in
Lemma 2. As such, this policy optimally balances the trade-
off between the cost of storing the same item in multiple

caches and the likelihood of finding a requested item in at least
one of the connected caches. Despite its optimality guarantee,
the optimal static policy is not directly implementable since
it requires the knowledge of the popularity of each item to
determine the cache allocation and data placement. However,
it provides useful insights for the design of dynamic cache
management policies where the popularity of the items are
unknown. In particular, by allocating cache space unequally,
as dictated by the static design, and by using LRU cache
management at each of the cache, which adaptively maintains
more popular requests in its cache, we can obtain a counter-
intuitive design of a dynamic unequal caching policy over
unreliable channels.

Next, we propose an unequal cache space allocation policy
that significantly improves the performance of equal cache
space allocation in a large range of channel unreliability levels.
Unequal Allocation (UA) Policy: Set ~µ = (0, 0, · · · , 1) and

~b(x) =

{
~b◦(x), if p > pth,

(1/M, · · · , 1/M), otherwise,

where pth is the unique solution to L(M, ( 1
M , · · · , 1

M )) =

L(M,~b◦(x)). Let P UA
miss denote the miss probability of the UA

policy.
Note that as the total cache space goes to infinity, the miss

probability under any policies including the EA, the UA and
the optimal policy will all converge to the probability that no
cache is accessible when the request arrives, i.e., to (1−p)M .
The following theorem characterizes how much faster the UA
policy converges to this limit compared to the EA policy.

Theorem 5. Let us define ρ , lim
x→∞

P UA
miss − (1− p)M

P EA
miss − (1− p)M

, which

measures how much faster the unequal cache space allocation
policy converges to the limit (1− p)M compared to the equal
cache space allocation policy. Then, we have

ρ = min

1,
L
(
M, lim

x→∞
~b◦(x)

)
L(M, ( 1

M , · · · , 1
M ))

 ,

which is strictly less than 1 if p > pth.

The proof is provide in Section VII-F. Setting α = 1.4, we
plot ρ as a function of p for different M ’s in Fig. 2. It can be

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Channel reliability level: p

0.6

0.7

0.8

0.9

1

1.1

ρ

 M = 2

 M = 3

 M = 4

 M = 5

Fig. 2. Benefits of the UA policy over the EA policy

observed that in a large range of channel unreliabilities, e.g.,



p ∈ (0.6, 0.9), ρ is much smaller than 1, which indicates that
the UA policy gains considerable improvements over equal
cache space allocation.

V. EXPERIMENTS

To validate our theoretical analysis, we conduct 4 simulation
experiments. In Experiment 1, we simulate 5 caches with
general ~b and ~µ, which validates Theorem 1. In Experiments 2
and 3, we compare the equal cache space allocation with
resource pooling and unequal cache space allocation, respec-
tively. In Experiment 4, we evaluate the proposed policies
using real data traces. Experiment results successfully validate
the counterintuitive insights revealed by theoretical analysis.

Experiment 1. In this experiment, we validate Theorem 1
by simulating 5 caches over unreliable channels. Let ~b =
(0.3, 0.2, 0.2, 0.15, 0.15), ~µ = (0.1, 0.15, 0.2, 0.25, 0.3). Set
qi = c/i1.8 for 1 ≤ i ≤ 107, where c = 1/

∑107

i=1 i
−1.8 ≈

0.5313. In Fig 3, we plot the miss probabilities for p =
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Fig. 3. Multiple unreliable caches accessed by hashing

0.8, 0.85, 0.9, respectively. The theoretical results approxi-
mated by Theorem 1 match very well with the empirical ones
obtained by simulations, even when the total cache space is
relatively small.

Experiment 2. In this experiment, we compare the miss
probabilities achieved by the RP policy with that achieved by
the EA policy. Set ~b = (1/M, · · · , 1/M), ~µ = (0, · · · , 0, 1),
p = 0.9 and qi = c/i1.8 for 1 ≤ i ≤ 107, where
c = 1/

∑107

i=1 i
−1.8 ≈ 0.5313. In Fig. 4, we plot the miss

probabilities for M = 1, 2, 3, 4, respectively. It can be ob-
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Fig. 4. Resource pooling v.s. equal cache space allocation

served that resource separation (M ≥ 2) achieves much better

miss probabilities than resource pooling (M = 1), which
validates our statements in Theorem 2. Moreover, as what
we comment in Theorem 3, allocating the total cache space
to more caches may not guarantee a better miss probability
(e.g., allocating the total cache space to 3 caches achieves
lower miss probabilities than allocating to 4 caches when
x ∈ (100, 900)). In fact, since the theoretical approximations
for miss probabilities are sufficiently accurate even when
the cache space is relatively small (e.g., x = 200), the
optimal number of caches can be theoretically calculated by
minimizing L(M, (1/M, · · · , 1/M)) over M .

Experiment 3. In this experiment, we compare the EA
policy with the UA policy. Let M = 5, qi = c/i2 for
1 ≤ i ≤ 107, where c = 1/

∑107

i=1 i
−2 ≈ 0.6079. First,

setting the total cache space x = 500 and applying Theorem 5,
we compute ρ under different channel reliability levels and
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Fig. 5. Equal v.s. unequal cache space allocation

plot the results in Fig.5[left]. Then, setting p = 0.7, we plot
the miss probabilities achieved by the EA policy and the UA
policy in Fig. 5[right]. All empirical results match well with
theoretical ones. It can be observed from Fig. 5[left] that when
p is greater than the threshold pth (≈ 0.4), ρ will be strictly
less than one (i.e., the UA policy outperforms the EA policy).
Furthermore, by setting p = 0.7, it is shown in Fig. 5[right]
that the miss probabilities achieved by the UA policy (unequal
cache space allocation) can be significantly smaller than that
achieved by the EA policy (equal cache space allocation). For
p > 0.7, an even larger improvement is expected.

Experiment 4. In this experiment, we compare the RP, EA
and UA policies using a data trace collected on a content
delivery network. The trace is also used for evaluation and

Fig. 6. Popularity of trace data

labeled as cdn1 in [29], [30]. Our objective is to check whether



our designs perform well under popularity distributions ob-
tained from real-world traces. For this experiment, we use
20 millions requests.1 We plot the empirical popularities in
Fig. 6, as well as the Zipf’s approximation (i.e., 0.0273/i0.897,
1 ≤ i ≤ 3417123). Notably, α = 0.897 is less than
1 and therefore beyond the scope of this paper (see [22]
for LRU caching with α < 1). However, the UA policy
can still be obtained from Equation (4), and the insights
revealed by our theoretical analyses still hold according to the
following experiment results. Setting M = 2, x = 20000,
we first compare the miss ratios of the RP, EA and UA
policies under different channel reliability levels, and plot the
results in Fig. 7[left]. It can be observed that the UA policy
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Fig. 7. Performance evaluation based on traces

always achieves the best miss ratios. Moreover, when p is
relatively large (respectively small), the EA (respectively RP)
policy achieves much worse performance, which validates the
insights revealed by Theorem 5. Next, setting M = 2 and
p = 0.8, we compare the proposed policies under different
cache spaces. The results are plotted in Fig. 7[right]. Note
that the UA policy outperforms the RP and EA policies in
the whole range of x. In addition, when x is small, resource
pooling can even achieve better miss ratios than equal cache
space allocation, which verifies that a larger number of caches
may not always result in a better miss ratio (see Theorem 3).

VI. CONCLUSION

In this work, we studied the distributed LRU caching
over unreliable channels by explicitly approximating the miss
probability and discovering counterintuitive insights in opti-
mizing the cache space allocation and the data placement. Our
investigation revealed two counterintuitive insights that are in
stark contrast with the principles of distributed LRU caching
under reliable conditions: (i) that resources-pooling is no
longer optimal in the presence of channel unreliabilities, and
(ii) that, even under symmetric unreliabilities, it is necessary to
allocate unequal cache spaces to otherwise identical distributed
caches. Our analysis framework also allowed us to develop
an explicit unequal allocation policy which outperforms the
equal allocation in a large range of channel unreliability
levels. These insights and designs are expected to help with
the development and implementation of efficient distributed
caching solutions under unreliable conditions.

1In this experiment, the item sizes are set to be 1.

VII. PROOFS

A. Proof of Lemma 1

Proof. If p = 1, storing the same data item in multiple caches
will waste the cache space and bring no additional benefits.
Therefore, the optimal hashing vector is ~µ∗ = (1, 0, · · · , 0).
Then, applying Theorem 2 of [25], we have

P[Miss for R0|H] ∼ Q (x̄) ,

where

x̄ =

(
M∑
m=1

bm
1−αM−α

)−1/(α−1)
x.

Moreover, applying the Hoeffding’s inequality, we have∑M
m=1 bm

1−αM−α ≥ 1, where the equality holds if and only
if bm = 1/M for 1 ≤ m ≤M . Since Q(x) is decreasing with
x, we finish the proof.

B. Proof of Theorem 1

To prove Theorem 1, we establish the following lemmas.

Lemma 3. Conditional on I0 = J0 = {C1, · · · , Cm}, as the
total cache space x→∞, we have

P[Miss for R0|I0 = J0 = {C1, . . . , Cm}, H] ∼ Q(x̄)

where x̄ =
(∑m

k=1(1− p)k−1bkα
)1/α

x.

Proof. For 1 ≤ k ≤ M , let τ−σk
denote the last time before

τ0 when the data item R0 was requested and the cache Ck
was accessible then. Define

Tk(n) =
∑
i≥1

1
(
∪nj=1{{R−j = di} ∩ {Ck ∈ I−j}}

)
,

which is the number of distinct data requests that successfully
access cache Ck between time τ−n and time τ−1. We also
define the inverse of Tk(n) as T←k (x) = min{n : Tk(n) ≥ x}.
It can be verified that

{Miss for R0|J0 = I0, H} ⇔ ∩mk=1{σk > T←k (bkx)}.

The rest of the proof is consisted of two steps. In Step 1,
we will estimate P[∩mk=1{σk > nk}]. In Step 2, we show
that P[∩mk=1{σk > T←k (bkx)}] can be approximated by
P[∩mk=1{σk > T̄←(bkx)}], where

T̄←(x) = Γ(1− 1/α)−αc−1p−1xα. (5)

For n1 > n2 > · · · > nm and ∀di ∈ D, we have

P[∩mk=1{σk > nk}|R0 = di]

= P[∩mk=1{σk > nm}|R0 = di]

· P[∩m−1k=1 {σk > nk − nm}|R0 = di]

= P[∩mk=1{σk > nm}|R0 = di]

·Πm−1
j=1 P[∩jk=1{σk > nj − nj+1}|R0 = di], (6)



where the second equality holds because the requests arrive
according to a Poisson process. For ∀n ≥ 1, let Yi(n) =∑n
j=1 1({R−j = di}), 1 ≤ i ≤ N . We obtain, as n→∞,

P[σ1 > n, σ2 > n, · · · , σm > n|R0 = di]

=

n∑
k=0

P[Yi(n) = k]P[σ1 > n, · · · , σm > n|Yi(n) = k]

=

n∑
k=0

P[Yi(n) = k](1− p)mk

= E [exp(n log(1− p)Yi(n))] = (1− qi + qi(1− p)m)
n

∼ exp (−qi(1− (1− p)m)n) . (7)

For ∀c1 > c2 > · · · > cm−1 and nk = cknm, 1 ≤ k ≤ m− 1,
as nm →∞, we have, by combining (6) and (7) and defining
nm+1 = 0,

P[σ1 > n1, σ2 > n2, · · · , σm > nm]

=

∞∑
i=1

qiP[σ1 > n1, σ2 > n2, · · · , σm > nm|R0 = di]

=

∞∑
i=1

qiΠ
m
k=1

(
1− qi + qi(1− p)k

)nk−nk+1

∼
∞∑
i=1

qi exp

(
−qi

m∑
k=1

(1− (1− p)k)(nk − nk+1)

)

=

∞∑
i=1

qi exp

(
−qip

m∑
k=1

(1− p)k−1nk

)

∼ c1/αΓ(2− 1/α)

α− 1

(
p

m∑
k=1

(1− p)k−1nk

)−1+1/α

,

implying

P[Miss for R0|J0 = C, H]

∼ c1/αΓ(2− 1/α)

α− 1

(
p

m∑
k=1

(1− p)k−1T←k (bkx)

)−1+1/α

.

Next, we will show that P[Miss for R0|J0 = C, H] can
be accurately approximated by replacing T←k (bkx) with a
constant T̄←(bkx). Define

T̄ (n) ,
N∑
i=1

(1− (1− qi + qi(1− p))n) .

We have, as n→∞

T̄ (n) ∼
N∑
i=1

(1− exp(−qipn)) ∼ Γ

(
1− 1

α

)
c1/αp1/αn1/α,

and therefore, T̄←(x) = Γ(1 − 1/α)−αc−1p−1xα. Applying
Lemma 7.1 in [10], we can prove that for ∀ε > 0,

P
[
T←k (x) < T̄←

(
x

1 + ε

)]
≤ exp

(
− ε2x

4(1 + ε)

)
P
[
T←k (x) > T̄←

(
x

1− ε

)]
≤ exp

(
− ε2x

4(1− ε)

)
.

Therefore, for ∀ε > 0, there exists an x0 such that, for x ≥ x0

P[Miss for R0|I0 = J0 = {C1, · · · , Cm}, H]

≤ P[σ1 > T̄←(b1x/(1 + ε)), · · · , σm > T̄←(bmx/(1 + ε))]

+

m∑
k=1

P[T̄←(bkx/(1 + ε))]

≤ Q

( m∑
k=1

(1− p)k−1bkα
)1/α

x

1 + ε


+

m∑
k=1

exp

(
− ε2bkx

4(1 + ε)

)
= Q (x̄/(1 + ε)) + o(Q(x̄)), (8)

where x̄ =
(∑m

k=1(1− p)k−1bkα
)1/α

x. Similarly, we can
prove for large x

P[Miss for R0|I0 = J0 = {C1, · · · , Cm}, H]

≥ Q (x̄/(1− ε))− o(Q(x̄)). (9)

Combining (8) and (9) then letting x → ∞ finish the proof.

Lemma 4. Data items that are hashed to the cache
set S(m)

k asymptotically follow a Zipf’s distribution

cµm
α
/(

iW
(m)
k

(
M
m

))α
,i ≥ 1 almost surely for all H .

Proof. Let X(m)
i,k = 1 indicate that H(di) = S(m)

k . Otherwise,
X

(m)
i,k = 0. Define I(m)

n,k =
∑n
i=1X

(m)
i,k . Applying the Bern-

stein’s inequality, we can prove that for ∀0 < ε < 1, there
exists constants c and n1 such that for ∀n > n1,

P

[∣∣∣∣∣ I
(m)
n,k

nµm/
(
M
m

) − 1

∣∣∣∣∣ > ε

]
≤ exp

(
−

n2µm
2ε2/

(
M
m

)2
2nµm/

(
M
m

)
+ 2ε/3

)
≤ exp

(
−cn1/2

)
.

Therefore, applying the union bound, we have

P

⋂
i≥n

{∣∣∣∣∣ I
(m)
i,k

nµm/
(
M
m

) − 1

∣∣∣∣∣ ≤ ε
}

≥ 1−
∑
i≥n

exp
(
−ci1/2

)
≥ 1−

∫ ∞
n−1

exp
(
−ct1/2

)
dt.

= 1− 2

c2
(c(n− 1)1/2 − 1) exp(−c(n− 1)).

Since
∑∞
n=1 c

2(c(n−1)1/2−1)/2 exp(−c(n−1)) <∞, by the
Borel-Contelli lemma, for any ε, there always exists an integer
n1 such that for ∀n > n1, ∩i≥n

{∣∣∣I(m)
i,k

(
M
m

)
/(iµm)− 1

∣∣∣ ≤ ε}
holds almost surely for any H .

Let q(m)
i,k denote qj with the index j = I

(m)
i,k . We have

almost surely for all H , q(m)
i,k ∼ c

/(
i
(
M
m

)/
µm

)α
. Then

normalizing q
(m)
i,k by P[I0 = S(m)

k |H] = W
(m)
k finishes the

proof.



Lemma 5 (Theorem 4.1 of [10]). Consider K flows of
independent data requests sharing a LRU cache. For each
flow k, 1 ≤ k ≤ K, the data popularity follows a Zipf’s
distribution ck/i

α, α > 1, i ≥ 1 asymptotically. Assume the
size of each data item is 1. Let µk denote the probability that
a request is from flow k, then as the cache space x goes to
infinity, we have

P[Miss for R0|R0 is from flow k] ∼ Q

(
(ckµk)1/αx∑K
i=1(ciµi)1/α

)
.

With the established lemmas, now we prove Theorem 1.

Proof of Theorem 1. Under the model described in Section II,
we have,

P[Miss for R0|H]

=

M∑
m=1

(M
m)∑
k=1

P[I0 = S(m)
k ]P[Miss for R0|I0 = S(m)

k , H]

=

M∑
m=1

(M
m)∑
k=1

P[I0 = S(m)
k ]

(
(1− p)m

+
∑

(i,j):S(j)
i ⊆S

(m)
k

(
P[J0 = S(j)i |I0 = S(m)

k , H]

· P[Miss for R0|J0 = S(j)i , I0 = S(m)
k , H]

))
. (10)

Combining Lemma 3, Lemma 4 and Lemma 5 yields

P[Miss for R0|J0 = S(j)i , I0 = S(m)
k , H] ∼ Q

(
x̄
(j)
i

)
(11)

where

x̄
(j)
i =

(
j∑
l=1

(1− p)l−1b
I
(j)
i,l

α

)1/α

Mµmx(
M
m

)∑M
i=1 iµi

.

Plugging P[I0 = S(m)
k |H] = 1/W

(m)
k and (11) into (10)

finishes the proof.

C. Proof of Theorem 2

Proof. Recall that

P
(
x; ~µ,~b

)
=

M∑
m=1

(1− p)mµm

+

(
M∑
m=1

L(m,~b)µm

)(
M∑
m=1

mµm

)α−1
Q(x),

where

L(m,~b) =

m∑
i=1

(
m

i

)
pi(1− p)m−i

(
p

1− (1− p)i

)1−1/α

.

Since limx→∞Q(x) = 0, we have

lim
x→∞

P
(
x; ~µ,~b

)
=

M∑
m=1

(1− p)mµm,

which implies

lim
x→∞

µ∗m(x) = 0 for 1 ≤ m ≤M − 1,

lim
x→∞

µ∗M (x) = 1,

and

lim
x→∞

P RP
miss = 1− p, lim

x→∞
P EA

miss = (1− p)M .

D. Proof of Theorem 3

Proof. Assuming the data items are hashed to all caches,
we have I0 = C, which is no longer a random variable.
Therefore, Theorem 1 as well as Corollary 1 still holds even
when M scales with x as long as limx→∞ x/M = ∞.
Corollary 1 yields P[Miss for R0] ∼ P

(
x; ~µ,~b

)
= (1−p)M+

L(M,~b)Mα−1Q(x) where

L(M,~b) =

M∑
i=1

(
M

i

)
pi(1− p)M−i

(
p

1− (1− p)i

)1−1/α

.

Letting ∂P (x; ~µ,~b)/∂M = 0 and using limM→∞ L(M,~b) =
p1−1/α finish the proof.

E. Proof of Theorem 4

Proof. Suppose towards contradictions that there exists 1 ≤
i < j ≤M such that b∗i = b∗j . Then, b∗i and b∗j should be the
optimal solution to the following problem

min
bi,bj

P (x; ~µ,~b)

subject to
M∑
m=1

bm = 1, (12)

bm = b∗m, 1 ≤ m ≤M,m 6= i, j,

0 ≤ bm ≤ 1, 1 ≤ m ≤M.

The necessary condition for the optimal solution is

∂P (x; ~µ,~b)/∂bi

∣∣∣
bi=b∗i

= ∂P (x; ~µ,~b)/∂bj

∣∣∣
bj=b∗j

.

It is easy to verify that bi = bj = (b∗i + b∗j )/2 does not
satisfy this condition and therefore is not the optimal solution.
Furthermore, if we assume b∗i < b∗j , then simply switching
these two values can achieve a lower function value. Therefore,
we have b∗i > b∗j for ∀1 ≤ i < j ≤ M , which finishes the
proof.

F. Proof of Theorem 5

Proof. Recalling the EA and UA policies and Theorem 1, we
have

P EA
miss ∼ (1− p)M + L

(
M,

(
1

M
, · · · , 1

M

))
Mα−1Q(x),

P UA
miss ∼ (1− p)M + L

(
M,~b◦(x)

)
Mα−1Q(x) for p > pth,

P UA
miss = P EA

miss for p ≤ pth.

Through direct computation, we can prove Theorem 5.
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