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Abstract

We study the problem of stable scheduling for a class of e&®hetworks. The goal is to stabilize the
queues holding information to be transmitted over a fadimanoel. Few assumptions are made on the arrival
process statistics other than the assumption that thein medaes lie within the capacity region and that they
satisfy a version of the law of large numbers. We prove tlwaitahy mean arrival rate that lies in the capacity
region, the queues will be stable under our policy. Moreowershow that it is easy to incorporate imperfect
queue length information and other approximations thatsiaplify the implementation of our policy.

1 Introduction

Consider a wireless network, where data collecte&iseparate queues are to be transmitted over a common
medium that is time varying. Several well-known models fibithis definition. Two such examples would be
the downlink and the uplink scenarios of a cellular envirenin

A scheduling policys an allocation of service rates to the various queues,ruhdeconstraint that, at each
time instant and each channel state, the set of allocated lias within some allowable set of rates. The set of
allowable rates for each channel state is assumed to be excagion. Our goal is to find a scheduling strategy
which stabilizes the system using only queue length infétionaand the current channel state (i.e., without
knowing channel or arrival statistics).

Stable scheduling policies for wireless systems withauetvarying channels were first studied in [16].
In fact the model in [16] can also be thought of as a model foigh-Bpeed input-queued switch. Systems
with time-varying channels, but limited to the case of ON &fgF channels were studied in [17, 14]. More
general channel models have been studied by others re¢entl§, 12, 7]. We generalize the class of scheduling
policies considered in [17, 14, 1, 13]. Further, we allow érfpct queue length information and prove the
stability of policies that reduce computational comphgxifThese class of policies for wireless networks are
natural extensions of those studied in [15, 5] for high-gpswitches. Our proof uses a quadratic Lyapunov
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function argument along the lines of the proofs in [16, 6]. &0 refer the reader to [2, 11] for a geometric
approach to scheduling problems.

In the context of time-varying wireless channels with masgrs, our work is an example of exploiting
multiuser diversity to maximize the capacity of the systeHere, we try to maximize the throughput of the
system without the knowledge of system statistics. Altiwvaly, one can formulate a fair resource allocation
problem where each user is allocated a certain fraction efsifstem resources according to some criterion
[18, 9]. The approaches in [18, 9] are not throughput optitad arefair according to some appropriate notion
of fairness. Our work and other related work assume that lamreel is time-varying and attempt to exploit
this feature. In [19], an interesting technigue to induoeetivariations in channels which may not be inherently
time-varying is discussed.

The rest of the paper is organized as follows. Section 2 itescthe system model and presents a statement of
the problem we consider in this paper, the scheduling palityassumption on the arrival and channel processes.
We state the main theorem, which establishes the stabflitgeosystem, in Section 3. Section 4 gives several
useful applications of the policy operating both in uplimdadownlink scenarios. Several properties of the set
of scheduling policies are illustrated through simulagion Section 5. Conclusions and further directions are
provided in Section 6. And finally, the proofs of the theoreares collected in Section 7.

2 System model

Consider a wireless network whekedata streams are to be transmitted over a single fading ehatin example

of such a network can be a single transmitter sending data teceivers (the downlink in a cellular system) as
depicted in Figure 1 oV transmitters sending data to a single receiver (the upksk3hown in Figure 2. We
assume that the arriving bits are stored\inseparate queues, one for each data stream. Assuming tleaistim
slotted, the evolution of thé" queue is described by the following equation:

zilk + 1] = (k] + a;[k] — mi[k]) ™, 1)

whereq;[k| is the number of bits arriving to Queuet timek andn; k] is the number of bits from Queuehat

are served at timé. One can also ensure thaf[k| takes on only discrete values in our model. This would be
more realistic when transmission can take place only irswfipackets, for example. In such a case, there may
be wasted service even wheyjk] > 0. To allow for this, we can rewrite the evolution of the queusiihs given

by (1) as

zilk + 1] = z;[k] + ai[k] — mi[k] + wi[k],

whereu;[k] is a positive quantity, which denotes the wasted serviceiged to thei’” queue during slok.

The state of the channel is assumed to be fixed within a tinietslbis allowed to vary from one slot to the
next. Let.J be the number of possible channel states. Suppose thatahealhs in Statg at timek, then{n;[k|}
is constrained to be in some regidh. Thus,S; identifies the allowable set of rates at which the queues ean b
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Figure 1: Downlink model Figure 2: Uplink model
drained when the channel is in Stgteé=or now, we can simply visualiz&; to be a bounded, convex region such
as the broadcast channel capacity region [8]. Precise tomslion the allowable set of rates, the channel state

process and arrival processes will be given later.
In this paper, we consider the following class of schedupalicies: at any timé:, given the current channel

states[k], the scheduler chooses a service rate vegter (1, - - -, un)" € Sy that satisfies:
= (i [k])n; 2
ji = arg max > filwilk])m, 2

=1

wheref; : [0,00) — [0, 00) are functions that satisfy the following conditions:

e f;(x) is a nondecreasing, continuous function with,, ., fi(z) = cc.
e Given anyM; > 0, Ms > 0 and0 < € < 1, there exists ait’ < oo, such that for all: > X', we have
(1 =€) fi(z) < filx — My) < fi(z + Ms) < (1 +¢€)fi(z), Vi. (3)

Examples of the the function(-) that satisfy (3) ard;(z) = (K;z)® for any K; € [0,00) anda € [0, 00), or
fi(z) = e¥™ — 1. Note that the exponential functigfi(z) = ¢ — 1 for any fixeda > 0 does not satisfy (3).

As we will see later, for various reasons, it may be difficalirhplement the policy (2). For example, the
gqueue length information may be delayed, the maximizatiwnlved may be too complex or one may wish to
use waiting times, instead of queue lengths, to choose thizsaates. We will show later that, in all such cases,
the scheduling policy will satisfy the following property.

Property 1. Given anyp and ¢ such thatd < p,( < 1, there exists aB > 0 such that the scheduling policy
satisfies the following condition: at any tinke with probability greater than1 — p), the scheduler chooses a

service rate vectofi = (u1,---, un)" € Sqpy that satisfies:
N
Y filmilk)m > (1-¢) max Zﬁmk (4)
i=1 eS8tk T



whenevel|Z[k]|| > B, whereZ[k] := (z1[k],---,zn[k])’, and s[k] € {1,---,.J} is the channel state in time
slot k. o

Thus, for the purpose of establishing stability, we will smer scheduling policies that satisfy the above
property.

In the following subsections, we state the various assumgtihat we make on the arrival and channel
processes, the admissible rate regions, and state a fadtthlecscheduling policy which will be useful for later
proofs.

2.1 Thechannd state process

1) The channel state process has a stationary distributiberemhe stationary probability of being in stagte
j €1{1,---,J}, is denoted byr;. Further, we assume; > 0 V.

2) Let us denote the state of the channel at timiey s[n]. Note thats[n] can take any one of thé possible
values. Given any > 0, there exists a positive integét such thatyM > M

1 k+M—1
E||m— 57 Zk Is[n]_j] <, (5)
n=—

foranyk >0andj=1,2,...,J.

2.2 Theachievablerateregions {S;}

1) Consider any regios; and anyij € S;. There exists ar) such that); < 7). In other words, each of the regions
S; is bounded.

2) Each of the regions;, j = 1,2,...,J is convex.

3)Foreachj = 1,2,...,J thefollowing is true: if{ni,n2,...,ni,...,nn} € Sj,then{ni,n2,...,0,...,nn} €
S;foralli=1,2,..., N.

4) Fix a channel statg Given any fixedd € R*, Ve > 0, 3R < oo such that, for anyt € (RV) ", 7€ (RV)"
satisfying|z; — yi| < A, i =1,---, N and||Z|, ||§]| > R, we have

N N

N
> filwo (i E) =Y fily) G G)| < € filwi) i, ©),

=1 =1 =1
where/i is determined according to our scheduling policy. (We ugenibtation/i(j, Z) to denote the vector of
service rates when the current channel stageaisd the current queue length vectofi}

2.3 Thearrival processes

1) The arrivals to each Queudorm a stationary process, with a mean denoted by= Ela;[1]].
2) Define

J
S={ij:ij=>Y i andij¥) € S;,Vj}.
=1



The vector of mean arrival ratésis such that there existse S satisfyingy; > A; Vi.
3) Given anye > 0, there exists a positive integéf such that' M/ > M

| FHMo
E i z% a;[n] — )\z-] <€, Vi. (6)
4) Finally, f; anda;[k] should satisfy
J?MZAJQ 1]>A4) = 0.

2.4 Observation on the Scheduling Policy

Claim 1. If the scheduling policy satisfies Property 1, then with @iaility greater than(1—p), i := Z i fi(], %)
j=1

satisfies
N N
D filwps = (1—¢)max Y fi(zi)m 7
i=1 7es

for all |Z]| > B.

Proof: See Section 7.1 of the Appendix for the proof. o

3 Stability of the stochastic model

We state the main result of the paper in the following theorem

Theorem 1. For sufficiently small values @f, p > 0, the system is stable in the mean under the policy described
in Section 2, i.e.,

lim sup ZE[W K)lla] < oo, ®)

p—oo P

1/2
where||f(7)]]2 := (Zfz (x ) .

Proof: The proof of the theorem is in Appendix 7.2. o

In addition to the assumptions presented in Section 2, ifwrhér assume that the queue lengths|k|}
can only take values if0, 1,2, ...}, and that the arrival and channel state processes make tbheiggesystem
an aperiodic Markov chain with a single communicating claisen the stability-in-the-mean property further
implies that the Markov chain igositive recurren{6].

An example of a system that is positive recurrent is one wtierarrival and channel state processes satisfy
the following conditions:



e The arrival process to each queue is a Markov-modulatedsBaiprocess.In other words, the arrival
process is one of many states, the stochastic processhiegdtie evolution of these states is a countable
state, aperiodic Markov chain with a single communicatilags Further, in each arrival state, the number
of arrivals generated is a Poisson random variable. The miedie Poisson random variable can be state
dependent.

e The channel state process is a countable state, aperiodikdachain with a single communicating class.
Under the above conditions, if we enlarge the definition efdtate to be
(channel state, states of the arrival processes, queud$engt

then the state transition process is a Markov chain. Fyrther to the Poisson nature of the arrivals, it is easy
to see that the queue lengths can empty from any initial stakenon-zero probability, and that from any state
with empty queues, it is possible to reach any other state monh-zero probability. Thus, the Markov chain
has a single communicating class. Further, it is also easgdcthat the system can remain in any state with
empty queues for more than one time instant with non-zerbalitity. Thus, the Markov chain is also aperiodic.
Finally, we note that the arrival and channel state prosesse short-range dependent and, thus, satisfy the
law-of-large-number type conditions (5) and (6) in Secfton

3.1 Instability

If the mean arrival rate vectorlies outside the average achievable rate regiothen the system will be unstable.
To prove this, we make use of tistrict Separation Theorerf3, Proposition B. 14] which states that sinkés
a point that does not belong to the convexSgthere exists a vecta¥ such that

N N
Zﬁi#i < Zﬁz’/\i — 0,
i=1 i=1

for somed > 0. Further, due to the fact that > 0, Vi, and Assumption (3) in Section 2.2, a little thought shows
that 5; can be chosen to be non-negative, with at leastgn@ositive. Given this@, we define the Lyapunov
function,

N
=1

Then, from a drift analysis, we have

N
E W (@lk +1]) = W(Zk) |Zk]) = Y BE (wilk + 1] — x[k] | Z[k])
i=1

N
- Z@E (a;[k] — ni[k] + ui[k] | Z[k])

v

N
>_ B (i = E(milk] | 7K])
5,

v



which implies that? (W (Z[k])) — oo ask — oo and therefore, the system is not stable-in-the-mean.

3.2 Non-convex set of allowablerates

There are many practical systems where the set of rate getttat can be used by the scheduler may not be
convex. An example is a cellular downlink with a TDMA protactVe will refer to the set of rate vectors that
can actually be implemented by the scheduler as¢tef allowable ratesThen we define thachievable rate
regionto be the convex hull of the set of allowable rates for eacmiebbstatej. Now suppose we use a policy
of the form
f[k] € arg maX Zf, (xi[k]))ni k] 9)
ik ESs[k]

We claim that this policy will yield a set of optimal rate verd, at least one element of which is in the set of
allowable rate vectors.

To see that this claim is true, we first note that, from the dtéimof a convex hull, any rate;, which belongs
to the convex hull can be written as a convex combination ofesallowable rate vector$¢™ }, i.e.,

E O/n

L
whereL > 0 is an integer ani a, = 1 with o, > 0Vn. If for any statej, and some queue length vector
n=1
Z, the set of rates which maximizes (9) does not contain anyeoatlowable rate vectors, then we must have at
least one achievable rate vectdrsuch that it satisfies

N N
Zfz‘(%‘)vi > Zfi(%)(f? vne{l,...,L},
i=1 i—1

which in turn implies
L N

Z(){anle(’n > Z}‘} ri)er vne{l,...,L}.

n=1

However, the last equation cannot be true since the conumbioation of a set of positive numbers cannot be
strictly larger than each of them. Hence, by contradictibfollows that at least one solution to the maximization
problem in (9) must belong to the set of allowable rates.

4 Applications

The scheduling policy given in (2) is a generalization of plodicy examined in [16, 14, 1]. In a later section,
we show through simulations that general functions of thenfd;(-) can be very useful in controlling queue
lengths. In this section, we show that the introduction effiarameters, ¢, enables the application of the policy
to scenarios where instantaneous queue length informegioat available or the scheduler has computational
limitations.



4.1 Infrequent or Delayed Queue Length Updates

Consider the multiple access uplink scenario, where eadheoV users maintains an infinite length queue,
holding information to be transmitted to the base statioer @/fading multiple access channel. This scenario
is depicted in Figure 2. In this case, it may not be reason@béxpect the queue length to be updated at each
time slot. To reduce the amount of information transferretieen the transmitters and the base station, suppose
that each transmitter updates the queue length only onag &véme slots. Letz;[k] denote the estimate of
the queue length of thé" queue at timek. In other words;i;[k] is the last update of the queue length, prior to
time k, received by the base station from Transmiitdfurther, suppose that at each time glothe base station
allocates a service rate vector that satisfies

arg max Z Fi(&i[k])mi k). (10)

In the following theorem, we show that this policy satisfiespgerty 1 in Section 2.

Theorem 2. Suppose that the scheduler is only allowed to sample theegleegth information once evefly
slots (i.e.z;[nT + 1] = x;[nT]forl = 0,1,...,7 —1landn = 0,1,...), and it uses this sampled value as the
current queue length to determine the service rates acogrtt (10), then the system is stable-in-the-mean.

Proof: Since the mean arrival rate to each of the queues is finitenginyp € (0, 1), we can findA < oo such
that
Prob{a;[k] < AVi} > (1 —p).

Let us consider two sampling instaritendk + 7. Consider any: € {0,---,7 — 1}, and define the following
quantities for each channel state

N
w* (4, Z[k + n)) € arg max > filwilk +n])pi(d, Zk + n))
T =1
N
[1(j. 2k + n]) = (), Z[k]) € arg ggxz filzilk]) (4, Z[K]).
T =1
Observe that for anye {1,2,..., N}, andn € {0,1,...,7 — 1}, we have

zilk +n] — TA < &;[k +n] = z;[k] < zi[k+n]+ 17 w.p. (1 —p).

Moreover, due to Assumption (4) of Section 2.2, given any (0, 1), we can find a bounded region around the
origin, outside of which the following inequality holds

N N
Zfz‘(-f?i[k+”])ﬁz’(jw%[k+n]) = Zfi(%[k])ﬁi(j;f[k])

N

(1=Q) > filwlk +n))pi (G, #k +n))  wp.(1-p).

=1

v



Therefore, this policy satisfies Property 1. o

There are alternative ways to update the queue length iafilsminstead of periodic sampling. For example,
the scheduler may sample each queue with some probabikitgchit time instant. In this case, given any 0,
we can find al’ such that the probability that all queues have been updatiedst once in the padt slots is
greater tharl — e. By makinge arbitrarily small and following the lines of the proof of pieus theorem, we can
again prove the stability of the system.

While periodic sampling and random sampling would ensiability, they may result in poor delay perfor-
mance. An alternative sampling technique which may be qaatily useful with bursty arrivals, is to update
the queue length information for each queue whenever thalwbssalue of the difference between the current
length and the last update exceeds some threshold. Aloripéseof the proof of the previous theorem, we can
again show that this policy is stable. However, we will shbvotigh simulations later that this update mechanism
reduces the mean queueing delay as compared to random adipexampling.

Finally, we note that delayed queue length updates can alsadt in the same framework as above.

4.2 Reducing computational complexity

Typically, the allowed set of power levels at a mobile or aebsimtion is a finite set. Consequently, the set of
allowable rates will be finite for each channel state. In taise, as discussed earlier, the achievable rate region
in each state is the convex hull of the set of allowable ratethé state. The convex hull would be a convex
polyhedron and a policy of the form

max Zfz 1'1 m[k

n[k €8sk

would involve an optimization over the vertices of the conpelygon. The complexity issues arising due to this
has been addressed in the context of high-speed switch&s,iB][

In this section, we show that the solutions proposed in [159Ehigh-speed switches are also applicable to
wireless networks with time-varying connectivity and mgemeral functiong;(x;) than the ones considered in
[15, 5]. The basic idea behind the solution in [5] is to parfa Hamiltonian walk over the set of allowable rates
(or more simply, over the vertices of the convex polygon tbvahble rates) for each state, and store in memory,
the bestschedule so far in each channel state. (In our context, ymeirig a Hamiltonian walk corresponds to
maintaining a list of allowable rates and visiting each faesrate vector in a fixed order. Once all the rate
vectors are visited, the list is again scanned from the Inérggn) This way, at each step we only need to compare
two values, which is a significant reduction of complexity.the following, we present the algorithm and prove
its stability.

Algorithm A: Assume that the current channel state[i§ = j and Ietk[( )d] denote thei'” time slot before
k when the channel was in Sta;teLet £9) denote the number of available rate vectors we need to ctinmse
when the channel statejsandn[k ] denote the rate vector at tmka%’ . (Note thatk[( )] denotes the last time
beforek when the channel state W.asln the following, we will omit the subscript-d] whend = 1.) Then the



algorithm is comprised of the repetition of the following@ss:
@ ﬁ[k] = next rate vector visited by the Hamiltonian walk in the catrehannel state[k] = j.

(2)

7k] = a a k)
k] g max Zfz ;[k])

Remark: Even if Step (1) of the algorithm is modified to choosmg a ragetorrandomlyfrom the set of possible
rate vectors as in [15], the following theorem will continioehold. Since the proof is essentially the same, only
Algorithm Ais considered here.

Theorem 3. The policy defined bilgorithm A satisfies Property 1 of Section 2 and hence Theorem 1 costinue
to hold.

Proof: For anyp; > 0, we can find amd < oo such thatProb {a;[k] < AVi} > (1 — p1). Then, note that for
anyk,n > 0, we have

vilk] = nn < wilk +n] < xlk] +nA Vi, wp. (1-p1)"

which in turn implies thate; > 0 and any allowable rate vectot we can find a large enough bounded region,
outside of which, the following holds:

N N N
M filwilk +nlvi =Y filmk)vi| < e Y filwilk)vi,  wp. (1—p1)" (11)
i=1 i=1

The assumptions on the channel state process imply thatdbelglity of not visiting a statg within M slots
goes to zero a8/ tends to infinity. Therefore, for any, > 0, we can find a finite\/, such that the probability
of not visiting a statg is less tharp,, and this is true for any € {1,---, J}.

Consider any slotn and, without loss of generality, assume that the channig atahat slot ig. Also let us

define£ := max £Y) < co. Let7*[m] be a rate vector that satisfies the following at time
J

¥ [m] € arg max. Zfz wi[m])n[m.
Ji:

Then, as observed in [5], due to the nature of the Hamiltowialk, there exists a time slot’ € [m E )L] m)] for

which the channel state satisfiglsn'] = j, and the rate vector visited by the Hamiltonian walk at thaetiis
him'] = 7*[m]. In other words, we can write)’ = mE )t] for somet € {0,...,L}.

Moreover, repeating the argument that the channel stategsovisits statg at least once in/ slots with
probability (1 — p2), we have

m— ML < mfz)ﬁ] <m w.p.(1 — p2)~. (12)

10



Combining this observation with the propertiesofwe haven’ € [m— M £, m] with probability (1 — ps)~.
Then, Step (2) of the algorithm enables us to write

N N
Zm[m']fi(mi[m']) 2 Z?ﬁ [m] fi(wilm']) (13)

\Y)

(1—e) Zm [filwilm])  wp. (1= p2)®(1 = p1)ME, (14)

where the last inequality follows from (11) and (12).
Also note that, for any: and anye> > 0, we can find a bounded region around the origin, outside ofhwhic
we have: with probability 1 — p1)™ (1 — p2),

N N N
(=€) > filailnI U] <37 fi@an)ymn*M] < filwiln])miln), (15)
i=1 i=1 i=1

where the first inequality follows from (11), and the seconédquality is due to Step (2) of Algorithm A. We
continue as follows:

Z fi(zi[m])n;[m]

N

> (1 Ez)t Z fi(xi [m'])m [777/] w.p. (1 — Pl)tM(l - P2)t (16)
N

> (1)1 —e)? filwmmhnim]  wp. (1—p)*ME(1 = o). (17)

i=1
In the previous steps, (16) follows from (15), and step (bipivs from (14) and the fact that| < £. Hence,
given any¢ > 0, andp > 0, we can findpy, p2 > 0 satisfying (1 — p1)M4(1 — p2)** > (1 — p) and find
parameters;, e; > 0 satisfying(1 — €;)(1 — €3)* > (1 — ¢), which in turn yields

N

N
S fi@mlmim] = (1= fiwlmluim] - Ym,  wp. (1= p).
=1

=1
outside a closed, bounded region around the origin. Thexefee have proved that Algorithm A satisfies Prop-
erty 1. o
We note that, whiléAlgorithm Alowers the computational complexity considerably, it addsemory re-

quirement non-existent previously. To see this, first olesénat the algorithm keeps track the rate vectors for
each fading state. Since the number of fading states iresemgonentially with the number of users, so will
the memory requirement. Evidently such a memory requireénisarecessary to assure stability if computational
complexity is an issue. Alternatively, one can tradeofidmn memory and computational complexity require-
ments, by using Algorithm A only in some channel states antbpaing exact computations in other channel
states. For example, in some channel states, the SNR may bevtso that a packet cannot be transmitted

11



unless the transmit power is above some threshold. This imédtythe number of candidate optimal solutions,
thus automatically reducing the computation required.these states, one can use exact computation, whereas,
for other states, reduced complexity algorithms could leelus

4.3 Downlink

In the downlink scenario, a single transmitter maintaisnfinite length queues, one for each receiver and
sends this information over a fading channel as depictedguré 1. Hence, the scheduler at the transmitter has
immediate access to the queue length values at any time, amdsume that it knows the current channel state.
Then at the beginning of each time slot, gayt chooses the service rate vecfgjk|, such that

N
filk] € arg e 2_; fili k] )milR] (18)

whenever||Z|| > B for any fixed valueB < co. Then the results of Section 3 hold for this system. This is a
generalization of the result in [1] where the result has jgemed for the cas¢;(x) of the form (K;x). As we
will see through simulations later, our generalizatiomwt for better queue length performance.

4.4 Waiting Times

Instead of the current queue length information, the sdieednay alternatively use the delay experienced by the
packets within the queues as its input. To incorporate ths our model, we first letv; [k] denote the waiting
time of the head of the line (H.O.L.) packet in tHé queue at timék. In the following, we consider a policy that
chooses the service rate vecfik], such that

N
fi[k] € arg max Zhi(wi[lﬁ])m [k], (19)

k| €S, T
for continuous, non-decreasing functiofis (-) }, satisfyingh;(0) = 0 andlim, .~ h;(z) = co.

Observe that given anyy < oo ande € (0, 1), we can find a value¥' such that for allz;[k] > &', we
havew;[k] > W with probability greater than or equal {@ — ¢). In this subsection alone, we make stronger
assumptions on the arrival process than we had previously. it us assume that given any 0, we can find
al' < oo so that, with probability greater thdn — ), we have

Aiw; (k] — T/ wik] < xilk] < Nw;ilk] + T/ w; k] Vi, k.

Thus, we assume that the arrival process obeys a centrakhiedrem (CLT). Conditions on the arrival process
under which it obeys a CLT are given, for example, in [4].
From the CLT assumption, it is easy to see thgk] can be upper and lower bounded as follows:

12



for appropriate values dfa; } and K. Then, we have

We assume that, given aay> 0 and a finiteK’, we can find a bounded region around the origin, outside offwhic
the following holds:

(1 —e)hi(iz;) < hi(oim; — K\/75) < hi(oiz; + Ky/x;) < (14 €)hi(aiz;), Vi. (20)
Now, if we definef;(x;[k]) := h;(cix;[k]), then (20) implies that outside a bounded region around tigenor
(1 =€) fi(wilk]) < hi(wilk]) < (1 +€) fu(wilk]) Vi,

This property enables us to bound (19) as follows

N N

max hi(w;k])nilk] > (1 —€) max i (i [k il k],
e SShll] 2 (-0 e Sl

which shows that (4) is satisfied.
An example ofh;(-) that satisfy (20) ig;(w) := K;w™ Va; > 0. To see that this is in fact the case, we can
write

hZ(Tz + K\/T—Z) = KZ(’I‘,L + K\/T—z)al
K \™
= Kz |[1+
iL; ( \/$—z) )

where the term in the parenthesis can be made arbitrarigediml by choosingz; large enough. Hence, (20)
holds.

Another example ok, (-) that satisfies (20) i8;(w) := exp(w®™) Ya; € (0,0.5). To justify this, we proceed
as follows:

hi(xi £ K\/z;) = exp((z; £ K\/x;)")

v K
= exp(a;’(l+ \/—7)%)
Z;
KOéi
N

= exp(a;’)exp(£ Koz

%

exp(z7(1 £

)

)
;—0.5

09,

where the second exponent can be made arbitrarily smalldysohgz; large enough ify; € (0,0.5).

In the previous example df;(-), if o; € [0.5, 1), then the system described above is not necessarily stable
in the mean. To guarantee stability, we have to strengthercohditions on the arrival process. Suppose that
we consider leaky bucket type of arrivals, i.e., the numbierrovals between time andt¢, denoted byA(s, t),
satisfiesA(s,t) < p(t — s) + 0 V0 < s < t with positive constantg, o. There are many examples of stationary
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stochastic processes that satisfy such a constraint wieeartival process is further peak-rate constrained. We
refer the reader to [10] for one such example. The leaky-#tuc&nstraint limits the burstiness of the arrivals,
which in turn enables us to upper-bound the difference batwe and \;w;, with high probability, by a large
enough constant. Hence, with probability greater than 4), we have

Bizi[k] — K < w;[k] < Biz;[k] + K Vi, k,
for appropriate values df3;} and K. Then, we have
hi(Biwi[k] — K) < hi(w;[k]) < hi(Bizi[k] + K) Vi, k.
If we define f;(z) := h;(B;x), and assume thdtf;(-)} satisfies (3), then the previous set of inequalities
holds. Then it is easy to see tHdt;(-)} of the formh;(w) := exp(w™) Ya; € [0.5,1) satisfies (20).
5 Simulations

In this section, the performance of the class of schedulwigips described in Section 2 is illustrated through
simulations. For ease of exposition, all the simulationssater the case of two users.

Experiment 1. In this experiment, we illustrate the effect of using diffiet sets of functiong f;(x)} on the
gueue length evolution of the system. The average arrites$ ta the two queues akg = 50 and Ay = 50. The
channel is in one of five states and the achievable mateandr, for the two queues when the channel is in

77]25 + 7755 S I's \/ )\% + )\%

The values for-, were chosen to be.3, 0.7, 1, 1.3 and1.7. The channel state process is a discrete-time Markov

States satisfy the following equation:

chain, such that, given that the Markov chain is in a pardicstate, the probability of a transition to any other
state (including itself) i$).2. The number of arrivals to each queue in each time slot hasss&todistribution.
The arrivals to the two queues are independent from timetalsiot, and are independent of each other and of
the channel state process.

The functions we used in the simulations are of the fgir;) = (K;z;). Using functions of this form,
the queue length evolutions are illustrated in Figure 3.eDlesthat asy increases, the queue length vector gets
closer to the lineg/<; 21 = Koz from any initial condition, after which it stays around itcamoves toward the
origin. Such a behavior empirically shows that we can chdbeefunctions{ f;(-)} so that priorities may be
assigned to different queues without sacrificing stabilboreover, this analysis justifies the fairness property
inherent in the policy, again through empirical methods. Wie that the rule in [13] drives the system to the
line where thekK;x; for all the users are equal and is shown to be pathwise opiimjaR].

14
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Figure 3: Queue length evolutions in the stochastic model.

Experiment 2. In this experiment, the channel setting is kept the same &xperiment 1, but the arrivals
to both of the queues are chosen to be independent, Berdaitibuted random variables having megnfor
Queuei with a peak value 0500 packets per slot. In the case of such bursty arrivals, tlpemxent compares
the performance of two queue length update mechanisms:

e periodically updating the queue length information (wesredb this policy as th&eriodic Update Poligy
and

e updating it either when the number of arrivals exceeds aicelimit since the last update or if the time
since the last update has exceeded a threshold (we refas faolity as theEnhanced Update Poligy

The stability analysis of such systems was done in Sectibn 4.

In the Periodic update policy, the values of the queue lengtle updated once in eve?90 slots in our
simulations. When the arrivals are bursty, such a strategg ot track the queue length values very closely.
Even though, we have proved that the system will be stableémtean, the packets might experience large
delays.

On the other hand, if we instead use the Enhanced updategstrathich guarantees that the queue length
information is updated at least once in evefy slots and also whenever current queue length differs fram th
most recent update by more than a certain threshidldn(our example), then we get better performance under a
bursty traffic, since we can track the actual queue lengtiegaore closely.

We note that the average achievable rate region is a quandker af radiuss0. We definetraffic intensityto be
the ratio\/m /50. Figure 4 examines the effect of varying the traffic inten$itythe two update policies,
where the sampling time for the periodic update policy amditbund for the threshold update policy are both
taken to beb0. It is seen that under heavy load, the Enhanced update pabktysymuch better average delay
performance.
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Figure 4: Delay characteristics of the two queue length tgpdtrategies defined in Experiment 2, with varying
load.

Experiment 3: In this experiment, our goal is to study the ability of oursdaof policies to minimize buffer
overflow. For this purpose, we consider the following meaairperformance:

P(ml > B1) + P(mg > Bg)

)

whereB; and B are both taken to b&000. In other words, the objective is the sum of the overflow prdiies
in the two queues. We wish to study the impact of the choicgfgf)} on the above performance measure.
We use the following heuristic to choo$é;(-) }. From Markov’s inequality, we havB(z; > B;) < %
for any positive, increasing functiog(-). Since we do not have expressions for the overflow probabikity
choose functiong f;(-)} that we expect would minimize the above upper bounds on taglow probability. To
do this, we choos¢;(x;) = ¢.(z;). The heuristic behind this is that, in the fluid model (see poddheorem 1
in the Appendix), at each instant, we attempt to minimizetittme derivative ofy . g;(x;). Thus, it is natural to

choose{ f;(-)} to be the derivatives of the upper bound expressions.

1. The first policy chooseg such that

is maximized over alfi within the current achievable rate region. This corresgaod;(z;) = (z;/B;)?.

2. The second policy choos@ssuch that
= ) Li\o0.5
;_] 2 exp( B; )

is maximized. This corresponds to
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3. For comparison, we also study the performance oftheP — () rule which was shown to be throughput-
optimal in [13], and has recently been shown to be pathwisienapin the heavy traffic regime [12]. This
policy choosegi such that

=1
is maximized over alli within the current achievable rate region.

The channel state process is allowed to vary among five eshapie states as in Experiments 1 and 2. The
initial queue length values are chosen(as[0], z2[0]) = (1000, 1000). Note that this choice is arbitrary and
we ran the simulations for0 million iterations so that the transient effects will be ligigle. The arrival rates
are chosen aB\;, A\2) = (50, 50). In Figure 5, the performance of the three policies are coetpas a function
of traffic intensity. The range of traffic intensities for whithe fraction of overflow duration is on the order
of 103 to 10~2 is shown in the figure. It can be seen that with increasindi¢raftensity, the second policy,
which uses an exponential function to determine the rateables al0% to 20% reduction in the overflow
probability compared to the first policy. Somewhat surpgyi, the second policy has &4 to 10% smaller
overflow probability compared to the EXP-Q rule. Even thodlgh EXP-Q has been proved to be pathwise
optimal in [12], itis an asymptotic result in the heavy-fimafegime and so it is quite possible that another scheme
could perform slightly better at traffic intensities withime boundary of the capacity region. This illustrates the
fact that by suitably choosing of functionfs(x;), system performance can be improved. However, we do not
have a theoretical handle on how thegser;) should be chosen given a requirement on the overflow pratyabil
This is a subject of future research.
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Figure 5: Comparison of the policies with in-
creasing traffic intensity.

The peak of the Bernoulli process

Figure 6: Comparison of the policies with in-
creasing burstiness of the Bernoulli arrivals.

Figure 6 shows the effect of increasing the burstiness ofathigals on the overflows of the two policies.

We increase the burstiness by increasing the peak valyepf the Bernoulli arrivals while keeping the mean



unchanged. Although the figure is plotted for the traffic msigy of 0.88, it is representative of other traffic
intensities. Again, the exponential function gives a rgierformance than the linear function.

6 Conclusions

We have presented conditions on scheduling policies thatagee stability for a large class of arrival and
channel models. We have shown that the conditions are edtifi a variety of policies that use probabilistic,
periodic or otherwise scheduled queue length updatesigolihat result in computational reduction and policies
that use head-of-the-line waiting times. A line of futuregarch would be the study of the interaction of such
scheduling mechanisms with congestion control. Curremiy have assumed that the mean arrival rates lies
within the achievable rate region. Congestion control radliyiprovides a mechanism to move the mean arrival
rates within the achievable rate region. Thus, it would beinad to study the combination of scheduling and

congestion control.

7 Appendix: Proofs

7.1 Proof of Claim 1in Section 2.4

Note that solving the maximization in (7) is equivalent to

J N
max fi(x; i = max T filxi)n;
{7768}] 1; i\ Z J'h {7_7'65]'}3-]_1]2_:] J; i\t )l
J N
< Zﬂ'y _max Zfi(xz)nz(])
o T)ES; T

N
1 .
< 17 Z T Z fil@i)pi(4)-
But /i € S and hence the previous upper bound is in fact achievabfé by o

7.2 Proof of Theorem 1

The stability of the class of scheduling policies is provedeveral steps. We first consider a continuous-time
model with constant arrival rates and a deterministic cehrand show that the system evolves towards a closed
region around the origin in the state space (i.e., the spagqaesne length vectors). As we will see, this suggests a
natural Lyapunov function to analyze the stability of thigimral discrete-time stochastic system. However, before
we consider the stochastic system, we study a determimistarete-time system and show that the Lyapunov
function decreases, except in a bounded region around tgm a@f the state space. Then, we consider the
evolution of the Lyapunov function at time instants that Afesteps apart, for some large. This allows us
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to use law-of-large-numbers type assumptions to view ystesn as being nearly deterministic and apply the
results of the deterministic model to complete the prooftalbiity.

7.2.1 Deterministic modd of the system

In this subsection, we assume that the arrival process tétlipieue is deterministic and constant at each time
slot, with the constant equal to the mean, of the corresponding stochastic arrival processgs]. Further, the
evolution of each of the queues is assumed to be

vilk +1] = @i[k] + A — nilk] + wilk], (21)

—

J
whereq[k] = a(Z[k)]), @(Z[k]) = ijﬁ(j, #[k]) andu;[k] is an upper-bounded, positive quantity, which
j=1

denotes the wasted service provided to #iequeue. Thusji(Z[k]) can be interpreted as the average service
provided to Queue when the queue state i§k|, where the averaging is performed over the channel state
process. In the following subsection, we state two lemmag;hwwill be used in the proof of Theorem 1.
Continuous-time model
In this model, time is no longer discrete, but is continuaus] the evolution of the queue lengths is governed
by the following differential equation

(1) —{ (s = palt)), xi(t)ig i=1,2,... N (22)

(N — ma(t)*, wi(t)

Using the above facts, we will now show that we can find a Lyapuanction for the system (22), such that its
derivative is negative.

Lemma 1. Suppose at any time instantthe service rate vectqi(t) is chosen such that it satisfies

N N
> film®)m(t) > (1=Qmax > filwi(t))m,

i=1 mes 4

where an upper bound on the parameges provided in the proof of this lemma. Consider the follapMuyapunov
function:

V(@) =) gi(i), (23)

=1

whereg!(z) = fi(x). Then for somé > 0, we have
V(@) < —[If(@)]]26, (24)

holding for all 7.
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Proof:

Consider
N
> filwa) (N — ). (25)
i=1
N
20, \\1/2 : — _fi(z) i it-
Let us denoté| f(7)||5 := (Zf,- (x;)) /< and definecos(6;) = o . Then using (4), (25) can be rewrit
ten as =

) - N N
V@) = [[f@)]: (ZCOS(Gi)/\i - ZCOS(Gi)Mz)

N N N
< W@ | S cos@)Ai — S cos(B:)ii +¢ S cos(6) i (26)
i=1 i=1 i=1
=Ky —Kj
where we define
= arg max T = arg max cos( 27
:u gneszﬁ 1772 gneSZ (27)

smcer( 7)|l2 > 0 is constant for a fixed'. Let us consider the expression in (26). The maximizationarts
to finding the point on the boundary &fat which a line with a certain slope (determlneda)ys tangential to
the boundary. Note that sinceis not on the boundary, any two lines with the same slope sumthone passes
through(Xq, - -+, Ay) and the other is tangent to the boundarySofwill have a difference of at least > 0 in
its intercept with thej*” axis. Choose\ := min(d;,---,dy) > 0.

If ; = 5, thenK, = K; = 0. So consider any other indgxsuch that); < %, which impliescos(6;) > v;
and we can

for somey; > 0. Definel’ = max(v1,--+,vn) > 0. Then the;j! intercepts arecof(gl) and
J

cos(6;)

write

K\ — K; < —Amaxcos(f;) < —Al' := —20.
j

Hence we can conclude that§|f< ~= then we have

V(Z) < [|F(@)]]2(—26 + (N7 < 0| F(F)|]o- (28)
o
In what follows, we will use the above Lyapunov function tefishow the stability of the deterministic,
discrete-time model and to later show that the originaltsistic system is stable.
Discrete-time model
Using the result of Lemma 1, we will now show that the Lyapuriorction (23) applied to the system
described by (21) has a negative drift outside a boundedmegi
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Lemma 2. Consider any policy that satisfies Property 1. When such a&yas applied to the discrete-time
system (21) with constant arrivals and time-invariant aeln for sufficiently largelM, the M -step drift of the
Lyapunov functioV satisfies the following inequality:

E|AVM@ER)| < —Men||f(Z[k])]|2Zznen + Ko k) Zzik eB0 18] (29)

(L]

for someey; > 0, whereAV (M) (Z[k]) := V (Z[k + M]) — V (Z[k]), By is a bounded region around the origin
and K, is a finite constant, both dependent gji].

Proof:
AVO(FK) = V(&lk+ 1)) V(F[k])

N
Zfz Uz[k [k]"{'“i[k])a

=1

.

wherey; k] lies between; [k] andz; [k + 1] from Taylor’'s theorem. Then we get,

N
AV (Z]k]) = Z fi(yik])(Ni — pilk]) (30)
z:]N
+ Z fi(yilk])ui[k]. (31)

For (31) observe that if;[k] > 7, thenv;[k] = 0 and ifz;[k] < 7, thenu;[k] < 7. Hence, using the fact that
is nondecreasing, ang|k] < z;[k] + A\;, we get

N
> filyilk)ualk] < Zfz i+ 7)) = C) < oc.
=1

Note that (30) can be bounded as

N N
Z filyilk]) (N — milk]) < Z fi(zilk]) (N — pai[K]) (32)
+Zm yilk]) — filwa kDI — k] (33)

To upper-bound (32), we will make use of Lemma 1. Note tha} {82xactly in the same form as (25), except
that in this case with probability, (24) may not hold. However, by Propertyd¢an be chosen small enough by
making M large. Hence, we can upper-bound (32)49%\|f (Z[k])]]2-

Due to the properties dff;(-)}, (33) can be upper-bounded bny( 7)||2 outside a bounded, closed region.
Hence, by choosing, := g — v > 0, we get the following result

EAVO@H)] < el @kl Zaes;

(1)[ ] + K(U [k]If[k}GB(l)[k:]v (34)
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whereZ, denotes the indicator function of the event By [k] is the closed and bounded region around the

origin andK ) [k] < oo is appropriately chosen.
Next we extend the previous analysis to examine the M-stép dr

E Av<”’>(f[/§])} — E[V(Z[k+ M]) — V(Z[k)])]
M—1

= > F AV @k +4])

< ) [—Elﬂﬂf[k? + i)l Zakriene i) + K R Zaviiesa b | »
=0

which follows from (34). We can write (35) as

M—1
E AV (z [k])} < - (Z 1f(& [k+l])|2> kleBey, kT K ) (K Zaik €8y 1)

i=0

whereB ) [k], and Ky [k] < co are M —step equwalents a1y [k], and Ky k] < oo.

(39)

(36)

Now, consider any € {1,---, N} andn € {0,---, M — 1}. Due to the property of given by (3), for any

Tn € (0 1), we have

v

fi(zjlk + nl) fi(z;[k] —nn*)

(1 - FYn)fj (TJ [k])

for z;[k] large enough. Taking squares, summing gvemnd taking square roots yields

~ N
F@RDI2 = Zf (;[K])

<

l_n

Let us definey := max v, < 1, then we can easily write
nef{0,-,M—1}

M—1

Y@k +De = M=) f@R)]a:
=0
Hence, if we denotey; := ¢;(1 — ), we can upper-bound th¥ -step drift as

E AV (F [k])} < _MEMHf(f[k])HQIx”[k]er k] + K an) (K1 Zzk)eBar 1]

with ey > 0.
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7.2.2 Stochastic model

In the following proof, we will make use of the result of Secti7.2.1 even though the arrivals are now stochastic
processes and the channel state is time-varying. To teilihis, we denote the vectors of queue length, allocated
service rates and the unused services, at any timender the deterministic model b§f[n], ﬁd’[n], and[n],
respectively. Lef?[k] = #. Next, we write the M-step mean drift for the stochastic mo&eicall that, in Section
7.2.1, we obtained an expression for the drift of the fumclibassuming that the arrivals are constant and the
service provided at each time instant is an average (ovesht@ienel states) of the service that would have been
provided had the channel been in a particular state. Novith#ostochastic arrival and channel model,

AWM (Zk]) = E [V(f[k + M) - V@EE+M]) | Tk = ﬂ (38)
+B |V(@lk+ M) - V(@k) | @] =3 (39)
Observe that (39) can be upper-bounded using (29). Nextowsder (38). Note that we can write
k+M—1 k+M—-1 k+M—-1
zilk+M] = zlk]+ > aln]— Y sl @)+ > wln]
n=~k n=~k n==k
= A;(k,M) =:0y(k,M) =:U;(k,M)
k+M—1 J k+M—1
2k + M) = k] + M)\ — Z Zﬂj,ui(j,fd[n]) + Z ulln] .
n=k j=1 n=k
=:C4(k,M) =U2(k,M)
Hence, we can write
Yai = zilk+ M] - xdk + M|
Therefore, (38) can be written as
N
E |\V(#k+M]) - V(#k+M]) | k= ﬂ = E Y gilwilk+ M) —gi(af[k+ M) | @k =7
i=1

N
= Y Blfizi(k, M)Ta; | 3k =4,

=1

which can be further written as

N
= > Efilzilk, M))(As(k, M) = MN;) | &[] = ] (40)
i=1
N
£ DB £k, MY (CL (kM) — Cilk, M) | 7l = 7 (41)
N
+ D" B [ filzik, M))(Ui(h, M) — Uf(k, M) | k] = 7] (42)

=1
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wherez;(k, M) := azl[k + M] + (1 — a)x;[k + M] for somea € [0, 1]. To upper-bound the above expression,
we will consider two events, one when the arrivals to eacthefqueues are upper-bounded by a finite value
and the other, the complement of this event. Let us denotérgie@vent by

A={ain] <A:1<i<N,k<n<(k+M-1)}.
First, let us concentrate on (40). In the case when the edextcurs, we can upper-boung k, M) as
zi(k, M) < x;i[k] + a\iM + (1 — a)AM.

Then we can upper-bound (40) as

N
< S Efilailk] + aAM + (1 - ) AM)| |Ai(k, M) - MX| | &[k] = 4].
=1

For any fixedM, and(; > 0 itis possible to find arX; such that for alk:; > X;, we have
filwi + aNiM + (1 — a)AM) < (1 + G1) fi(zi).

Next, we definel := {i : z;[k] > X;}, which enables us to further upper-bound (40) as

< (1+¢) Zfz(Tz[k])ME Hw N | K] = ;}
i€k
+ ) fi(Xi)ME Ak, M) _ Nl | Zk] = f} .
ie ke

Now, using Assumptioti3) in Section 2.3, for anys > 0, we can find a large enoughl such that

e

N

| (k] —:z] <e Vi

This enables us to obtain

N N
> Elfilzilk, M))(Ai(k, M) = MA)Ta | E[k] = 7] < ((1 + MY filwilk]) + Hl) €2, (43)
im1

i=1

whereH; := Z fi(X;) < 0.
icke
If instead the eventl“ occurs, then Assumptiofi) in Section 2.3 implies that for arey > 0, we can findA

large enough so that

N
> E(filzilk, M))(Ai(k, M) = MA\)Tae | Z[k] = Z] < es. (44)
=1
Secondly, we concentrate on (41). First we write

N N
S" Bk, M)AC | #K = 7] = Y B [Tafiailh, M))(CY (k. M) — Culh, M) | 3] = 7] (45)

i=1 =1

N
+ D7 B [T filzilk, M))(CL(k, M) — Cilk, M) | F[k] = 7{46)

=1
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Expand (45) as follows.

k—H\I 1

N J J
> " E[Iafilzi(k, M)) Z { Zﬁgﬂz 4, En]) = w4, # k)
i—1 =1

Z i (G, @[K]) — pa(sln), 7[k])
j=1
pi(sln], Z[k]) = ps(sln), Fn])  } ) | k] = .

which can be further bounded as

N k+M—-1 J
< Y Blafitzk, M) Y0 Y mi(u(G En]) — i, Zk) | K] = 2] (47)
i1 n—k j—1
J k+M—-1 1

+ZE[IAfz zi(k, M)) Z (4, T[k]) ( - Z Mzs[n]]) | Z[k] = 7] (48)
=1 j=1 n=~k
N k+M—1

+ Ellafi(zik, M) Y (pilsln], #k]) — pilsln], #n))) | #[k] = &, (49)
i=1 n=k

Note that, under the evemt, z;(k, M) € [x;[k] — M7, x;[k] + a\iM + (1 — a) AM], for somea € [0, 1]. Then
for any givenM, A and¢ > 0, we can find anX; < oo such that for any:; > X;, we have(l — () fi(x;) <
filys) < (1 + Q) filwi).

Define the set of indice&' := {i : x;[k] > X;}. Then using AssumptiofR2) of Section 2.1, along with a
repetition of the argument we had for (40), given any> 0, we can come up with a closed, bounded region,
outside of which we have

N
(48) < ((1 +OMY filalk) + H) s

i=1
with Hy < oo. Since (47) and (49) follow the same reasoning, only therlaitk be examined in detail. Using
our earlier analysis, given anry > 0, it is easy to upper bound the following term:

N k+M-—1 N k+M-1
D E[Lafi(zi(k, M) > pa(sln], Zk)) | #[k] = 7] i(zi[k])
=1 n=~k i=1 n=k

[IA,Uz slnl, Z[K]) | Z[k] = 2]} + Ha,

with H3 < oo. As for the second term, note that for ak E, we havef;(z;(k, M)) > (1 — 2Mn)fz(rz[ 1), and
fori € E, we havef;(zi(k, M)) = (1 — 5537) fi(w:[k]) — Ha, with an appropriate choice df, < oc. Hence
we obtain the following lower bound:

N k+M—1 N k+M-1
SO Bt M) YD pilslal Fn) 7R =3 > (=D DS {filwilk
i=1 n=~k i=1 n=k

E[Lapi(sln]. #[n]) | #k] = #]} + Hs,
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with H5 < oco. Putting the last two bounds together, we get the followingaxgound on (49):

k+M-—1 N
(19) < 3" Bla Y (filailkDpusCslnl, ZK) — fiwdkpa(spn) #ln)) | #k] =7 (50)
nek N . k+M-—1
+2]\;ﬁ Do fi@lkDEIa Y (palsln], ZK]) — pa(s[n), Zn])) | #[k] = 7] (51)
i=1 n=~k
+Hg
N
i=1

with Hg bounded, where the last inequality follows by observing tha expectation in (51) is upper-bounded
by My, and, givenM and A, we can find the bounded region around the origin outside ofhvtiie expectation

in (50) can be upper-bounded b, Zévzl fi(x;[k]). Similarly, an upper bound on (47) can be obtained by
choosing the bounded region large enough. Such an argunoeitd wield the following expression

N
(47) S €6 Z fz(l‘z[k]) + f[77
i=1

with H7 bounded. Putting all these bounds together, we can uppareb@5) as

—

(45) < er M||f(Z[K])|l2 + Hs, (53)

whereHjy is finite. As for (46), we can choose the parametdarge enough so that, due to Assumptidn of
Section 2.3, it converges to zero.

Thirdly, consider (42) under the evert Observe that for any queue, sgyand any fixedM, the sum of
unused service may be nonzero over a duratiof/daslots only ifx;[n] < 7 for somen € {k,--- , k+ M — 1}.
Therefore, ifU;(k, M) > 0, itis easy to see that;(z;(k, M)) < fi(7 + M A). Similarly, UZ(k, M) > 0 only if
fi(zi(k, M)) < fi(n 4+ MX;). Moreover, the cumulative unused service o¥érslots is upper-bounded by/7),
since within each slot, the maximum amount of possible uhgsevice is)j. Hence, we can easily upper-bound
(42) under the eventl as

N
> B [ Tafilzilk, M)(Ui(k, M) = Uk, M) | 3] = 3| < Miymax fii + MA).  (54)
i=1

If the eventA° occurs then we can write, for amy > 0,

IN

N
"B [Tae fililh, M)Wk, M)~ UAE, M) | 7] =7| < MAE[Zacfi(a(k, M) | 7K =)

=1

< Mes, (55)

with A < oo chosen to be large enough, due to Assumptignof Section 2.3. Putting (54) and (55) together,
(42) can be upper-bounded as

(42) < Mes + Hyg (56)
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for anyeg > 0 and with Hy < oo chosen appropriately.
Now, combining (43), (44), (53) and (56), for amy> 0, we can come up with a closed, bounded region
around the origin outside of which we have

V(@Ek+ M) - V@k+ M) | k=3 < Me|F@ER): + H,

for someH < oo chosen appropriately. So if we choosg — € =: £ > 0, then we can come up with a closed
region, denoted by, [k], outside of whichz[k] is sufficiently large, and

AWM (F[k]) <~ ME||f(Z[k])||aZapny leeyy, (k] T K (a0 Zalk] €Ga ] (57)

with an appropriate choice df ;) < co. We can also write the previous expression as

—

EW(@lk + M]) = W(zk]) | #[k] = 2] < —ME[|F(@R]D2Zzmeqe,, v + K )
Taking expectations on both sides, we get
EW (#lk+ M])] - EW(@k)] < —MEE ||| F@k)] 2 Tawegs, ] + K-
Then, for any positive integer, we have
E[W (#(p— 1)M])] - EW (@[0))] < MfZE[ @ kM| 2 Zapaneqey, jean| +PE ).
Since E[W (Z[(p — 1)M])] > 0, we have
—E[W( [0 < MﬁZE { f k}M HQIf[k]\'T]GQFM)[kM]} —i—pK(M)

Re-arranging the terms, we get

p—1

Fl i K
E || @M o Tanmege, ] < EWQ{&W Py,

(M)

B
Il

0

Now observe that’ [Hf( Ik M])||2Zz10]eG n, [kMﬂ < oo sinceG ) represents a closed bounded region around

the origin and |ﬂ |2 is bounded is inside such a region. This allows us to write

ST EW(F0)] . T
kz [I7@RM.] < e T e

for some finitel| ;). Finally, dividing both sides by and lettingp — oo, we obtain

T _
(M)
li FE < = = ,
lmpsggop E {I\f k)| l2 } S e l < oo, (58)
as claimed in the theorem statement. o
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