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Abstract

We study the problem of stable scheduling for a class of wireless networks. The goal is to stabilize the

queues holding information to be transmitted over a fading channel. Few assumptions are made on the arrival

process statistics other than the assumption that their mean values lie within the capacity region and that they

satisfy a version of the law of large numbers. We prove that, for any mean arrival rate that lies in the capacity

region, the queues will be stable under our policy. Moreover, we show that it is easy to incorporate imperfect

queue length information and other approximations that cansimplify the implementation of our policy.

1 Introduction

Consider a wireless network, where data collected inN separate queues are to be transmitted over a common

medium that is time varying. Several well-known models fit into this definition. Two such examples would be

the downlink and the uplink scenarios of a cellular environment.

A scheduling policyis an allocation of service rates to the various queues, under the constraint that, at each

time instant and each channel state, the set of allocated rates lies within some allowable set of rates. The set of

allowable rates for each channel state is assumed to be a convex region. Our goal is to find a scheduling strategy

which stabilizes the system using only queue length information and the current channel state (i.e., without

knowing channel or arrival statistics).

Stable scheduling policies for wireless systems without time-varying channels were first studied in [16].

In fact the model in [16] can also be thought of as a model for a high-speed input-queued switch. Systems

with time-varying channels, but limited to the case of ON andOFF channels were studied in [17, 14]. More

general channel models have been studied by others recently[1, 13, 12, 7]. We generalize the class of scheduling

policies considered in [17, 14, 1, 13]. Further, we allow imperfect queue length information and prove the

stability of policies that reduce computational complexity. These class of policies for wireless networks are

natural extensions of those studied in [15, 5] for high-speed switches. Our proof uses a quadratic Lyapunov�Research supported by NSF Grants ANI-9714685, ITR 00-85929, DARPA grant F30602-00-2-0542 and AFOSR URI F49620-01-1-

0365
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function argument along the lines of the proofs in [16, 6]. Wealso refer the reader to [2, 11] for a geometric

approach to scheduling problems.

In the context of time-varying wireless channels with many users, our work is an example of exploiting

multiuser diversity to maximize the capacity of the system.Here, we try to maximize the throughput of the

system without the knowledge of system statistics. Alternatively, one can formulate a fair resource allocation

problem where each user is allocated a certain fraction of the system resources according to some criterion

[18, 9]. The approaches in [18, 9] are not throughput optimal, but arefair according to some appropriate notion

of fairness. Our work and other related work assume that the channel is time-varying and attempt to exploit

this feature. In [19], an interesting technique to induce time variations in channels which may not be inherently

time-varying is discussed.

The rest of the paper is organized as follows. Section 2 describes the system model and presents a statement of

the problem we consider in this paper, the scheduling policyand assumption on the arrival and channel processes.

We state the main theorem, which establishes the stability of the system, in Section 3. Section 4 gives several

useful applications of the policy operating both in uplink and downlink scenarios. Several properties of the set

of scheduling policies are illustrated through simulations in Section 5. Conclusions and further directions are

provided in Section 6. And finally, the proofs of the theoremsare collected in Section 7.

2 System model

Consider a wireless network whereN data streams are to be transmitted over a single fading channel. An example

of such a network can be a single transmitter sending data toN receivers (the downlink in a cellular system) as

depicted in Figure 1 orN transmitters sending data to a single receiver (the uplink)as shown in Figure 2. We

assume that the arriving bits are stored inN separate queues, one for each data stream. Assuming that time is

slotted, the evolution of theith queue is described by the following equation:xi[k + 1℄ = (xi[k℄ + ai[k℄� �i[k℄)+; (1)

whereai[k℄ is the number of bits arriving to Queuei at timek and�i[k℄ is the number of bits from Queuei that

are served at timek: One can also ensure thatxi[k℄ takes on only discrete values in our model. This would be

more realistic when transmission can take place only in units of packets, for example. In such a case, there may

be wasted service even whenxi[k℄ > 0: To allow for this, we can rewrite the evolution of the queue lengths given

by (1) as xi[k + 1℄ = xi[k℄ + ai[k℄� �i[k℄ + ui[k℄;
whereui[k℄ is a positive quantity, which denotes the wasted service provided to theith queue during slotk.

The state of the channel is assumed to be fixed within a time slot, but is allowed to vary from one slot to the

next. LetJ be the number of possible channel states. Suppose that the channel is in Statej at timek; thenf�i[k℄g
is constrained to be in some regionSj: Thus,Sj identifies the allowable set of rates at which the queues can be
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Figure 2: Uplink model

drained when the channel is in Statej. For now, we can simply visualizeSj to be a bounded, convex region such

as the broadcast channel capacity region [8]. Precise conditions on the allowable set of rates, the channel state

process and arrival processes will be given later.

In this paper, we consider the following class of schedulingpolicies: at any timek; given the current channel

states[k℄; the scheduler chooses a service rate vector~� = (�1; � � � ; �N )0 2 Ss[k℄ that satisfies:~� = arg max~�2Ss[k℄ NXi=1 fi(xi[k℄)�i; (2)

wherefi : [0;1) ! [0;1) are functions that satisfy the following conditions:� fi(x) is a nondecreasing, continuous function withlimx!1 fi(x) =1:� Given anyM1 > 0; M2 > 0 and0 < � < 1; there exists anX <1; such that for allx > X ; we have(1� �)fi(x) � fi(x�M1) � fi(x+M2) � (1 + �)fi(x); 8i: (3)

Examples of the the functionsfi(�) that satisfy (3) arefi(x) = (Kix)� for anyKi 2 [0;1) and� 2 [0;1); orfi(x) = epx � 1: Note that the exponential functionfi(x) = e�x � 1 for any fixed� > 0 does not satisfy (3).

As we will see later, for various reasons, it may be difficult to implement the policy (2). For example, the

queue length information may be delayed, the maximization involved may be too complex or one may wish to

use waiting times, instead of queue lengths, to choose the service rates. We will show later that, in all such cases,

the scheduling policy will satisfy the following property.

Property 1. Given any� and � such that0 � �; � < 1; there exists aB > 0 such that the scheduling policy

satisfies the following condition: at any timek; with probability greater than(1 � �); the scheduler chooses a

service rate vector~� = (�1; � � � ; �N )0 2 Ss[k℄ that satisfies:NXi=1 fi(xi[k℄)�i � (1� �) max~�2Ss[k℄ NXi=1 fi(xi[k℄)�i (4)
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wheneverk~x[k℄k > B; where~x[k℄ := (x1[k℄; � � � ; xN [k℄)0; and s[k℄ 2 f1; � � � ; Jg is the channel state in time

slotk: �
Thus, for the purpose of establishing stability, we will consider scheduling policies that satisfy the above

property.

In the following subsections, we state the various assumptions that we make on the arrival and channel

processes, the admissible rate regions, and state a fact about the scheduling policy which will be useful for later

proofs.

2.1 The channel state process

1) The channel state process has a stationary distribution, where the stationary probability of being in statej,j 2 f1; � � � ; Jg, is denoted by�j . Further, we assume�j > 0 8j:
2) Let us denote the state of the channel at timen by s[n℄. Note thats[n℄ can take any one of theJ possible

values. Given any� > 0; there exists a positive integer�M such that8M > �ME "������j � 1M k+M�1Xn=k Is[n℄=j�����# < �; (5)

for anyk > 0 andj = 1; 2; : : : ; J:
2.2 The achievable rate regions fSjg
1) Consider any regionSj and any~� 2 Sj: There exists an̂� such that�i � �̂: In other words, each of the regionsSj is bounded.

2) Each of the regionsSj ; j = 1; 2; : : : ; J is convex.

3) For eachj = 1; 2; : : : ; J; the following is true: iff�1; �2; : : : ; �i; : : : ; �Ng 2 Sj; thenf�1; �2; : : : ; 0; : : : ; �Ng 2Sj for all i = 1; 2; : : : ; N:
4) Fix a channel statej: Given any fixedA 2 <+, 8� > 0, 9R <1 such that, for any~x 2 �<N�+, ~y 2 �<N�+
satisfyingjxi � yij < A; i = 1; � � � ; N andk~xk; k~yk > R, we have����� NXi=1 fi(xi)�i(j; ~x)� NXi=1 fi(yi)�i(j; ~y)����� < � NXi=1 fi(xi)�i(j; ~x);
where~� is determined according to our scheduling policy. (We use the notation~�(j; ~x) to denote the vector of

service rates when the current channel state isj and the current queue length vector is~x:)
2.3 The arrival processes

1) The arrivals to each Queuei form a stationary process, with a mean denoted by�i := E[ai[1℄℄:
2) Define �S = f~� : ~� = JXj=1 �j~�(j) and~�(j) 2 Sj ;8jg:
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The vector of mean arrival rates~� is such that there exists~� 2 �S satisfying�i > �i 8i:
3) Given any� > 0; there exists a positive integer�M such that8M > �ME "����� 1M k+M�1Xn=k ai[n℄� �i�����# < �; 8i: (6)

4) Finally, fi andai[k℄ should satisfylimA!1 NXi=1 Afi(A)P (ai[1℄ > A) = 0:
2.4 Observation on the Scheduling Policy

Claim 1. If the scheduling policy satisfies Property 1, then with probability greater than(1��); ~�� := JXj=1 �j~�(j; ~x)
satisfies NXi=1 fi(xi)��i � (1� �)max~�2 �S NXi=1 fi(xi)�i (7)

for all k~xk > B:
Proof: See Section 7.1 of the Appendix for the proof. �
3 Stability of the stochastic model

We state the main result of the paper in the following theorem.

Theorem 1. For sufficiently small values of�; � � 0; the system is stable in the mean under the policy described

in Section 2, i.e., lim supp!1 1p p�1Xk=0E hjj~f(~x[k℄)jj2i <1; (8)

wherejj~f(~x)jj2 :=  NXi=1 f2i (xi)!1=2 :
Proof: The proof of the theorem is in Appendix 7.2. �

In addition to the assumptions presented in Section 2, if we further assume that the queue lengthsfxi[k℄g
can only take values inf0; 1; 2; : : :g; and that the arrival and channel state processes make the queueing system

an aperiodic Markov chain with a single communicating class, then the stability-in-the-mean property further

implies that the Markov chain ispositive recurrent[6].

An example of a system that is positive recurrent is one wherethe arrival and channel state processes satisfy

the following conditions:
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� The arrival process to each queue is a Markov-modulated Poisson process.In other words, the arrival

process is one of many states, the stochastic process describing the evolution of these states is a countable

state, aperiodic Markov chain with a single communicating class. Further, in each arrival state, the number

of arrivals generated is a Poisson random variable. The meanof the Poisson random variable can be state

dependent.� The channel state process is a countable state, aperiodic Markov chain with a single communicating class.

Under the above conditions, if we enlarge the definition of the state to be(channel state, states of the arrival processes, queue lengths);
then the state transition process is a Markov chain. Further, due to the Poisson nature of the arrivals, it is easy

to see that the queue lengths can empty from any initial statewith non-zero probability, and that from any state

with empty queues, it is possible to reach any other state with non-zero probability. Thus, the Markov chain

has a single communicating class. Further, it is also easy tosee that the system can remain in any state with

empty queues for more than one time instant with non-zero probability. Thus, the Markov chain is also aperiodic.

Finally, we note that the arrival and channel state processes are short-range dependent and, thus, satisfy the

law-of-large-number type conditions (5) and (6) in Section2.

3.1 Instability

If the mean arrival rate vector~� lies outside the average achievable rate region�S; then the system will be unstable.

To prove this, we make use of theStrict Separation Theorem,[3, Proposition B. 14] which states that since~� is

a point that does not belong to the convex set�S; there exists a vector~� such thatNXi=1 �i�i � NXi=1 �i�i � Æ;
for someÆ > 0: Further, due to the fact that�i � 0; 8i; and Assumption (3) in Section 2.2, a little thought shows

that �i can be chosen to be non-negative, with at least one�i positive. Given this~�; we define the Lyapunov

function, W (~x) := NXi=1 �ixi:
Then, from a drift analysis, we haveE (W (~x[k + 1℄)�W (~x[k℄) j~x[k℄) = NXi=1 �iE (xi[k + 1℄� xi[k℄ j ~x[k℄)= NXi=1 �iE (ai[k℄� �i[k℄ + ui[k℄ j ~x[k℄)� NXi=1 �i (�i �E(�i[k℄ j ~x[k℄))� Æ;
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which implies thatE(W (~x[k℄)) !1 ask !1 and therefore, the system is not stable-in-the-mean.

3.2 Non-convex set of allowable rates

There are many practical systems where the set of rate vectors that can be used by the scheduler may not be

convex. An example is a cellular downlink with a TDMA protocol. We will refer to the set of rate vectors that

can actually be implemented by the scheduler as theset of allowable rates. Then we define theachievable rate

region to be the convex hull of the set of allowable rates for each channel statej: Now suppose we use a policy

of the form ~�[k℄ 2 arg max~�[k℄2Ss[k℄ NXi=1 fi(xi[k℄)�i[k℄: (9)

We claim that this policy will yield a set of optimal rate vectors, at least one element of which is in the set of

allowable rate vectors.

To see that this claim is true, we first note that, from the definition of a convex hull, any rate,~�; which belongs

to the convex hull can be written as a convex combination of some allowable rate vectors,f~ng; i.e.,~� = LXn=1�n~n;
whereL > 0 is an integer and

LXn=1�n = 1 with �n > 08n: If for any statej; and some queue length vector~x; the set of rates which maximizes (9) does not contain any of the allowable rate vectors, then we must have at

least one achievable rate vector,~�; such that it satisfiesNXi=1 fi(xi)�i > NXi=1 fi(xi)ni 8n 2 f1; : : : ; Lg;
which in turn implies LXn=1�n NXi=1 fi(xi)ni > NXi=1 fi(xi)ni 8n 2 f1; : : : ; Lg:
However, the last equation cannot be true since the convex combination of a set of positive numbers cannot be

strictly larger than each of them. Hence, by contradiction,it follows that at least one solution to the maximization

problem in (9) must belong to the set of allowable rates.

4 Applications

The scheduling policy given in (2) is a generalization of thepolicy examined in [16, 14, 1]. In a later section,

we show through simulations that general functions of the form fi(�) can be very useful in controlling queue

lengths. In this section, we show that the introduction of the parameters,�; �; enables the application of the policy

to scenarios where instantaneous queue length informationis not available or the scheduler has computational

limitations.
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4.1 Infrequent or Delayed Queue Length Updates

Consider the multiple access uplink scenario, where each oftheN users maintains an infinite length queue,

holding information to be transmitted to the base station over a fading multiple access channel. This scenario

is depicted in Figure 2. In this case, it may not be reasonableto expect the queue length to be updated at each

time slot. To reduce the amount of information transferred between the transmitters and the base station, suppose

that each transmitter updates the queue length only once every T time slots. Letx̂i[k℄ denote the estimate of

the queue length of theith queue at timek: In other words,̂xi[k℄ is the last update of the queue length, prior to

timek; received by the base station from Transmitteri: Further, suppose that at each time slotk; the base station

allocates a service rate vector that satisfiesarg max~�[k℄2Ss[k℄ NXi=1 fi(x̂i[k℄)�i[k℄: (10)

In the following theorem, we show that this policy satisfies Property 1 in Section 2.

Theorem 2. Suppose that the scheduler is only allowed to sample the queue length information once everyT
slots (i.e.x̂i[nT + l℄ = xi[nT ℄ for l = 0; 1; : : : ; T � 1 andn = 0; 1; : : :), and it uses this sampled value as the

current queue length to determine the service rates according to (10), then the system is stable-in-the-mean.

Proof: Since the mean arrival rate to each of the queues is finite, given any� 2 (0; 1); we can findA <1 such

that Prob fai[k℄ � A 8ig > (1� �):
Let us consider two sampling instantsk andk + T: Consider anyn 2 f0; � � � ; T � 1g; and define the following

quantities for each channel statej :~��(j; ~x[k + n℄) 2 argmax~�2Sj NXi=1 fi(xi[k + n℄)�i(j; ~x[k + n℄)~̂�(j; ~̂x[k + n℄) = ~̂�(j; ~x[k℄) 2 argmax~�2Sj NXi=1 fi(xi[k℄)�i(j; ~x[k℄):
Observe that for anyi 2 f1; 2; : : : ; Ng; andn 2 f0; 1; : : : ; T � 1g; we havexi[k + n℄� TA � x̂i[k + n℄ = xi[k℄ � xi[k + n℄ + T �̂ w:p: (1� �):
Moreover, due to Assumption (4) of Section 2.2, given any� 2 (0; 1); we can find a bounded region around the

origin, outside of which the following inequality holdsNXi=1 fi(x̂i[k + n℄)�̂i(j; ~̂x[k + n℄) = NXi=1 fi(xi[k℄)�̂i(j; ~x[k℄)� (1� �) NXi=1 fi(xi[k + n℄)��i (j; ~x[k + n℄) w:p: (1� �):
8



Therefore, this policy satisfies Property 1. �
There are alternative ways to update the queue length information instead of periodic sampling. For example,

the scheduler may sample each queue with some probability ateach time instant. In this case, given any� > 0;
we can find aT such that the probability that all queues have been updated at least once in the pastT slots is

greater than1� �: By making� arbitrarily small and following the lines of the proof of previous theorem, we can

again prove the stability of the system.

While periodic sampling and random sampling would ensure stability, they may result in poor delay perfor-

mance. An alternative sampling technique which may be particularly useful with bursty arrivals, is to update

the queue length information for each queue whenever the absolute value of the difference between the current

length and the last update exceeds some threshold. Along thelines of the proof of the previous theorem, we can

again show that this policy is stable. However, we will show through simulations later that this update mechanism

reduces the mean queueing delay as compared to random or periodic sampling.

Finally, we note that delayed queue length updates can also be cast in the same framework as above.

4.2 Reducing computational complexity

Typically, the allowed set of power levels at a mobile or a base station is a finite set. Consequently, the set of

allowable rates will be finite for each channel state. In thiscase, as discussed earlier, the achievable rate region

in each state is the convex hull of the set of allowable rates in the state. The convex hull would be a convex

polyhedron and a policy of the form arg max~�[k℄2Ss[k℄ NXi=1 fi(xi[k℄)�i[k℄
would involve an optimization over the vertices of the convex polygon. The complexity issues arising due to this

has been addressed in the context of high-speed switches in [15, 5].

In this section, we show that the solutions proposed in [15, 5] for high-speed switches are also applicable to

wireless networks with time-varying connectivity and moregeneral functionsfi(xi) than the ones considered in

[15, 5]. The basic idea behind the solution in [5] is to perform a Hamiltonian walk over the set of allowable rates

(or more simply, over the vertices of the convex polygon of allowable rates) for each state, and store in memory,

the bestschedule so far in each channel state. (In our context, performing a Hamiltonian walk corresponds to

maintaining a list of allowable rates and visiting each possible rate vector in a fixed order. Once all the rate

vectors are visited, the list is again scanned from the beginning.) This way, at each step we only need to compare

two values, which is a significant reduction of complexity. In the following, we present the algorithm and prove

its stability.

Algorithm A: Assume that the current channel state iss[k℄ = j and letk(j)[�d℄ denote thedth time slot beforek when the channel was in Statej: LetL(j) denote the number of available rate vectors we need to choosefrom

when the channel state isj; and~�[k(j)[�d℄℄ denote the rate vector at timek(j)[�d℄: (Note thatk(j)[�1℄ denotes the last time

beforek when the channel state wasj: In the following, we will omit the subscript[�d℄ whend = 1:) Then the
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algorithm is comprised of the repetition of the following steps:

(1)~h[k℄ = next rate vector visited by the Hamiltonian walk in the current channel states[k℄ = j:
(2) ~�[k℄ = arg max~�2f~�[k(j)℄;~h[k℄g NXi=1 fi(xi[k℄)�i:
Remark: Even if Step (1) of the algorithm is modified to choosing a ratevectorrandomlyfrom the set of possible

rate vectors as in [15], the following theorem will continueto hold. Since the proof is essentially the same, only

Algorithm Ais considered here.

Theorem 3. The policy defined byAlgorithm A satisfies Property 1 of Section 2 and hence Theorem 1 continues

to hold.

Proof: For any�1 > 0; we can find anA < 1 such thatProb fai[k℄ � A 8ig > (1 � �1): Then, note that for

anyk; n � 0; we havexi[k℄� n�̂ � xi[k + n℄ � xi[k℄ + nA 8i; w:p: (1� �1)n;
which in turn implies that8�1 > 0 and any allowable rate vector~�; we can find a large enough bounded region,

outside of which, the following holds:����� NXi=1 fi(xi[k + n℄)�i � NXi=1 fi(xi[k℄)�i����� � �1 NXi=1 fi(xi[k℄)�i; w:p: (1� �1)n: (11)

The assumptions on the channel state process imply that the probability of not visiting a statej within M slots

goes to zero asM tends to infinity. Therefore, for any�2 > 0; we can find a finiteM; such that the probability

of not visiting a statej is less than�2; and this is true for anyj 2 f1; � � � ; Jg:
Consider any slotm and, without loss of generality, assume that the channel state at that slot isj: Also let us

defineL := maxj L(j) <1: Let ~��[m℄ be a rate vector that satisfies the following at timem :~��[m℄ 2 arg max~�[k℄2Sj NXi=1 fi(xi[m℄)�i[m℄:
Then, as observed in [5], due to the nature of the Hamiltonianwalk, there exists a time slotm0 2 [m(j)[�L℄;m℄ for

which the channel state satisfiess[m0℄ = j; and the rate vector visited by the Hamiltonian walk at that time is~h[m0℄ = ~��[m℄: In other words, we can writem0 = m(j)[�t℄ for somet 2 f0; : : : ;Lg:
Moreover, repeating the argument that the channel state process visits statej at least once inM slots with

probability (1� �2); we have m�ML � m(j)[�L℄ � m w:p:(1� �2)L: (12)
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Combining this observation with the properties ofm0 we havem0 2 [m�ML;m℄ with probability(1��2)L:
Then, Step (2) of the algorithm enables us to writeNXi=1 �i[m0℄fi(xi[m0℄) � NXi=1 ��i [m℄fi(xi[m0℄) (13)� (1� �1) NXi=1 ��i [m℄fi(xi[m℄) w:p: (1� �2)L(1� �1)ML; (14)

where the last inequality follows from (11) and (12).

Also note that, for anyn and any�2 > 0; we can find a bounded region around the origin, outside of which

we have: with probability(1� �1)M (1� �2);(1� �2) NXi=1 fi(xi[n(s[n℄)℄)�i[n(s[n℄)℄ � NXi=1 fi(xi[n℄)�i[n(s[n℄)℄ � NXi=1 fi(xi[n℄)�i[n℄; (15)

where the first inequality follows from (11), and the second inequality is due to Step (2) of Algorithm A. We

continue as follows:NXi=1 fi(xi[m℄)�i[m℄� (1� �2)t NXi=1 fi(xi[m0℄)�i[m0℄ w:p: (1� �1)tM (1� �2)t (16)� (1� �1)(1 � �2)L NXi=1 fi(xi[m℄)��i [m℄ w:p: (1� �1)2ML(1� �2)2L: (17)

In the previous steps, (16) follows from (15), and step (17) follows from (14) and the fact thatjtj � L: Hence,

given any� > 0; and� > 0; we can find�1; �2 > 0 satisfying(1 � �1)ML(1 � �2)2L � (1 � �) and find

parameters�1; �2 > 0 satisfying(1� �1)(1� �2)L � (1� �); which in turn yieldsNXi=1 fi(xi[m℄)�i[m℄ � (1� �) NXi=1 fi(xi[m℄)��i [m℄ 8m; w:p: (1� �);
outside a closed, bounded region around the origin. Therefore, we have proved that Algorithm A satisfies Prop-

erty 1. �
We note that, whileAlgorithm A lowers the computational complexity considerably, it addsa memory re-

quirement non-existent previously. To see this, first observe that the algorithm keeps track the rate vectors for

each fading state. Since the number of fading states increases exponentially with the number of users, so will

the memory requirement. Evidently such a memory requirement is necessary to assure stability if computational

complexity is an issue. Alternatively, one can tradeoff between memory and computational complexity require-

ments, by using Algorithm A only in some channel states and performing exact computations in other channel

states. For example, in some channel states, the SNR may be too low so that a packet cannot be transmitted
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unless the transmit power is above some threshold. This may limit the number of candidate optimal solutions,

thus automatically reducing the computation required. Forthese states, one can use exact computation, whereas,

for other states, reduced complexity algorithms could be used.

4.3 Downlink

In the downlink scenario, a single transmitter maintainsN infinite length queues, one for each receiver and

sends this information over a fading channel as depicted in Figure 1. Hence, the scheduler at the transmitter has

immediate access to the queue length values at any time, and we assume that it knows the current channel state.

Then at the beginning of each time slot, sayk; it chooses the service rate vector~�[k℄; such that~�[k℄ 2 arg max~�[k℄2Ss[k℄ NXi=1 fi(xi[k℄)�i[k℄; (18)

wheneverk~xk > B for any fixed valueB < 1: Then the results of Section 3 hold for this system. This is a

generalization of the result in [1] where the result has beenproved for the casefi(x) of the form(Kix)�i : As we

will see through simulations later, our generalization allows for better queue length performance.

4.4 Waiting Times

Instead of the current queue length information, the scheduler may alternatively use the delay experienced by the

packets within the queues as its input. To incorporate this into our model, we first letwi[k℄ denote the waiting

time of the head of the line (H.O.L.) packet in theith queue at timek: In the following, we consider a policy that

chooses the service rate vector~�[k℄; such that~�[k℄ 2 arg max~�[k℄2Ss[k℄ NXi=1 hi(wi[k℄)�i[k℄; (19)

for continuous, non-decreasing functionsfhi(�)g; satisfyinghi(0) = 0 andlimx!1 hi(x) =1:
Observe that given anyW < 1 and � 2 (0; 1); we can find a valueX such that for allxi[k℄ > X ; we

havewi[k℄ � W with probability greater than or equal to(1 � �): In this subsection alone, we make stronger

assumptions on the arrival process than we had previously used. Let us assume that given anyÆ > 0; we can find

a� <1 so that, with probability greater than(1� Æ); we have�iwi[k℄� �pwi[k℄ � xi[k℄ � �iwi[k℄ + �pwi[k℄ 8i; k:
Thus, we assume that the arrival process obeys a central limit theorem (CLT). Conditions on the arrival process

under which it obeys a CLT are given, for example, in [4].

From the CLT assumption, it is easy to see thatwi[k℄ can be upper and lower bounded as follows:�ixi[k℄�Kpxi[k℄ � wi[k℄ � �ixi[k℄ +Kpxi[k℄ 8i; k;
12



for appropriate values off�ig andK: Then, we havehi(�ixi[k℄�Kpxi[k℄) � hi(wi[k℄) � hi(�ixi[k℄ +Kpxi[k℄) 8i; k:
We assume that, given any� > 0 and a finiteK; we can find a bounded region around the origin, outside of which

the following holds:(1� �)hi(�ixi) � hi(�ixi �Kpxi) � hi(�ixi +Kpxi) � (1 + �)hi(�ixi); 8i: (20)

Now, if we definefi(xi[k℄) := hi(�ixi[k℄); then (20) implies that outside a bounded region around the origin,(1� �)fi(xi[k℄) � hi(wi[k℄) � (1 + �)fi(xi[k℄) 8i:
This property enables us to bound (19) as followsmax~�[k℄2Ss[k℄ NXi=1 hi(wi[k℄)�i[k℄ � (1� �) max~�[k℄2Ss[k℄ NXi=1 fi(xi[k℄)�i[k℄;
which shows that (4) is satisfied.

An example ofhi(�) that satisfy (20) ishi(w) := Kiw�i 8�i > 0: To see that this is in fact the case, we can

write hi(xi �Kpxi) = Ki(xi �Kpxi)�i= Kix�ii �1� Kpxi��i ;
where the term in the parenthesis can be made arbitrarily close to1 by choosingxi large enough. Hence, (20)

holds.

Another example ofhi(�) that satisfies (20) ishi(w) := exp(w�i) 8�i 2 (0; 0:5): To justify this, we proceed

as follows: hi(xi �Kpxi) = exp((xi �Kpxi)�i)= exp(x�ii (1� Kpxi )�i)� exp(x�ii (1� K�ipxi ))= exp(x�ii ) exp(�K�ix(�i�0:5)i );
where the second exponent can be made arbitrarily small by choosingxi large enough if�i 2 (0; 0:5):

In the previous example ofhi(�); if �i 2 [0:5; 1); then the system described above is not necessarily stable

in the mean. To guarantee stability, we have to strengthen the conditions on the arrival process. Suppose that

we consider leaky bucket type of arrivals, i.e., the number of arrivals between times andt; denoted byA(s; t);
satisfiesA(s; t) � �(t� s) + � 8 0 � s < t with positive constants�; �: There are many examples of stationary
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stochastic processes that satisfy such a constraint when the arrival process is further peak-rate constrained. We

refer the reader to [10] for one such example. The leaky-bucket constraint limits the burstiness of the arrivals,

which in turn enables us to upper-bound the difference betweenxi and�iwi; with high probability, by a large

enough constant. Hence, with probability greater than(1� Æ); we have�ixi[k℄�K � wi[k℄ � �ixi[k℄ +K 8i; k;
for appropriate values off�ig andK: Then, we havehi(�ixi[k℄�K) � hi(wi[k℄) � hi(�ixi[k℄ +K) 8i; k:

If we definefi(x) := hi(�ix); and assume thatffi(�)g satisfies (3), then the previous set of inequalities

holds. Then it is easy to see thatfhi(�)g of the formhi(w) := exp(w�i) 8�i 2 [0:5; 1) satisfies (20).

5 Simulations

In this section, the performance of the class of scheduling policies described in Section 2 is illustrated through

simulations. For ease of exposition, all the simulations consider the case of two users.

Experiment 1: In this experiment, we illustrate the effect of using different sets of functionsffi(x)g on the

queue length evolution of the system. The average arrival rates to the two queues are�1 = 50 and�2 = 50: The

channel is in one of five states and the achievable rates�1s and�2s for the two queues when the channel is in

States satisfy the following equation: �21s + �22s � rsq�21 + �22:
The values forrs were chosen to be0:3; 0:7; 1; 1:3 and1:7: The channel state process is a discrete-time Markov

chain, such that, given that the Markov chain is in a particular state, the probability of a transition to any other

state (including itself) is0:2: The number of arrivals to each queue in each time slot has a Poisson distribution.

The arrivals to the two queues are independent from time slotto slot, and are independent of each other and of

the channel state process.

The functions we used in the simulations are of the formfi(xi) = (Kixi)�: Using functions of this form,

the queue length evolutions are illustrated in Figure 3. Observe that as� increases, the queue length vector gets

closer to the lineK1x1 = K2x2 from any initial condition, after which it stays around it and moves toward the

origin. Such a behavior empirically shows that we can choosethe functionsffi(�)g so that priorities may be

assigned to different queues without sacrificing stability. Moreover, this analysis justifies the fairness property

inherent in the policy, again through empirical methods. Wenote that the rule in [13] drives the system to the

line where theKixi for all the users are equal and is shown to be pathwise optimalin [12].
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Figure 3: Queue length evolutions in the stochastic model.

Experiment 2: In this experiment, the channel setting is kept the same as inExperiment 1, but the arrivals

to both of the queues are chosen to be independent, Bernoullidistributed random variables having mean�i for

Queuei with a peak value of500 packets per slot. In the case of such bursty arrivals, this experiment compares

the performance of two queue length update mechanisms:� periodically updating the queue length information (we refer to this policy as thePeriodic Update Policy)

and� updating it either when the number of arrivals exceeds a certain limit since the last update or if the time

since the last update has exceeded a threshold (we refer to this policy as theEnhanced Update Policy).

The stability analysis of such systems was done in Section 4.1.

In the Periodic update policy, the values of the queue lengths are updated once in every200 slots in our

simulations. When the arrivals are bursty, such a strategy does not track the queue length values very closely.

Even though, we have proved that the system will be stable in the mean, the packets might experience large

delays.

On the other hand, if we instead use the Enhanced update strategy, which guarantees that the queue length

information is updated at least once in every200 slots and also whenever current queue length differs from the

most recent update by more than a certain threshold (50 in our example), then we get better performance under a

bursty traffic, since we can track the actual queue length values more closely.

We note that the average achievable rate region is a quarter circle of radius50: We definetraffic intensityto be

the ratio
p�21 + �22=50: Figure 4 examines the effect of varying the traffic intensityfor the two update policies,

where the sampling time for the periodic update policy and the bound for the threshold update policy are both

taken to be50: It is seen that under heavy load, the Enhanced update policy yields much better average delay

performance.
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Figure 4: Delay characteristics of the two queue length update strategies defined in Experiment 2, with varying

load.

Experiment 3: In this experiment, our goal is to study the ability of our class of policies to minimize buffer

overflow. For this purpose, we consider the following measure of performance:P (x1 > B1) + P (x2 > B2);
whereB1 andB2 are both taken to be5000: In other words, the objective is the sum of the overflow probabilities

in the two queues. We wish to study the impact of the choice offfi(�)g on the above performance measure.

We use the following heuristic to chooseffi(�)g: From Markov’s inequality, we haveP (xi > Bi) � gi(xi=Bi)gi(1)
for any positive, increasing functiongi(�): Since we do not have expressions for the overflow probability, we

choose functionsffi(�)g that we expect would minimize the above upper bounds on the overflow probability. To

do this, we choosefi(xi) = g0i(xi): The heuristic behind this is that, in the fluid model (see proof of Theorem 1

in the Appendix), at each instant, we attempt to minimize thetime derivative of
Pi gi(xi): Thus, it is natural to

chooseffi(�)g to be the derivatives of the upper bound expressions.

1. The first policy chooses~� such that nXi=1 �i xiB2i
is maximized over all~� within the current achievable rate region. This corresponds togi(xi) = (xi=Bi)2:

2. The second policy chooses~� such that nXi=1 �i exp( xiBi )0:5
is maximized. This corresponds to gi(xi) = 1Bi Z xi0 epydy:
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3. For comparison, we also study the performance of theEXP �Q rule which was shown to be throughput-

optimal in [13], and has recently been shown to be pathwise optimal in the heavy traffic regime [12]. This

policy chooses~� such that nXi=1 �ie0BB� xiBi1+s 1n� x1B1 + x2B2 +:::+ xnBn �1CCA
is maximized over all~� within the current achievable rate region.

The channel state process is allowed to vary among five equiprobable states as in Experiments 1 and 2. The

initial queue length values are chosen as(x1[0℄; x2[0℄) = (1000; 1000): Note that this choice is arbitrary and

we ran the simulations for10 million iterations so that the transient effects will be negligible. The arrival rates

are chosen as(�1; �2) = (50; 50): In Figure 5, the performance of the three policies are compared as a function

of traffic intensity. The range of traffic intensities for which the fraction of overflow duration is on the order

of 10�3 to 10�2 is shown in the figure. It can be seen that with increasing traffic intensity, the second policy,

which uses an exponential function to determine the rates, enables a10% to 20% reduction in the overflow

probability compared to the first policy. Somewhat surprisingly, the second policy has a5% to 10% smaller

overflow probability compared to the EXP-Q rule. Even thoughthe EXP-Q has been proved to be pathwise

optimal in [12], it is an asymptotic result in the heavy-traffic regime and so it is quite possible that another scheme

could perform slightly better at traffic intensities withinthe boundary of the capacity region. This illustrates the

fact that by suitably choosing of functionsfi(xi); system performance can be improved. However, we do not

have a theoretical handle on how thesefi(xi) should be chosen given a requirement on the overflow probability.

This is a subject of future research.
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Figure 6 shows the effect of increasing the burstiness of thearrivals on the overflows of the two policies.

We increase the burstiness by increasing the peak value,M , of the Bernoulli arrivals while keeping the mean
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unchanged. Although the figure is plotted for the traffic intensity of 0:88; it is representative of other traffic

intensities. Again, the exponential function gives a better performance than the linear function.

6 Conclusions

We have presented conditions on scheduling policies that guarantee stability for a large class of arrival and

channel models. We have shown that the conditions are satisfied for a variety of policies that use probabilistic,

periodic or otherwise scheduled queue length updates, policies that result in computational reduction and policies

that use head-of-the-line waiting times. A line of future research would be the study of the interaction of such

scheduling mechanisms with congestion control. Currently, we have assumed that the mean arrival rates lies

within the achievable rate region. Congestion control naturally provides a mechanism to move the mean arrival

rates within the achievable rate region. Thus, it would be natural to study the combination of scheduling and

congestion control.

7 Appendix: Proofs

7.1 Proof of Claim 1 in Section 2.4

Note that solving the maximization in (7) is equivalent tomaxf~�2SjgJj=1 NXi=1 fi(xi) JXj=1 �j�i = maxf~�2SjgJj=1 JXj=1 �j NXi=1 fi(xi)�i� JXj=1 �j max~�(j)2Sj NXi=1 fi(xi)�i(j)� 11� � JXj=1 �j NXi=1 fi(xi)�i(j):
But ~�� 2 �S and hence the previous upper bound is in fact achievable by~��: �

7.2 Proof of Theorem 1

The stability of the class of scheduling policies is proved in several steps. We first consider a continuous-time

model with constant arrival rates and a deterministic channel, and show that the system evolves towards a closed

region around the origin in the state space (i.e., the space of queue length vectors). As we will see, this suggests a

natural Lyapunov function to analyze the stability of the original discrete-time stochastic system. However, before

we consider the stochastic system, we study a deterministicdiscrete-time system and show that the Lyapunov

function decreases, except in a bounded region around the origin of the state space. Then, we consider the

evolution of the Lyapunov function at time instants that areM steps apart, for some largeM: This allows us
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to use law-of-large-numbers type assumptions to view this system as being nearly deterministic and apply the

results of the deterministic model to complete the proof of stability.

7.2.1 Deterministic model of the system

In this subsection, we assume that the arrival process to theith queue is deterministic and constant at each time

slot, with the constant equal to the mean,�i; of the corresponding stochastic arrival processes,ai[k℄: Further, the

evolution of each of the queues is assumed to bexi[k + 1℄ = xi[k℄ + �i � ��i[k℄ + ui[k℄; (21)

where~��[k℄ = ~��(~x[k℄); ~��(~x[k℄) := JXj=1 �j~�(j; ~x[k℄) andui[k℄ is an upper-bounded, positive quantity, which

denotes the wasted service provided to theith queue. Thus,~��(~x[k℄) can be interpreted as the average service

provided to Queuei when the queue state is~x[k℄; where the averaging is performed over the channel state

process. In the following subsection, we state two lemmas, which will be used in the proof of Theorem 1.

Continuous-time model

In this model, time is no longer discrete, but is continuous,and the evolution of the queue lengths is governed

by the following differential equation_xi(t) = ( (�i � ��i(t)); xi(t) > 0(�i � ��i(t))+; xi(t) = 0 i = 1; 2; : : : ; N: (22)

Using the above facts, we will now show that we can find a Lyapunov function for the system (22), such that its

derivative is negative.

Lemma 1. Suppose at any time instantt; the service rate vector~�(t) is chosen such that it satisfiesNXi=1 fi(xi(t))�i(t) � (1� �)max~�2 �S NXi=1 fi(xi(t))�i;
where an upper bound on the parameter� is provided in the proof of this lemma. Consider the following Lyapunov

function: V (~x) = NXi=1 gi(xi); (23)

whereg0i(x) = fi(x): Then for someÆ > 0; we have_V (~x) � �jj~f(~x)jj2Æ; (24)

holding for all~x:
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Proof:

Consider _V (~x) = NXi=1 fi(xi)(�i � ��i): (25)

Let us denotejj~f(~x)jj2 := ( NXi=1 f2i (xi))1=2 and defineos(�i) = fi(xi)jj~f(~x)jj2 : Then using (4), (25) can be rewrit-

ten as _V (~x) = jj~f(~x)jj2 NXi=1 os(�i)�i � NXi=1 os(�i)��i!� jj~f(~x)jj20BBBB� NXi=1 os(�i)�i| {z }=:K� � NXi=1 os(�i)~�i| {z }=:K~� +� NXi=1 os(�i)~�i1CCCCA (26)

where we define ~~� = argmax~�2 �S NXi=1 fi(xi)�i = argmax~�2 �S NXi=1 os(�i)�i (27)

sincejj~f(~x)jj2 � 0 is constant for a fixed~x: Let us consider the expression in (26). The maximization amounts

to finding the point on the boundary of�S at which a line with a certain slope (determined by~�) is tangential to

the boundary. Note that since~� is not on the boundary, any two lines with the same slope such that one passes

through(�1; � � � ; �N ) and the other is tangent to the boundary of�S, will have a difference of at leastÆj > 0 in

its intercept with thejth axis. Choose� := min(Æ1; � � � ; ÆN ) > 0.

If �i = �2 , thenK� = K~� = 0: So consider any other indexj such that�j < �2 ; which impliesos(�j) � j
for somej > 0: Define� = max(1; � � � ; N ) > 0: Then thejth intercepts are K�os(�j) and K~�os(�j) and we can

write K� �K~� � ��maxj os(�j) � ��� := �2Æ:
Hence we can conclude that if� < ÆN�̂ ; then we have_V (~x) � jj~f(~x)jj2(�2Æ + �N�̂) � �Æjj~f(~x)jj2: (28)�

In what follows, we will use the above Lyapunov function to first show the stability of the deterministic,

discrete-time model and to later show that the original stochastic system is stable.

Discrete-time model

Using the result of Lemma 1, we will now show that the Lyapunovfunction (23) applied to the system

described by (21) has a negative drift outside a bounded region.
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Lemma 2. Consider any policy that satisfies Property 1. When such a policy is applied to the discrete-time

system (21) with constant arrivals and time-invariant channel, for sufficiently largeM; theM -step drift of the

Lyapunov functionV satisfies the following inequality:E h�V (M)(~x[k℄)i � �M�M jj~f(~x[k℄)jj2I~x[k℄2B(M)[k℄ +K(M)[k℄I~x[k℄2B(M)[k℄; (29)

for some�M > 0; where�V (M)(~x[k℄) := V (~x[k+M ℄)�V (~x[k℄); B(M) is a bounded region around the origin

andK(M) is a finite constant, both dependent on~x[k℄:
Proof: �V (1)(~x[k℄) := V (~x[k + 1℄)� V (~x[k℄)= NXi=1 fi(yi[k℄)(�i � ��i[k℄ + ui[k℄);
whereyi[k℄ lies betweenxi[k℄ andxi[k + 1℄ from Taylor’s theorem. Then we get,�V (1)(~x[k℄) = NXi=1 fi(yi[k℄)(�i � ��i[k℄) (30)+ NXi=1 fi(yi[k℄)ui[k℄: (31)

For (31) observe that ifxi[k℄ > �̂, thenui[k℄ = 0 and ifxi[k℄ � �̂, thenui[k℄ � �̂: Hence, using the fact thatfi
is nondecreasing, andyi[k℄ � xi[k℄ + �i; we getNXi=1 fi(yi[k℄)ui[k℄ � NXi=1 fi(�i + �̂)�̂ =: C1 <1:
Note that (30) can be bounded asNXi=1 fi(yi[k℄)(�i � ��i[k℄) � NXi=1 fi(xi[k℄)(�i � ��i[k℄) (32)+ NXi=1 jfi(yi[k℄) � fi(xi[k℄)jj�i � ��i[k℄j: (33)

To upper-bound (32), we will make use of Lemma 1. Note that (32) is exactly in the same form as (25), except

that in this case with probability�; (24) may not hold. However, by Property 1,� can be chosen small enough by

makingM large. Hence, we can upper-bound (32) by� Æ2 jj~f(~x[k℄)jj2:
Due to the properties offfi(�)g; (33) can be upper-bounded byjj~f(~x)jj2 outside a bounded, closed region.

Hence, by choosing�1 := Æ2 �  > 0; we get the following resultE h�V (1)(~x[k℄)i � ��1jj~f(~x[k℄)jj2I~x[k℄2B(1)[k℄ +K(1)[k℄I~x[k℄2B(1)[k℄; (34)
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whereIA denotes the indicator function of the event A,B(1)[k℄ is the closed and bounded region around the

origin andK(1)[k℄ <1 is appropriately chosen.

Next we extend the previous analysis to examine the M-step driftE h�V (M)(~x[k℄)i = E [V (~x[k +M ℄)� V (~x[k℄)℄= M�1Xi=0 E h�V (1)(~x[k + i℄)i� M�1Xi=0 h��1jj~f(~x[k + i℄)jj2I~x[k+i℄2B(1)[k+i℄ +K(1)[k℄I~x[k+i℄2B(1)[k+i℄i ; (35)

which follows from (34). We can write (35) asE h�V (M)(~x[k℄)i � ��1 M�1Xi=0 jj~f(~x[k + i℄)jj2!I~x[k℄2B(M)[k℄ +K(M)[k℄I~x[k℄2B(M)[k℄; (36)

whereB(M)[k℄; andK(M)[k℄ <1 areM�step equivalents ofB(1)[k℄; andK(1)[k℄ <1:
Now, consider anyj 2 f1; � � � ; Ng andn 2 f0; � � � ;M � 1g: Due to the property off given by (3), for anyn 2 (0; 1); we have fj(xj[k + n℄) � fj(xj [k℄� n��)= (1� n)fj(xj [k℄);

for xj[k℄ large enough. Taking squares, summing overj; and taking square roots yieldsjj~f(~x[k℄)jj2 = vuut NXj=1 f2j (xj [k℄)� 11� n jj~f(~x[k + n℄)jj2:
Let us define := maxn2f0;���;M�1g n < 1; then we can easily writeM�1Xi=0 jj~f(~x[k + i℄)jj2 � M(1� )jj~f (~x[k℄)jj2:
Hence, if we denote�M := �1(1� ); we can upper-bound theM -step drift asE h�V (M)(~x[k℄)i � �M�M jj~f(~x[k℄)jj2I~x[k℄2B(M)[k℄ +K(M)[k℄I~x[k℄2B(M)[k℄; (37)

with �M > 0: �
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7.2.2 Stochastic model

In the following proof, we will make use of the result of Section 7.2.1 even though the arrivals are now stochastic

processes and the channel state is time-varying. To facilitate this, we denote the vectors of queue length, allocated

service rates and the unused services, at any timen; under the deterministic model by~xd[n℄; ~��d[n℄; and~u[n℄,
respectively. Let~xd[k℄ = ~x:Next, we write the M-step mean drift for the stochastic model. Recall that, in Section

7.2.1, we obtained an expression for the drift of the function V assuming that the arrivals are constant and the

service provided at each time instant is an average (over thechannel states) of the service that would have been

provided had the channel been in a particular state. Now, forthe stochastic arrival and channel model,�W (M)(~x[k℄) := E hV (~x[k +M ℄)� V (~xd[k +M ℄) j ~x[k℄ = ~xi (38)+E hV (~xd[k +M ℄)� V (~x[k℄) j ~x[k℄ = ~xi : (39)

Observe that (39) can be upper-bounded using (29). Next, we consider (38). Note that we can writexi[k +M ℄ = xi[k℄ + k+M�1Xn=k ai[n℄| {z }=:Ai(k;M) � k+M�1Xn=k �i(s[n℄; ~x[n℄)| {z }=:Ci(k;M) + k+M�1Xn=k ui[n℄| {z }=:Ui(k;M)xdi [k +M ℄ = xi[k℄ +M�i � k+M�1Xn=k JXj=1 �j�i(j; ~xd[n℄)| {z }=:Cdi (k;M) + k+M�1Xn=k udi [n℄| {z }=:Udi (k;M) :
Hence, we can write��;i := xi[k +M ℄� xdi [k +M ℄= Ai(k;M) �M�i| {z }=:�Ai +Cdi (k;M) � Ci(k;M)| {z }=:�Ci +Ui(k;M) � Udi (k;M)| {z }=:�Ui :
Therefore, (38) can be written asE hV (~x[k +M ℄)� V (~xd[k +M ℄) j ~x[k℄ = ~xi = E " NXi=1 gi(xi[k +M ℄)� gi(xdi [k +M ℄) j ~x[k℄ = ~x#= NXi=1 E [fi(zi(k;M))��;i j ~x[k℄ = ~x℄ ;
which can be further written as= NXi=1 E [fi(zi(k;M))(Ai(k;M) �M�i) j ~x[k℄ = ~x℄ (40)+ NXi=1 E hfi(zi(k;M))(Cdi (k;M) � Ci(k;M)) j ~x[k℄ = ~xi (41)+ NXi=1 E hfi(zi(k;M))(Ui(k;M)� Udi (k;M)) j ~x[k℄ = ~xi (42)
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wherezi(k;M) := �xdi [k+M ℄ + (1��)xi[k+M ℄ for some� 2 [0; 1℄: To upper-bound the above expression,

we will consider two events, one when the arrivals to each of the queues are upper-bounded by a finite valueA
and the other, the complement of this event. Let us denote thefirst event byA = fai[n℄ � A : 1 � i � N; k � n � (k +M � 1)g:
First, let us concentrate on (40). In the case when the eventA occurs, we can upper-boundzi(k;M) aszi(k;M) � xi[k℄ + ��iM + (1� �)AM:
Then we can upper-bound (40) as� NXi=1 E [jfi(xi[k℄ + ��iM + (1� �)AM)j jAi(k;M) �M�ij j ~x[k℄ = ~x℄ :
For any fixedM; and�1 > 0 it is possible to find anXi such that for allxi > Xi; we havefi(xi + ��iM + (1� �)AM) � (1 + �1)fi(xi):
Next, we defineE := fi : xi[k℄ > Xig; which enables us to further upper-bound (40) as� (1 + �1)Xi2E fi(xi[k℄)ME �����Ai(k;M)M � �i���� j ~x[k℄ = ~x�+Xi2E fi(Xi)ME �����Ai(k;M)M � �i���� j ~x[k℄ = ~x� :
Now, using Assumption(3) in Section 2.3, for any�2 > 0; we can find a large enoughM such thatE �����Ai(k;M)M � �i���� j ~x[k℄ = ~x� < �2 8i:
This enables us to obtainNXi=1 E [fi(zi(k;M))(Ai(k;M) �M�i)IA j ~x[k℄ = ~x℄ �  (1 + �1)M NXi=1 fi(xi[k℄) +H1! �2; (43)

whereH1 := Xi2E fi(Xi) <1:
If instead the eventA occurs, then Assumption(4) in Section 2.3 implies that for any�3 > 0; we can findA

large enough so thatNXi=1 E [fi(zi(k;M))(Ai(k;M) �M�i)IA j ~x[k℄ = ~x℄ < �3: (44)

Secondly, we concentrate on (41). First we writeNXi=1 E [fi(zi(k;M))�Ci j ~x[k℄ = ~x℄ = NXi=1 E hIAfi(zi(k;M))(Cdi (k;M)� Ci(k;M)) j ~x[k℄ = ~xi (45)+ NXi=1 E hIAfi(zi(k;M))(Cdi (k;M)� Ci(k;M)) j ~x[k℄ = ~xi :(46)
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Expand (45) as follows.NXi=1 E[IAfi(zi(k;M)) (k+M�1Xn=k f JXj=1 �j�i(j; ~x[n℄)� JXj=1 �j�i(j; ~x[k℄)JXj=1 �j�i(j; ~x[k℄)� �i(s[n℄; ~x[k℄)�i(s[n℄; ~x[k℄)� �i(s[n℄; ~x[n℄) g ) j ~x[k℄ = ~x℄;
which can be further bounded as� NXi=1 E[IAfi(zi(k;M)) k+M�1Xn=k JXj=1 �j(�i(j; ~x[n℄)� �i(j; ~x[k℄)) j ~x[k℄ = ~x℄ (47)+ NXi=1 E[IAfi(zi(k;M))M ������ JXj=1 �i(j; ~x[k℄) �j � k+M�1Xn=k 1M Is[n℄=j!������ j ~x[k℄ = ~x℄ (48)+ NXi=1 E[IAfi(zi(k;M)) k+M�1Xn=k (�i(s[n℄; ~x[k℄)� �i(s[n℄; ~x[n℄)) j ~x[k℄ = ~x℄; (49)

Note that, under the eventA; zi(k;M) 2 [xi[k℄�M�̂; xi[k℄ +��iM + (1��)AM ℄; for some� 2 [0; 1℄: Then

for any givenM;A and� > 0; we can find anXi < 1 such that for anyxi > Xi; we have(1 � �)fi(xi) �fi(yi) � (1 + �)fi(xi):
Define the set of indicesE := fi : xi[k℄ > Xig: Then using Assumption(2) of Section 2.1, along with a

repetition of the argument we had for (40), given any�4 > 0; we can come up with a closed, bounded region,

outside of which we have (48) �  (1 + �)M NXi=1 fi(xi[k℄) +H2! �4;
with H2 < 1: Since (47) and (49) follow the same reasoning, only the latter will be examined in detail. Using

our earlier analysis, given any�5 > 0; it is easy to upper bound the following term:NXi=1 E[IAfi(zi(k;M)) k+M�1Xn=k �i(s[n℄; ~x[k℄) j ~x[k℄ = ~x℄ � (1 + �52M�̂ ) NXi=1 k+M�1Xn=k ffi(xi[k℄)E[IA�i(s[n℄; ~x[k℄) j ~x[k℄ = ~x℄g+H3;
with H3 <1: As for the second term, note that for alli 2 E; we havefi(zi(k;M)) � (1� �52M�̂ )fi(xi[k℄); and

for i 2 E; we havefi(zi(k;M)) � (1 � �52M�̂ )fi(xi[k℄) �H4; with an appropriate choice ofH4 < 1: Hence

we obtain the following lower bound:NXi=1 E[IAfi(zi(k;M)) k+M�1Xn=k �i(s[n℄; ~x[n℄) j ~x[k℄ = ~x℄ � (1� �52 ) NXi=1 k+M�1Xn=k ffi(xi[k℄)E[IA�i(s[n℄; ~x[n℄) j ~x[k℄ = ~x℄g+H5;
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with H5 <1: Putting the last two bounds together, we get the following upper bound on (49):(49) � k+M�1Xn=k E[IA NXi=1 (fi(xi[k℄)�i(s[n℄; ~x[k℄)� fi(xi[k℄)�i(s[n℄; ~x[n℄)) j ~x[k℄ = ~x℄ (50)+ �52M�̂ NXi=1 fi(xi[k℄)E[IA k+M�1Xn=k (�i(s[n℄; ~x[k℄)� �i(s[n℄; ~x[n℄)) j ~x[k℄ = ~x℄ (51)+H6� �5 NXi=1 fi(xi[k℄) +H6 (52)

with H6 bounded, where the last inequality follows by observing that the expectation in (51) is upper-bounded

byM�̂; and, givenM andA; we can find the bounded region around the origin outside of which the expectation

in (50) can be upper-bounded by�52M PNi=1 fi(xi[k℄): Similarly, an upper bound on (47) can be obtained by

choosing the bounded region large enough. Such an argument would yield the following expression(47) � �6 NXi=1 fi(xi[k℄) +H7;
with H7 bounded. Putting all these bounds together, we can upper-bound (45) as(45) � �7M jj~f(~x[k℄)jj2 +H8; (53)

whereH8 is finite. As for (46), we can choose the parameterA large enough so that, due to Assumption(4) of

Section 2.3, it converges to zero.

Thirdly, consider (42) under the eventA: Observe that for any queue, sayi, and any fixedM; the sum of

unused service may be nonzero over a duration ofM slots only ifxi[n℄ < �̂ for somen 2 fk; � � � ; k +M � 1g:
Therefore, ifUi(k;M) > 0; it is easy to see thatfi(zi(k;M)) � fi(�̂ +MA): Similarly,Udi (k;M) > 0 only iffi(zi(k;M)) � fi(�̂ +M�i): Moreover, the cumulative unused service overM slots is upper-bounded byM�̂;
since within each slot, the maximum amount of possible unused service iŝ�: Hence, we can easily upper-bound

(42) under the eventA asNXi=1 E hIAfi(zi(k;M))(Ui(k;M)� Udi (k;M)) j ~x[k℄ = ~xi � M�̂maxi fi(�̂ +MA): (54)

If the eventA occurs then we can write, for any�8 > 0;NXi=1 E hIAfi(zi(k;M))(Ui(k;M)� Udi (k;M)) j ~x[k℄ = ~xi � M�̂E [IAfi(zi(k;M)) j ~x[k℄ = ~x℄< M�8; (55)

with A < 1 chosen to be large enough, due to Assumption(4) of Section 2.3. Putting (54) and (55) together,

(42) can be upper-bounded as (42) �M�8 +H9 (56)
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for any�8 > 0 and withH9 <1 chosen appropriately.

Now, combining (43), (44), (53) and (56), for any� > 0, we can come up with a closed, bounded region

around the origin outside of which we haveE hV (~x[k +M ℄)� V (~xd[k +M ℄) j ~x[k℄ = ~xi � M�jj~f(~x[k℄)jj2 +H;
for someH < 1 chosen appropriately. So if we choose�M � � =: � > 0; then we can come up with a closed

region, denoted byG(M)[k℄; outside of which~x[k℄ is sufficiently large, and�W (M)(~x[k℄) � �M�jj~f(~x[k℄)jj2I~x[k℄2G(M)[k℄ +K(M)I~x[k℄2G(M)[k℄; (57)

with an appropriate choice ofK(M) <1: We can also write the previous expression asE [W (~x[k +M ℄)�W (~x[k℄) j ~x[k℄ = ~x℄ � �M�jj~f(~x[k℄)jj2I~x[k℄2G(M)[k℄ +K(M):
Taking expectations on both sides, we getE[W (~x[k +M ℄)℄�E[W (~x[k℄)℄ � �M�E hjj~f(~x[k℄)jj2I~x[k℄2G(M)[k℄i+K(M):
Then, for any positive integerp, we haveE[W (~x[(p� 1)M ℄)℄ �E[W (~x[0℄)℄ � �M� p�1Xk=0E hjj~f(~x[kM ℄)jj2I~x[kM ℄2G(M)[kM ℄i+ pK(M):
SinceE[W (~x[(p� 1)M ℄)℄ > 0, we have�E[W (~x[0℄)℄ � �M� p�1Xk=0E hjj~f(~x[kM ℄)jj2I~x[kM ℄2G(M)[kM ℄i+ pK(M):
Re-arranging the terms, we getp�1Xk=0E hjj~f(~x[kM ℄)jj2I~x[kM ℄2G(M)[kM ℄i � E[W (~x[0℄)℄M� + pK(M)M� :
Now observe thatE hjj~f(~x[kM ℄)jj2I~x[0℄2G(M)[kM ℄i <1 sinceG(M) represents a closed bounded region around

the origin andjj~f jj2 is bounded is inside such a region. This allows us to writep�1Xk=0E hjj~f(~x[kM ℄)jj2i � E[W (~x[0℄)℄M� + pT(M)M� ;
for some finiteT(M): Finally, dividing both sides byp and lettingp!1, we obtainlim supp!1 1p p�1Xk=0E hjj~f(~x[k℄)jj2i � T(M)M� =: �l <1; (58)

as claimed in the theorem statement. �
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