
1

Low-Complexity Optimal Scheduling over
Time-Correlated Fading Channels with

ARQ Feedback
Wenzhuo Ouyang, Atilla Eryilmaz, and Ness B. Shroff

Abstract—We investigate the downlink scheduling problem
under Markovian ON/OFF fading channels, where the instan-
taneous channel state information is not directly accessible,
but is revealed via ARQ-type feedback. The scheduler can
exploit the temporal correlation/channel memory inherent in the
Markovian channels to improve network performance. However,
designing low-complexity and throughput-optimal algorithms
under temporal correlation is a challenging problem. In this
paper, we find that under an average number of transmissions
constraint, a low-complexity index policy is throughput-optimal.
The policy uses Whittle’s index value, which was previously used
to capture opportunistic scheduling under temporally correlated
channels. Our results build on the interesting finding that,
under the intricate queue length and channel memory evolutions,
the importance of scheduling a user is captured by a simple
multiplication of its queue length and Whittle’s index value. The
proposed queue-based index policy has provably low complexity.
Numerical results show that significant throughput gains can be
realized by exploiting the channel memory using the proposed
low-complexity policy.

Index Terms—Wireless downlink, Scheduling algorithm, Time-
correlated fading channels, Whittle’s index, Optimization.

I. INTRODUCTION

In wireless networks with randomly fluctuating channels,
intelligently scheduling users is critical for achieving high
network efficiency. Under the assumption that the scheduler
possesses accurate instantaneous Channel State Information
(CSI), many sophisticated scheduling algorithms have been
proposed and extensively studied (e.g., [2]-[5]).

In practice, accurate instantaneous CSI is difficult to obtain
at the scheduler. Hence, in this work we consider the important
scenario where the instantaneous CSI is not directly accessible
to the scheduler, but is instead revealed through ARQ-type
feedback only after each scheduled data transmission. Many
works have focused on scheduling algorithms design with im-
perfect CSI, where the channel state is considered independent
and identically distributed (i.i.d.) processes across time (e.g.,
[10]-[13]). On the other hand, although the i.i.d. channel model
facilitates more tractable analysis, it does not capture the
time-correlation of the fading channels. ARQ-based protocols
over time-correlated channels are studied in [6]-[9] under the
scenarios where user scheduling is not required.

The time-correlation or channel memory inherent in the
fading channels can be exploited by the scheduler for more in-
formed decisions, and hence to obtain large throughput/utility
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gains (e.g., [14]-[26]). Under imperfect CSI, channel memory,
and limited network resources, designing efficient scheduling
schemes is highly challenging. This is because the sched-
uler needs to optimally balance the intricate ‘exploitation-
exploration tradeoff’, i.e., to decide whether to exploit the
channels with more up-to-date CSI, or to explore the channels
with outdated CSI.

In this work, we study downlink scheduling with imperfect
CSI and time correlated channels where, differing from works
[14]-[18] in this domain, the packets destined to each user
randomly arrive in time, and are stored in a corresponding
observable data queue before transmission. As a result, the
queue lengths randomly evolve with time. Our goal is to
design scheduling algorithm that is throughput optimal, i.e.,
no scheduling policy can ensure system stability for arrival
rates that are not supportable by the proposed scheduler. Con-
sidering queue lengths along with imperfect CSI and time cor-
relation is highly challenging because to develop throughput-
optimal scheduler requires a complex characterization of the
interplay between user scheduling, channel memory evolution
and queue evolution. Traditional techniques, which assume
known service rate (e.g.[19][20]), or assume i.i.d. channel
state process and are based on minimizing instantaneous
Lyapunov drift in each slot (e.g., scheduling user with maximal
instantaneous product of queue length and transmission rate
[2][3]), does not apply in this context.

Under this model, because of the aforementioned complica-
tions, traditional Dynamic Programming based approaches can
be used for designing scheduling schemes, but are intractable
due to the well-known ‘curse of dimensionality’, where the
computational complexity grows exponentially with the net-
work size. In [21][22], simple round-robin based scheduling
policies are shown to possess the throughput-optimality prop-
erty. The optimality of greedy scheduling algorithm are proven
in [23][24]. However, these schemes [21]-[24] are only optimal
in the regime where users have identical ON/OFF Markovian
channel statistics. In [25][26], throughput-optimal frame-based
policies are proposed. These policies rely on solving a Linear
Programming in each frame, which is hindered by the curse
of dimensionality where the computational complexity grows
exponentially with the network size.

In this work, we study throughput-optimal downlink
scheduling under imperfect CSI over heterogeneous Marko-
vian fading channels. We consider time-correlation by mod-
eling the fading channel as an ‘ON/OFF’ Markov chain.
Differing from the previous works [21]-[26] that consider
scheduling problems under strict interference constraints (e.g.,
only one user can be scheduled at each time slot), we assume
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that each user occupies a dedicated channel, i.e., all users can
transmit simultaneously, but the long-term average number
of transmissions is limited. In this setup, we show that a
low complexity scheduling policy is throughput optimal. Such
a constraint on long-term average number of transmissions
can be used to limit the long-term energy consumption. An
example to limit the energy consumption is the green cellular
networks (e.g., [27]-[29]). It is estimated that the cellular
base stations consume 4.5 GW of power globally, which
corresponds to more than 40 million metric tons of CO2

emission and over $10 billion electricity bill annually [27][28].
With energy expenditure rising by 15-20% each year, an
important objective in green cellular networks design is to
reduce the long-run average number of data transmissions to
decrease energy consumption [28]. Therefore, it is of great
interest to understand the relationship between the achievable
throughput region and the constraint on the long-term average
number of transmissions. The results proposed in this work can
be applied to green cellular networks for throughput-optimal
scheduling under imperfect CSI and the long-term average
energy constraint. Our contributions are as follows:

• Under the constraint on the long-term average number
of transmissions, we propose a low-complexity throughput-
optimal policy. The policy operates over separate time frames
and, in each time frame, tries to maximize a queue-weighted
average sum-throughput. We are able to conduct a frame-based
Lyapunov analysis to this policy and prove its optimality by
showing that it minimizes the average Lyapunov drift over
each frame. Compared to the traditional approaches for i.i.d.
channels based on minimizing instantaneous Lyapunov drift
each slot, the frame-based approach is useful for analysis in
scenarios with time-correlated channels. The per-frame com-
putational complexity is at most O((2τ + 1)N log(2τ + 1)N)
with the number of users N , where τ is a control parameter
independent of N . Therefore, the policy does not suffer from
the curse of dimensionality.

• The proposed policy builds on Whittle’s index analysis of
Restless Multi-armed Bandit Problem (RMBP) [31], where
Whittle’s index value is used to measure the importance of
scheduling a user under the time-correlated channel [16].
Whittle’s index policies are known to have optimality proper-
ties in various RMBP processes and have been shown to have
low-complexity (e.g., [15][19][20]). We find that, interestingly,
under the coupled queue length and channel memory evolu-
tion, the importance of scheduling a user is measured by a
simple multiplication of the queue length and Whittle’s index
value that is given in closed-form. This property is essential
for the low-complexity nature of our policy.

In this paper, we have further improved the policy pro-
posed in the conference version [1]. in [1], the policy was
implemented over a fictitious truncated state space. We now
implement the policy over actual untruncated state space. We
have additionally studied, via various numerical experiments,
the throughput and delay performances of the proposed policy
and compare the proposed policy to other policies.
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Fig. 1: Two state Markov Chain model.

II. SYSTEM MODEL

A. Downlink Scheduling Problem

We consider a time-slotted wireless downlink network with
one base station and N users, where each user i occupies
a dedicated wireless channel. The channel state of user i,
denoted by Ci[t] at slot t, evolves according to an ON/OFF
Markov chain across time slots within the state space S =
{0, 1}, independently across channels. When the channel is in
state ‘1’, one packet can be successfully transmitted, otherwise
no packet can be delivered. As shown in Fig. 1, the channel
state evolution is represented by the transition probabilities

pi11 := Pr
(
Ci[t]=1

∣∣Ci[t−1]=1
)
,

pi01 := Pr
(
Ci[t]=1

∣∣Ci[t−1]=0
)
.

We assume that the Markovian channels are positively
correlated, i.e., pi11 > pi01 for i=1, 2, · · · , N . This assumption
is commonly made in this field (e.g., [16][21][25][32]), which
means that auto-correlation of the channel state process is non-
negative [17]. This means, roughly speaking, that the Markov
channel is more likely to stay in its state than changing to
another state, which captures the typical slow fading or fast
transmission scenarios. For ease of presentation, we ignore the
trivial case when pi11 = 1 or pi01 = 0, i ∈ {1, · · · , N}.

At the beginning of each time slot, the scheduler chooses
users for data transmission. The scheduling decisions are
made without the exact knowledge of the channel state in
the current slot. Instead, the accurate ON/OFF channel state
of a scheduled user is revealed via ACK/NACK feedback
from the receiver, only at the end of each slot following data
transmission.

We consider the class Φ of (possibly non-stationary)
scheduling policies that make scheduling decisions based on
the history of observed channel states, arrival processes, and
scheduling decisions. Under the aforementioned restrictions
on average energy consumption, the scheduling schemes are
subject to the constraint that the long-term average number of
scheduled transmissions is under M ,

lim sup
T→∞

1

T
E
[ T−1∑
t=0

N∑
i=1

aφi [t]
]
≤M, (1)

where aφi [t] ∈ {0, 1} indicates whether user i is scheduled at
slot t under policy φ ∈ Φ, and M ≤ N .

Data packets destined for different users are stored in
separate queues before transmission. The queue length for user
i is denoted by qi[t] at slot t. We assume that the packet arrivals
for the i-th user form an i.i.d. process Ai[t] with mean λi and
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Fig. 2: Belief value evolution, pi11 = 0.8, pi01 = 0.2, bis = 0.5.

a bounded second moment. Hence, the i-th data queue evolves
as qi[t+1]= max{0, qi[t]−ai[t]·Ci[t]}+Ai[t].

B. Belief Value Evolution

The scheduler maintains a belief value πi[t] for each channel
i, defined as the probability of channel i being in state 1 at
the beginning of t-th slot conditioned on the past channel state
observations. The belief values are hence updated according to
the scheduling decisions and accurate channel state feedbacks,

πi[t+ 1] =


pi11 if ai[t] = 1 and Ci[t] = 1,
pi01 if ai[t] = 1 and Ci[t] = 0,
Qi(πi[t]) if ai[t] = 0,

(2)

where Qi(x)=xpi11+(1−x)pi01 is the belief evolution operator
when user i is not scheduled in the current slot. In our
setup, the belief values are known to be sufficient statistics
to represent the past scheduling decisions and channel state
feedback [33]. In the meanwhile, the belief value πi[t] is the
expected throughput for user i if it is scheduled in slot t.

For the i-th user, we use bic,h to denote the state of its
belief value when the most recent channel state was observed
h time slots ago and was in state c ∈ {0, 1}. The closed form
expression of bic,h can be calculated from (2) and is given as

bi0,h=
pi01−(pi11−pi01)hpi01

1 + pi01 − pi11

, bi1,h=
pi01+(1−pi11)(pi11−pi01)h

1 + pi01 − pi11

.

As depicted in Fig. 2, if the scheduler is never
informed of the i-th user’s channel state, the belief
value monotonically converges to the stationary probability
bis:=p

i
01/(1 + pi01 − pi11) of the channel being in state 1. We

assume that the belief values of all channels are initially set
to their stationary values. It is then clear that, based on (2),
each belief value πi[t] evolves over a countable state space,
denoted by Bi={bis, bic,h : c∈{0, 1}, h∈Z+}.

C. Network Stability Region and Achievable Rate Region

We adopt the following definition of queue stability [3]:
queue i is stable if there exists a limiting stationary distribution
Fi such that limt→∞ P (qi[t] ≤ q) = Fi(q). The network
stability region Λ is defined as the closure of the set of arrival
rate vectors supported by all policies in class Φ that does not
lead to system instability while abiding by the constraint (1).
A policy is called throughput optimal if, for any arrival rate
vector λ within arbitrary ε interior of Λ, i.e., λ + ε1 ∈ Λ,

all queues are stable under the policy and constraint (1) is
satisfied.

In the meanwhile, we define the achievable rate region Γ
as the closure of the set of service rate vectors γ that can be
achieved by all policies, i.e.,

Γ=Cl
{
γ :∃φ ∈ Φ with γi= lim inf

T→∞

1

T
E
[ T−1∑
t=0

πi[t] · aφi [t]
]
,

i = 1, · · · , N, subject to constraint (1)
}
, (3)

where Cl{·} denotes the closure of the set. The rate region is
convex since randomization can be performed among different
policies. The achievable rate region Γ contains the set of the
expected service rate vectors that can be achieved with all the
policies in Φ, in the system with infinitely backlogged queues.

III. OPTIMAL POLICY FOR WEIGHTED SUM-THROUGHPUT
MAXIMIZATION

In this section, we postpone discussion on queue evolu-
tion and consider a simplified problem with infinitely back-
logged queues, and derive the corresponding optimal policy
for weighted sum-throughput maximization. The policy intro-
duced here, which is based on scaling the Whittle’s index
values, is useful to characterize the boundary point of the
achievable rate region Γ, and is also an important part in the
throughput-optimal policy in the next section that stabilizes all
arrival rates within the system stability region Λ – the main
result of the paper.

A. Weighted Sum-throughput Maximization Problem

Consider the following weighted sum-throughput maximiza-
tion problem Ψ(r,M) for a given vector r = (ri)

N
i=1, where

the expected service rate for each user i is scaled by a non-
negative factor ri,

max
φ∈Φ

lim inf
T→∞

1

T
E
[ T−1∑
t=0

N∑
i=1

ri·πi[t]·aφi [t]
]

(4)

s.t. lim sup
T→∞

1

T
E
[ T−1∑
t=0

N∑
i=1

aφi [t]
]
≤M. (5)

The above problem Ψ(r,M) is hence a constrained Partially
Observable Markov Decision Process (CPOMDP) [34][35].

B. Whittle’s Index for Restless Multi-armed Bandit Problem

The problem (4)-(5) appears difficult because of the com-
plex ‘exploitation - exploration’ tradeoff. To tackle this prob-
lem, we study it in the framework of the Restless Multiarmed
Bandit Problem (RMBP) [31] and make use of the associated
Whittle’s indexability analysis. We next give a brief review of
the Whittle’s indices for RMBP.

RMBPs refer to a collection of sequential dynamic resource
allocation problems where several independently evolving
projects compete for service. In each slot, a subset of these
competing projects is served. The state of each project stochas-
tically evolves over time, based on the current state of the
project and on whether the project is served in the slot.
Serving a project brings a reward whose value depends on
its state. Hence, in RMBPs, the controller needs to consider
the fundamental tradeoff between decisions that bring high
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instantaneous rewards, versus those decisions that bring better
future rewards but sacrifices the instantaneous rewards. Solv-
ing RMBPs are known to be PSPACE-hard [30] in general.

Whittle’s index analysis [31] for RMBPs considers the
following virtual system: in each slot, the controller makes
one of the two decisions for each project P : (1) Serve project
P and accrue an immediate reward as a function of its state
which is the same as in the original RMBP. (2) Do not serve
project P and obtain an immediate reward ω for passivity. The
state evolution of the project P is the same as in the original
RMBP, depending on its current state and current action. In
this virtual system, the design goal is to maximize the long-
term expected reward by balancing the ‘reward for serving’
and the ‘subsidy for passivity’ in each slot.

Letting I(ω) denote the set of states of project P in which
the optimal action is to stay passive, the Whittle’s indexability
condition is defined as follows.

Project P is Whittle indexable if the set I(ω) monotonically
increases from ∅ to the state space S of project P , as ω
increases from −∞ to ∞. The RMBP is Whittle indexable
if every project is Whittle indexable.

If Indexability holds, for each state s of a project, the
Whittle’s index W (s) is defined as the infimum of ω in which
it is optimal to stay idle in the ω-subsidized system, i.e.,

W (s) = inf{ω : s ∈ I(ω)}.
Under an average constraint on the number of projects

scheduled per slot, it is known that, upon the satisfaction of
the Indexability condition, an optimal algorithm exists based
on the ‘Whittle’s indices’: activate the projects with large
Whittle’s index value [31].

The RMBP theories and the associated Whittle’s indices
can be used in our downlink scheduling problem. Here, each
downlink user corresponds to a project in the RMBP, with
the associated state being the belief value of its channel.
Correspondingly, the project is considered served if the user is
scheduled for data transmission at a slot. Hence the Whittle’s
index policy is very attractive to provide optimal solutions to
our problem, as we shall elaborate in the rest of the paper.
C. Optimal Policy for Weighted Sum-throughput Maximization

It was shown in that our downlink scheduling problem
is Whittle indexable [18], and, under uniform weight vector
r=1, an optimal policy for problem Ψ(1,M) exists based
on Whittle’s indexability analysis of Restless Multi-armed
Bandit Problem [16]. Specifically, for channel i, a closed form
Whittle’s index value W 1

i (π) is assigned to each belief state
π ∈ Bi. These indices intelligently capture the exploitation-
exploration value to be gained from scheduling the user at the
corresponding belief state [16]. The closed form expression of
the Whittle’s index value W 1

i (π), π ∈ Bi, is given as follows
[16][18],

W 1
i (π)=


(π−Qi(π))(h+1)+Qi(π)

1−pi11+(π−Qi(π))h+Qi(π)
if pi01≤π=bi0,h<b

i
s

pi01
(1−pi11)(1+pi01−pi11)+pi11

if bis ≤ π ≤ pi11

(6)

It was shown that W 1
i (π) monotonically increases with

π and satisfies W 1
i (π) ∈ [0, 1] [16][18]. In the following

lemma, an optimal algorithm is given to the problem Ψ(r,M)
with arbitrary non-negative weight vector r. The proof of the
lemma follows the line of [31] and is re-proven in [40] for
our downlink scheduling scenario.

Lemma 1. There exists an optimal stationary policy φ∗(r,M)
for problem Ψ(r,M) (cf. (4)-(5)), parameterized by a user
index i∗, a threshold ω∗ and a randomization factor ρ∗, such
that
(i) The scheduler maintains an r-weighted index value
W r
i (πi[t]) = ri ·W 1

i (πi[t]) for user i.

(ii) User i is scheduled if W r
i (πi[t])>ω

∗, or if W r
i (πi[t])=ω∗

with i>i∗. User i stays idle if W r
i (πi[t])<ω

∗, or if
W r
i (πi[t])=ω∗ with i<i∗. If W r

i (πi[t])=ω∗ with i = i∗, user
i is scheduled with probability ρ∗.

(iii) The parameters i∗, ω∗ and ρ∗ are such that the long-term
average number of transmissions equals M .

Remarks: Interestingly, by multiplying the Whittle’s index
values W 1

i (πi[t]) with ri, the optimal policy φ∗(1,M) extends
to more general problem Ψ(r,M). This property is important
for designing the throughput-optimal policy in Section IV.

D. Approximate i∗, ω∗ and ρ∗ using State Space Truncation

Note that the parameters i∗, ω∗ and ρ∗ need to be carefully
chosen to satisfy the complementary slackness condition, i.e.,
Lemma 1(iii). While directly finding these parameters may be
difficult, we next introduce an algorithm to derive approximate
values of i∗, ω∗ and ρ∗ based on a fictitious model over
truncated belief state space. This fictitious model facilitates
more tractable design and analysis. More importantly, we
shall show that, when implementing these approximate values
over the original untruncated system, the performance will get
arbitrary close to the optimality.

Recall that the belief value πi[t] evolves over a countable
state space Bi for user i and approaches the stationary value if
the channel is not active for a long time. This motivates us to
consider the following fictitious belief evolution model over
the truncated state space: the belief value of a user is set to its
steady state (i.e., its channel state history is entirely forgotten)
if the corresponding channel has not been scheduled for a long
time, say τ slots. We use πτi [t] to denote this ‘heuristic belief
value’. The evolution of πτi [t] is hence,

πτi [t+ 1] =


pi11 if ai[t] = 1 and Ci[t] = 1,
pi01 if ai[t] = 1 and Ci[t] = 0,
Qi(πi[t]) if ai[t] = 0,

∏τ−1
k=1

(
1−ai[t−k]

)
= 0,

bis if
∏τ−1
k=0

(
1−ai[t−k]

)
= 1.

(7)

We let Bτi denote the truncated state space for the i-th
user, i.e., Bτi ={bis, bic,l : c∈{0, 1}, l=1, 2, · · · , τ} and let
Bτ = [Bτ1 , · · · ,BτN ]. Over the fictitious truncated state space,
we consider the following policy φtruncj,ω,ρ :

Policy φtruncj,ω,ρ over the truncated state space: User i
is scheduled if W r

i (πτi [t])>ω, or if W r
i (πτi [t])=ω∗ with

i>j. User i stays idle if W r
i (πτi [t])<ω, or if W r

i (πτi [t])=ω∗
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with i<j. If W r
i (πτi [t])=ω with i=j, it is scheduled with

probability ρ.

Under this setup, we let the parameter ατi (j, ω, ρ) denote
the long-term expected fraction of time transmitting to user i,
i.e.,

ατi (j, ω, ρ) = lim sup
T→∞

1

T
E
[ T−1∑
t=0

a
φtruncj,ω,ρ

i [t]
]
, (8)

where a
φtruncj,ω,ρ

i [t] ∈ {0, 1} indicates whether user i is scheduled
at time t under policy φtruncj,ω,ρ . The closed-form expression of
ατi (j, ω, ρ) is given by the following lemma. The proof of the
lemma is given in [40].
Lemma 2. Let the value τ0 be

τ0=
⌈
4max

{ 1

− log(pi11−pi01)
,

1

log2(pi11−pi01)
, i=1, · · ·, N

}⌉
. (9)

Over the truncated state space and under policy φtruncj,ω,ρ , if
τ > τ0, the following hold for ατi (j, ω, ρ),

(i) The closed-form expression of ατj (j, ω, ρ) is given by

ατj (j, ω, ρ)

=



ρ(bj0,h−b
j
0,h+1)+1−pj11+bj0,h+1

ρbj0,h+(1−ρ)bj0,h+1+(1−pj11)(h+1−ρ)
if ω=W r

j (bj0,h), h<τ
ρ(bj0,τ−b

j
s)+1−pj11+bjs

ρbj0,τ+(1−ρ)bjs+(1−pj11)(τ+1−ρ)
if ω=W r

j (bj0,τ )

ρ(1−pj11+bjs)

(1+τρ)(1−pj11)+ρbjs
if ω=W r

j (bjs)

0 if ω>W r
j (bjs).

The closed-form expression of ατi (j, ω, ρ), i 6= j is given by

ατi (j, ω, ρ) (10)

=



1−pi11+bi0,h+1

bi0,h+1+(1−pi11)(h+1)
if h<τ , ω=W r

i (bi0,h), i<j
1−pi11+bi0,h

bi0,h+(1−pi11)h
if h≤τ , ω=W r

i (bi0,h), i > j;

or if h≤τ ,W r
i (bi0,h−1)<ω<W r

i (bi0,h)
1−pi11+bis

bis+(1−pi11)(τ+1)
if ω=W r

i (bi0,τ ), i < j;

or if ω=W r
i (bis), i > j

0 if ω=W r
i (bis), i < j;

or if ω>W r
i (bis).

(ii) For fixed πj∈{bj0,1, b
j
0,2, · · ·, b

j
0,τ , b

j
s}, ατj (j,W r

j (πj), ρ)
strictly increases with ρ. For fixed ρ, ατi (j,W r

i (πi), ρ) strictly
decreases with πi for πi ∈ {bi0,1, bi0,2, · · · , bi0,τ , bis} and all i.

We approximate the optimal values i∗, ω∗ and ρ∗ (defined
in Lemma 1) using the fictitious truncated state space model.
The approximate value iτ , ωτ and ρτ are such that, under
policy φtrunciτ ,ωτ ,ρτ

over the truncated state space, the long-term
average number of transmissions equals M , i.e.,

N∑
i=1

ατi (iτ , ωτ , ρτ ) = M. (11)

Note that, equation (11) is the truncated-state-space cor-
respondence of Lemma 1(iii). We next design an algorithm,
denoted by Gτ (r,M), to calculate iτ , ωτ and ρτ , described
to the right and explained next.

AlgorithmGτ (r,M): Calculation of iτ , ωτ and ρτ
1: TxTime[i] = 1 for all i ∈ {1, · · · , N}
2: TotalTime = N
3: struct Index
4: { float value
5: int user
6: } I[(2τ + 1)N ],w[(2τ + 1)N ]

7: j = 0
8: for i = 1 to N do
9: for each πi ∈ Bτi do

10: W r
i (πi) = ri ·W 1

i (πi)
11: I[j].value= W r

i (πi)
12: I[j].user= i
13: j ← j + 1
14: end for
15: end for

16: w =sort(I) . Sort the elements in I in increasing order
of the index value and outputs to vector w.
For index values that are equal, they are or-
dered in increasing order of the associated
user index.

17: for k = 1 to size(w) do

18: NewTime[w[k].user] = ατw[k].user(w[k].value, 1)
19: TimeDiff = TxTime[w[k].user]−NewTime[w[k].user]
20: TotalTime = TotalTime− TimeDiff
21: if TotalTime < M then
22: iτ = w[k − 1].user
23: ωτ = w[k−1].value
24: TxTime[w[k−1].user] = M−

∑
i6=w[k−1].user

TxTime[i]

25: ρτ = βw[k−1].user(ωτ ,TxTime[w[k−1].user])
26: Break
27: end if
28: TxTime[w[k].user]=NewTime[w[k].user]
29: end for
30: return ωτ , ρτ

• The algorithm first calculates the r-weighted index values
W r
i (πi) by scaling W 1

i (πi) by ri, and stores the value and
the corresponding user in vector I (line 7-15).
• The algorithm then sorts all the r-weighted indices of each

belief state of all users to a (2τ+1)N -dimensional vector w
in increasing order (line 16).
• The algorithm then calculates ωτ and ρτ based on the

monotonicity property in Lemma 2(ii). Hence, fixing the
randomization factor ρ=1, it increases the threshold ω by
going through the indices in w and calculates the long-term
average number of transmission when threshold ω equals
to that index. For each element of w, it first calculates
the long-term expected fraction of time NewTime[w[k].user]
transmitting to the corresponding user w[k].user in line 18,
and hence the decreased amount, denoted by TimeDiff, as
compared with previous value TxTime[w[k].user] in line 19.
Note that, in each iteration, only the user corresponding to
w[k] will have an updated expected fraction of transmission
time. The total expected number of transmission, denoted by
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TotalTime, is then updated by decreasing the same amount
(line 20). The threshold ω keeps increasing until the total
expected number of transmission is below M (line 21). Noting
that ατi (ω, 1) decreases with ω, we then set iτ = w[k−1].user
and ωτ = w[k − 1].value (line 21-22). Then we calculate
the expected transmission time to the user that corresponds
to w[k − 1] (line 23) and select the randomization factor ρτ
so that the constraint (11) is satisfied (line 24), where the
function βi : (ω, α) → ρ calculates the randomization factor
ρ required to achieve the long-term expected fraction of time
α transmitting to user i at threshold ω, and is derived from
lemma 2(i) as,

βi(ω, α)

=



(1−α)(1−pi11+bi0,h+1)−αh(1−pi11)

(1−α)(bi0,h+1−b
i
0,h)−α(1−pi11)

if ω=W r
i (bi0,h), h<τ ;

(1−α)(1−pi11+bis)−ατ(1−pi11)

(1−α)(bis−bi0,τ )−α(1−pi11)
if ω=W r

i (bi0,τ );
α(1−pi11)

(1−ατ)(1−pi11)+(1−α)bis
if ω=W r

i (bis);

0 if ω>W r
i (bis).

E. Performance of a policy with approximate parameters
ωτ , ρτ

We next examine, over the original untruncated model, the
policy that uses the approximated parameters iτ , ωτ and ρτ .
We denote such policy as φτ (r,M) and present it next.

Algorithm φτ (r,M): r-weighted Index Policy
1: Initialization phase: The parameters iτ , ωτ and ρτ are

calculated by algorithm Gτ (r,M).
2: At slot t: user i is scheduled if the r-weighted index value
W r
i (πi[t]) > ωτ , or if W r

i (πi[t])=ωτ with i>iτ . User i
stays passive if W r

i (πi[t]) < ωτ , or if W r
i (πi[t])=ωτ

with i<iτ . If W r
i (πi[t])=ωτ with i=iτ , user i is scheduled

with probability ρτ .

Remark: The computational complexity of the initialization
phase of algorithm φτ (r,M) is dominated by sorting the index
values in Algorithm Gτ (r,M) (line 16), which has complexity
O
(
(2τ + 1)N · log

(
(2τ + 1)N

))
. After initialization, the r-

weighted Index Policy φτ (r,M) takes a very simple threshold-
type form with per-slot computational complexity O(N).

We let V ∗(r,M) be the weighted sum-throughput under the
optimal policy φ∗(r,M) defined in lemma 1, and let Vτ (r,M)
be that under the afore-mentioned policy φτ (r,M), i.e.,

V ∗(r,M)= lim inf
T→∞

1

T
E
[ T−1∑
t=0

N∑
i=1

ri·πi[t]·aφ
∗(r,M)
i [t]

]
. (12)

Vτ (r,M)= lim inf
T→∞

1

T
E
[ T−1∑
t=0

N∑
i=1

ri·πi[t]·aφτ (r,M)
i [t]

]
. (13)

Since we also require the long-term average number of
transmissions of the policy φτ (r,M) to satisfy the con-
straint (1), we denote Zτ (r,M) as the time-average expected

number of transmissions under this policy, i.e.,

Zτ (r,M) = lim sup
T→∞

1

T
E
[ T−1∑
t=0

N∑
i=1

a
φτ (r,M)
i [t]

]
.

Recall that τ0 is defined in Lemma 2. The next lemma
shows that the policy φτ (r,M) asymptotically achieves the
maximum weighted sum-throughput of (4)(5) as the truncation
size increases, while abiding the long-term average number of
transmissions constrain (1). The proof is given in Appendix A.
Lemma 3. For τ ≥ τ0, we have
(i) The weighted sum-throughput performance difference be-
tween the policies φ∗(r,M) and φτ (r,M) is bounded by

|V ∗(r,M)− Vτ (r,M)| ≤ f(τ)

N∑
i=1

ri, (14)

where f(τ)=
∑N
i=1 fi(τ), which satisfies f(τ)→0 as τ→∞

with

fi(τ) =
ρ(bi0,τ − bi0,τ+1) + 1− pi11 + bi0,τ+1

ρbi0,τ+(1−ρ)bi0,τ+1+(1−pi11)(τ+1−ρ)
. (15)

(ii) The long-term average number of transmissions under pol-
icy φτ (r,M) satisfies the constraint (1), i.e., Zτ (r,M) ≤M .

Remark: Note that the truncation size τ needs to be suffi-
ciently large (i.e., τ ≥ τ0) to prove the Lemma. This is because
sufficiently large truncation size can provide enough level
of approximation that facilitates analytical characterization.
Specifically, in the proof, τ0 is used in Lemma 4.

IV. QUEUE-BASED INDEX POLICY OVER TIME
FRAMES

Note that the Index Policy in the last section, as well as
the associated Whittle’s index value, is for the system with
infinitely backlogged queues and the corresponding weighted
sum-throughput maximization problem (4)-(5). In this sec-
tion, we consider scheduler design under random arrival of
data packets and the associated queue evolution in the time-
correlated downlink. The objective here is to not only obtain
maximum weighted sum-throughput, but also maintain queue
stability. In the presence of queue evolution, the problem get
much more complicated. Note that, in the weighted sum-
throughput maximization problem, the reward of scheduling
a user is captured by the Whittle’s index value. Under the
additional consideration of queue stability, the queue lengths
need to be jointly taken into account for scheduling, i.e., a
user is scheduled for transmission not only because it has a
high index value, but may also because it has a large queue
length.

Next, we propose a throughput-optimal scheduling policy
based on scaling the Whittle’s index by the queue length. The
policy is implemented over separate time-frames and has low-
complexity. Note that although the proposed algorithm has
parameter τ , it is implemented over under untruncated state
space, where τ is a control parameter.

We divide the time slots {0, 1, 2, · · · } into separate time
frames of length T , i.e., the k-th frame, k ∈ {0, 1, 2, · · · },
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includes time slots kT, · · ·, (k+ 1)T−1. The scheduling deci-
sions in the k-th frame are made based on the queue length
information q[kT ] at the beginning of that frame. During the
k-th frame, the policy φτ (q[kT ],M), developed in the last
section, is implemented. Formally, the T -frame queue-based
index policy, denoted by Q-Indexτ (T,M), is introduced next.

AlgorithmQ-Indexτ(T,M):T -Frame Queue-based Index Policy
1: The time slots are divided into frames of length T . Slot t

is in the kth frame if kT ≤ t < (k+1)T , k ∈ {0, 1, · · · }.
2: At the beginning of the kth frame: At the beginning

of slot kT , implement the algorithm Gτ (q[kT ],M) that
outputs ωτ and ρτ .

3: In each slot t of the kth frame:
•User scheduling: user i is scheduled if the q[kT ]-
weighted index value W

q[kT ]
i (πi[t])>ωτ , or if

W
q[kT ]
i (πi[t])=ωτ with i>iτ . User i stays passive

if Wq[kT ]
i (πi[t])<ωτ , or if Wq[kT ]

i (πi[t])=ωτ with i<iτ .
If Wq[kT ]

i (πi[t]) = ωτ with i=iτ , user i is scheduled with
probability ρτ . If a user with empty queue is scheduled,
then a dummy packet is transmitted to the user.
•ARQ feedback: At the end of each slot, the scheduled
users send ARQ feedback to the BS. The belief values are
updated according to the feedback at the scheduler.

Remarks: We next describe the intuition behind designing the
above algorithm.
(1) Note that, for queue stability, instead of using queue length
information in every slot, it is sufficient only to consider the
sampled queue length information at the periodic slots, i.e.,
q[kT ], k = 0, 1, · · · . The queue is stable if and only if the
periodically sampled queue length evolution process is stable.
(2) Within each frame, we wish to maximize the weighted
sum-throughput, where each user’s throughput is weighted by
its queue length sample value at the beginning of the time
frame. Hence, in step 2-3, we implement the Index policy
φτ (q[kT ],M) developed in the previous section. The rationale
is because, first, we would like to schedule the users to
achieve the higher throughput promised by the Index policy
that exploits the temporal correlated channels. Moreover, for
system stability, we would like to choose users with large
queue-lengths. Hence, by considering the queue weighted
throughput and using the Index policy φτ (q[kT ],M) in frame
T , an overloaded queue can get served with potentially higher
rate. As a direct result, a user i’s index is scaled by its queue
length q[kT ].
(3) An intuitive explanation of the multiplication of index
and queue length is as follows. We schedule a user not only
because of its longer queues, but also when its underlying
‘channel quality’ is favorable (in terms of both exploitation
and exploration values). Consider the example where a user’s
channel is strongly correlated and is observed ‘0’ state in the
previous slot. Hence it is highly likely to stay in ‘0’ state
for a while. Hence scheduling it can result in wasted system
resource since packets are unlikely to be successfully deliv-
ered. Correspondingly, this ‘quality’ of a channel is reflected
in the close-to-zero Whittle’s index value. The multiplication
of queue length and the Whittle’s index value is able to

capture both the queue length and the channel’s ‘quality’ for
scheduling. Summation of the index and queue length, on the
other hand, fails capture both of these properties.
(4) Dividing the time slots into different frames brings us
advantages in the realm of large frame length (i.e., T ). Since
we implement the Index policy within each finite-horizon
frame, if the frame length is small, we lose from exploiting the
channel correlation because the Index policy is optimal only in
the infinite horizon. As the frame length scales, the (per-slot)
loss of exploiting the channel correlation diminishes.
(5) Note that a dummy packet is transmitted to a scheduled
user with empty queue. The dummy packet is known to
the users and contains no new information and hence does
not bring throughput gains if it is transmitted. However, the
scheduler will still receive channel state update from the
corresponding scheduled users. This mechanism is useful to
establish our results.

The next proposition and corollary establish throughput-
optimality of the queue-based index policy over time frames,
where, recall that, f(τ) is given in Lemma 3. The proof is
given in Appendix B.

Proposition 1. If τ≥τ0, then there exist T0 and function
g(τ)=3f(τ) such that the following holds whenever T>T0:
If the arrival rate λ satisfies λ + g(τ)1∈Γ and the T -
frame queue-based index policy Q-Indexτ (T,M−g(τ)/2) is
implemented, then all queues are stable and constraint (1) on
the average number of transmissions is satisfied. The function
g(τ) satisfies limτ→∞ g(τ) = 0.

Corollary 1. The achievable rate region Γ, expressed in (3),
is equal to the stability region Λ.

Proof: Recall that the achievable rate region Γ corresponds
to the expected service rate vectors that can be achieved in
the system with infinitely backlogged queues, by any policy
in Φ. Now consider all the arrival rates within the interior of
the stability region Λ. For each arrival vector λ ∈ Λ, there
exists a certain policy in Φ that stabilizes it, i.e., provides a
service rate not below λ. Therefore, the achievable rate region
Γ provides an upper bound on the stability region Λ. Since the
previous proposition states that the queue-based index policy
stabilizes arrival rates arbitrarily close to the boundary of the
achievable rate region Γ, the achievable rate region Γ and
the stability region Λ share the same interior. Because both
regions Γ and Λ are defined over closure of sets, we have
Γ = Λ. �

Proposition 1 and Corollary 1 together establish the through-
put optimality of the proposed policy. With sufficiently large
τ and T , the proposed policy Q-Indexτ (T,M−g(τ)/2) can
support arrival rate λ within arbitrary ε interior of the stability
region, i.e., λ+ ε1 ∈ Λ and satisfy constraint (1).
Remarks:
(1) Note that, in Proposition 1, the parameter M in the queue-
based index policy is scaled down by g(τ)/2. This mechanism
is needed to guarantee the constraint on the long-term average
number of transmission. The details are given in the proof.
(2) In the queue-based index policy, a user is scheduled based
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on its q[kT ]-weighted Whittle’s index value. The Whittle’s
index value is necessary for the results because it measures the
importance of a wireless channel for scheduling, considering
jointly the instantaneous throughput and future throughput
(e.g., see [18][31], Lemma 1). It is interesting to note that
a simple multiplication of queue length and Whittle’s index
value captures the importance of scheduling a user under two
sophisticated system features – the queue evolution and the
fundamental exploration-exploitation tradeoff.
(3) Calculation of q[kT ]-weighted index value is very sim-
ple, which only requires scaling the pre-calculated Whittle’s
index value. Under the queue-based index policy, in each
frame, implementation of Gτ (q[kT ],M−g(τ)) in step 2 of
policy Q-Indexτ (T,M−g(τ)) has computational complexity
O
(

(2τ+1)N log
(
(2τ+1)N

))
, while implementing step 3 of

policy Q-Indexτ (T,M−g(τ)) over the frame has complexity
O(TN) (see the remark in Section III-E). Accordingly, the
per-frame complexity is O

(
(2τ+1)N log

(
(2τ+1)N

)
+TN

)
.

Since each frame consists of T slots, the per slot complexity
is O

(
(2τ + 1)Nlog

(
(2τ + 1)N

)
+ TN

)
/T = O((2τ +

1)NT log
(
(2τ + 1)N

)
+ N). As the frame length T scales

up, the per-slot complexity decreases toward O
(
N
)

since
limT→∞O((2τ + 1)NT log

(
(2τ + 1)N

)
+N) = O(N).

(4) The scheduling decisions are made by comparing each
user’s own index value to a threshold, independently from
other users. Hence our policy is also applicable for distributed
implementation in uplink scenarios.

V. NUMERICAL RESULTS

A. Illustration of Stability Region

In Fig. 3, we compute the stability region Λ and compare it
with other regions of interest. We consider the scenario with
two users and with the scheduling constraint on the long-
term average number of scheduled transmissions M = 1.
The Markov transition statistics are selected as (p1

11, p
1
01) =

(0.7, 0.2), (p2
11, p

2
01) = (0.8, 0.3). For comparison, in the same

system, we consider another scenario where the scheduler

throws away the ARQ feedback from the scheduled user. We
denote the corresponding stability region by ΛNoFb, expressed
as ΛNoFb = {λ : λ1/b

1
s + λ2/b

2
s ≤ 1} [36]. As can be

observed in the figure, by exploiting the channel memory from
ARQ feedback, our policy achieves significant throughput gain
(as high as 30%) over the policy that ignores the channel
memory. We also compare the stability region Λ with that
of a ‘genie-aided’ system, denoted by ΛGenie. In the ‘genie-
aided’ system, the same scheduling constraint (1) is imposed,
while a genie reveals channel states of all users in the current
slot to the scheduler at the end of the slot. The region ΛGenie

is expressed as

ΛGenie =b1sb
2
sλ00 + (1− b1s)b2sλ01 + b1s(1− b2s)λ10

+ (1− b1s)(1− b2s)λ11,

with λij ∈ Λij where Λij = CH{(p1
i1, 0), (0, p2

j1)}, i, j =
0, 1 with CH{·} denoting the convex hull of the set [25].
Because the genie facilitates more informed decisions at the
scheduler, the resultant stability region ΛGenie provides an
outer bound on region Λ, as demonstrated in Fig. 3.

B. Delay Performance Analysis

In this section, we numerically evaluate the delay perfor-
mances of the proposed policy. We consider a two users
system with the long-term average number of transmission
constraint M = 1, i.e., one user can be scheduled on average.
The channel states of both users evolve as the ‘ON/OFF’
Markov chain with transition statistics (p1

11, p
1
01)=(0.7, 0.2),

(p2
11, p

2
01)=(0.8, 0.3), i.e., which can be typical situations

where both users have moderate degree of correlation across
time.

Over this system, we implement the proposed T -
frame queue-based index policy Q-Indexτ (T,M−g(τ)/2),
defined in section IV with τ=20. We first consider
fixed arrival rates λ1=λ2=0.25 and implement the poli-
cies Q-Indexτ (T,M−g(τ)/2) with frame lengths T=10 and
T=100, respectively. The sample paths of the average queue
length, i.e.,

(
Q1[t] +Q2[t]

)
/2, are plotted in Fig. 4. It can be

observed that, while the queues in both scenarios are stable,
the variation of the queue evolution is notably higher when
the frame size changes from 10 to 100. This is because, as the
frame size increases, the frame-based algorithm obtains less
frequent updates of the queue sizes. Therefore, within a frame,
the algorithm can continue to serve a user even if its current
queue length becomes small while neglecting the other user
that has accumulated a large queue size, leading to a higher
degree of queue length variation as well as average queue size.
Correspondingly, higher delay and delay variation are expected
as the frame size increases. For example, suppose the initial
queue length of user 1 is empty, while the initial queue length
for user 2 is nonempty. Then user 1 in the first frame will not
be scheduled. Now after the first frame, the expected queue
length of user 1 will be significantly larger for the case when
T = 100 compared with the case when T = 10. Hence, at the
second frame, the scheduler dedicates most of the resources
to user 1. As a result, the expected queue length of the user
1 will go down after second frame, and the expected queue
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Fig. 4: Sample paths of queue evolution.

length of user 2 will grow. Both the expected change of queue
lengths of user 1 and 2 will be much more significant when
T = 100 compared with when T = 10. The process repeats in
time and results in a higher degree of queue length variation
when T = 100 as compared to T = 10.

We next implement the aforementioned policy
Q-Indexτ (T,M−g(τ)/2) and evaluate the average queueing
delay experienced by users as the arrival rates scale toward
the boundary of the stability region, with varying frame
length T . For the two user system previously discussed,
Fig. 5 examines the average queueing delay when the arrival
rate vector (λ1, λ2) increases with λ1=λ2=λ. As can be
observed in the figure, as the arrival rates grow toward the
boundary of stability region, the queue length quickly blows
up, resulting in steep increase of delay. The steep increase
is because, as the arrival rates grow toward the boundary of
stability region, the queue lengthes quickly blow up because
they are becoming unstable, resulting in steep increase of
average delay. Fig. 5 also show that, as the frame length
grows, the average delay in the downlink network increases.
This is, again, a consequence of infrequent update of queue
length information at the scheduler.

Another interesting observation can be observed
from Fig. 5. When we implement the proposed policy
Q-Indexτ (T,M−g(τ)/2) with the frame lengths T growing
from 9 to 100, the system delay curves for different values
of T start to build up significantly at around the same value
(i.e., around 0.29 which is on the boundary of the stability
region). Note that we needed the frame size to be large
enough to prove Proposition 1. However, in practice, the
frame size T may not need to be as large to guarantee
queue stability. This numerical result, along with many other
numerical evaluations we have conducted, indicates that the
queues are stable under only moderate value of frame size in
the proposed queue-based index policy.

Fig. 5 also plots the delay performance of a policy φNoFb

that ignores the channel memory, i.e., not using the channel
state feedback. In each slot of this policy, a user i with the
largest multiplication of steady state transmission rate (i.e., bis)
and queue length qi[t] is scheduled. The delay performance
of maximum weight matching policy φMWM is also plotted,
where, in each slot t, a user i with the largest multiplication
of belief value πi[t] and queue length qi[t] is scheduled.
Fig. 5 further plots the delay performance of a naive policy
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Fig. 5: Delay performance comparison when N = 2.

φNaiveInd where a user i with the largest multiplication of
index value W 1

i (πi[t]) and queue length qi[t] is scheduled.
For all of these policies, the values of arrival rate λ where the
queueing delay increases steeply are at a smaller value than our
proposed policy, implying the sub-optimality of these policies.
This is partly because these policies only schedule strictly M
users per slot, but our work is in the domain of a relaxed
constraint of average number of scheduled users. The sub-
optimality of policy φMWM is also because it only exploits
the channel condition in the instantaneous slot, i.e., πi[t], but it
does not consider exploring outdated channels. It is interesting
to note that policy φMWM and φNaiveInd performs better than
the policy that ignores channel state feedback, as the value
of λ where steep increase of queueing delay occurs is much
larger as compared to φNoFb. This observation illustrates the
throughput gains that can be achieved by using the channel
state feedback.

VI. CONCLUSION

In this work, we have studied downlink scheduling problem
over Markovian evolving ON/OFF fading channels and imper-
fect instantaneous channel state information. The scheduling
decisions are made based on the single-bit ARQ-type feedback
and the channel memory inherent in the Markovian chan-
nels. We propose a throughput-optimal policy that operates
over time frames. In the proposed policy, the importance of
scheduling a user is measured by a simple multiplication of
the queue length and Whittle’s index value. Because of this
property, the proposed policy has low-complexity per frame
in the network size and the truncation level of the belief
state space. Most notably, our policy does not suffer from
the curse of dimensionality that is observed in earlier works
in this context. Numerical evaluations show that significant
throughput performance gains can be achieved by exploiting
the channel memory, via the frame-based low-complexity
queue-based index policy with moderate frame size. Future
directions include considering larger state space model, and
considering feedback mechanisms that collects CSI from
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unscheduled users, as well as more stringent instantaneous
scheduling constraints. Another open direction is to consider
adaptive power allocation with hybrid ARQ protocols (e.g.,
[9]), where the index value not only implies the attractiveness
of scheduling a user, but also guides the power allocation
across time. Finally, we believe that our results hold if the
queue length weight is changed to other functions of queue
length (e.g., [41], [42]).

APPENDIX A
PROOF OF LEMMA 3

A. Proof outline

We establish the proof by first proving lemma 4 that bounds
the difference of weighted sum-throughput between policies
with different threshold parameters, with respective to the
difference between expected fraction of transmission time to
each user. We then prove the lemma under two cases, i.e.,
whether ω∗ < W r

i (bi0,τ ) for all user i. The first case is
uncomplicated to prove. For the second case, we first prove a
useful fact that only one of the three cases holds: ωτ > ω∗, or
ωτ = ω∗ with ρτ < ρ∗ and iτ = i∗, or ωτ = ω∗ with iτ > i∗.
Based on these cases, we can bound the difference between
expected fraction of time transmitting to different users. We
then use Lemma 4 to finish the proof.

B. Notations

Recall that, in the untruncated state space, the optimal policy
φ∗(r,M) corresponds to the parameters (i∗, ω∗, ρ∗). Also
recall that, in the truncated state space, the policy φτ (r,M)
corresponds to the parameter (iτ , ωτ , ρτ ).

Over the actual untruncated model, consider the following
policy denoted as φuntruncj,ω,ρ with the parameters (j, ω, ρ): User
i is scheduled if W r

i (πi[t])>ω, or if W r
i (πi[t])=ω

∗ with
i>j. User i stays idle if W r

i (πτi [t])<ω, or if W r
i (πτi [t])=ω∗

with i<j. If W r
i (πτi [t])=ω with i=j, it is scheduled with

probability ρ. In this model, similar to (8), we let αi(j, ω, ρ)
denote the long-term expected fraction of time transmitting to
user i under policy φuntruncj,ω,ρ , i.e.,

αi(j, ω, ρ) = lim sup
T→∞

1

T
E
[ T−1∑
t=0

a
φuntruncj,ω,ρ

i [t]
]
. (16)

The closed-form expression of αi(j, ω, ρ) can be calculated
from the same technique we used to prove Lemma 2 as
follows.

αi(j, ω, ρ)

=



ρ(bi0,h−b
i
0,h+1)+1−pi11+bi0,h+1

ρbi0,h+(1−ρ)bi0,h+1+(1−pi11)(h+1−ρ) if ω=W r
i (bi0,h), i=j;

1−pi11+bi0,h+1

bi0,h+1+(1−pi11)(h+1)
if ω=W r

i (bi0,h), i<j
1−pi11+bi0,h

bi0,h+(1−pi11)h
if ω=W r

i (bi0,h), i > j;

or if W r
i (bi0,h−1)<ω<W r

i (bi0,h), i 6= j

0 if ω≥W r
i (bis).

(17)

We also let υi(j, ω, ρ) denote the long-term expected trans-
mission rate to user i, i.e.,

υi(j, ω, ρ) = lim inf
T→∞

1

T
E
[ T−1∑
t=0

ri · πi[t] · a
φuntruncj,ω,ρ

i [t]
]
, (18)

Over the truncated model, correspondingly, we let
υτi (j, ω, ρ) denote the long-term expected transmission rate
to user i under policy φtruncj,ω,ρ defined in section III-D, i.e.,

υτi (j, ω, ρ) = lim inf
T→∞

1

T
E
[ T−1∑
t=0

ri · πτi [t] · aφ
trunc
j,ω,ρ

i [t]
]
. (19)

Using techniques similar to the proof of Lemma 2, we can
derive the analytical expressions of υi(j, ω, ρ) and υτi (j, ω, ρ)
as follows,

υi(j, ω, ρ) =

ri·
ρbi0,h+(1−ρ)bi0,h+1

ρbi0,h+(1−ρ)bi0,h+1+(1−pi11)(h+1−ρ) if ω=W r
i (bi0,h), i=j

ri·
bi0,h+1

bi0,h+1+(1−pi11)(h+1)
if ω=W r

i (bi0,h), i<j

ri·
bi0,h

bi0,h+(1−pi11)h
if ω=W r

i (bi0,h), i>j

or if W r
i (bi0,h−1)<ω<W r

i (bi0,h), i 6= j

0 if ω≥W r
i (bis).

(20)

The expression of υτj (j, ω, ρ) is given as follows,

υτj (j, ω, ρ) =

rj ·
ρbj0,h+(1−ρ)bj0,h+1

ρbj0,h+(1−ρ)bj0,h+1+(1−pj11)(h+1−ρ)
if h<τ , ω=W r

j (bj0,h);

rj ·
ρbj0,τ+(1−ρ)bjs

ρbj0,τ+(1−ρ)bjs+(1−pj11)(τ+1−ρ)
if ω=W r

j (bj0,τ );

rj · ρbjs
(1+τρ)(1−pj11)+ρbjs

if ω=W r
j (bjs);

0 if ω>W r
j (bjs).

(21)

The expression of υτi (j, ω, ρ), i 6= j is expressed as follows.

υτi (j, ω, ρ) =

ri·
bi0,h+1

bi0,h+1+(1−pi11)(h+1)
if h<τ , ω=W r

i (bi0,h), i<j

ri·
bi0,h

bi0,h+(1−pi11)h
if h≤τ , ω=W r

i (bi0,h), i > j;

or if h≤τ ,W r
i (bi0,h−1)<ω<W r

i (bi0,h)

ri· bis
(1+τ)(1−pi11)+bis

if ω=W r
i (bi0,τ ), i < j;

or if ω=W r
i (bis), i > j

0 if ω=W r
i (bis), i < j

or if ω>W r
i (bis).

(22)

C. Proof of Lemma 3
We first prove the following lemma that provides properties

of ατi (j, ω, ρ) and υτi (j, ω, ρ).



11

Lemma 4. For a user i, if τ ≥ τ0, we have
(i) For fixed πj∈{bj0,1, b

j
0,2, · · ·, b

j
0,τ , b

j
s}, υτj (j,W r

j (πi), ρ)
strictly increases with ρ. For fixed ρ, υτi (j,W r

i (πi), ρ) strictly
decreases with πi for πi ∈ {bi0,1, bi0,2, · · · , bi0,τ , bis} and all i;
(ii) for any two sets of parameter {j1, ω1, ρ1} and {j2, ω2, ρ2},∣∣∣ υτi (j1, ω1, ρ1)− υτi (j2, ω2, ρ2)

∣∣∣
≤ri ·

∣∣∣ ατi (j1, ω1, ρ1)− ατi (j2, ω2, ρ2)
∣∣∣.

Proof: See our Technical Report [40]. �

Note that we need τ ≥ τ0 for the proof to hold. Since
the untruncated state space is in the asymptotic regime of the
truncated scenario when τ→∞, a straightforward extension
of properties of ατi (j, ω, ρ) and υτi (j, ω, ρ) in Lemma 2 and
Lemma 4 to αi(j, ω, ρ) and υi(j, ω, ρ) in the untruncated
scenario leads to the next Lemma.

Lemma 5. For a user i, if τ ≥ τ0, we have
(i) For fixed πj∈{bj0,1, b

j
0,2, · · ·, b

j
0,τ , b

j
s}, υj(j,W

r
j (πi), ρ)

and αi(j,W
r
i (πi), ρ) strictly increase with ρ. For fixed ρ,

υi(j,W
r
i (πi), ρ) and αi(j,W

r
i (πi), ρ) strictly decrease with

πi for πi ∈ {bi0,1, bi0,2, · · · , bi0,τ , bis};
(ii) for any two sets of parameters {j1, ω1, ρ1} and
{j2, ω2, ρ2},∣∣∣ υi(j1, ω1, ρ1)−υi(j2, ω2, ρ2)

∣∣∣≤ri·∣∣∣ αi(j1, ω1, ρ1)− αi(j2, ω2, ρ2)
∣∣∣.

We proceed to prove Lemma 3 under two cases.

Case (1). If the threshold ω∗ satisfies ω∗ < W r
i (bi0,τ ) for all

user i, then the approximation parameters iτ = i∗, ωτ = ω∗

and ρτ = ρ∗. This is because, if ω∗ < W r
i (bi0,τ ) for all

user i, no user will stay idle for more than τ slots under
the optimal policy φ∗(r,M). To see this in more detail,
the expected amount of transmissions equals to M , i.e.,∑N
i=1 α

τ
i (j, ω, ρ) = M , when j = i∗, ω = ω∗, ρ = ρ∗,

which meets the constraint (11). Therefore, thanks to the
strict monotonicity property in Lemma 2(ii), the algorithm
Gτ (r,M) outputs iτ = i∗, ωτ = ω∗ and ρτ = ρ∗, and
hence policy φτ (r,M) is equivalent to the policy φ∗(r,M).
We hence have

∣∣V ∗(r,M)−Vτ (r,M)
∣∣=0 and Zτ (r,M)=M .

Case (2). If there exists a user i with ω∗ ≥ W r
i (bi0,τ ), we

let Θ denote the corresponding set of users, i.e., Θ = {i :
W r
i (bi0,τ ) ≤ ω∗}. Therefore,∣∣V ∗(r,M)− Vτ (r,M)

∣∣
=
∣∣ N∑
i=1

υi(i
∗, ω∗, ρ∗)−

N∑
i=1

υi(iτ , ωτ , ρτ )
∣∣

≤
∑
i∈Θ

∣∣∣υi(i∗, ω∗, ρ∗)−υi(iτ , ωτ , ρτ )
∣∣∣

+
∑
i/∈Θ

∣∣∣υi(i∗, ω∗, ρ∗)−υi(iτ , ωτ , ρτ )
∣∣∣. (23)

Before bounding (23), we first show that, for this case, we
have only one of the three cases: ωτ > ω∗, or ωτ = ω∗ with
ρτ < ρ∗ and iτ = i∗, or ωτ = ω∗ with iτ > i∗.

We prove the above statement by first showing that

∑N
i=1 α

τ
i (i∗, ω∗, ρ∗)≥

∑N
i=1 αi(i

∗, ω∗, ρ∗) = M : For any
user i /∈ Θ, we have ατi (i∗, ω∗, ρ∗) = αi(i

∗, ω∗, ρ∗) since
(i∗, ω∗, ρ∗) does not exceed the truncation level. For user
i ∈ Θ, 1) if ω∗ ≥ W r

i (bis), we have ατi (i∗, ω∗, ρ∗) ≥
αi(i

∗, ω∗, ρ∗) since αi(i∗, ω∗, ρ∗)=0. 2) If W r
i (bi0,τ ) < ω∗ <

W r
i (bis) for i ∈ Θ, we have

ατi (i∗, ω∗, ρ∗) = ατi (i∗,W r
i (bis), 1)

=
1− pi11 + bis

(1 + τ)(1− pi11) + bis
>

1− pi11 + bi0,τ+1

(1 + τ)(1− pi11) + bi0,τ+1

=αi(i
∗,W r

i (bi0,τ ), 0) ≥ αi(i∗, ω∗, ρ∗),

where the first equality holds because, when W r
i (bi0,τ ) <

ω∗ < W r
i (bis), the user is scheduled when its belief value

is not below bis and stays idle otherwise. Because of the
truncation, the next belief value above bi0,τ is bis. Since user
ith index value will not be exactly ω∗, the randomization
factor ρ∗ at the threshold does not play a role. Hence the
expected fraction of transmission time ατi (i∗, ω∗, ρ∗) equals
ατi (i∗,W r

i (bis), 1), i.e., transmit to user i when its belief value
is not below bis with probability 1. The second and the third
equality are from lemma 2(i) and (17), respectively. The first
inequality holds since bis > bi0,τ+1. The last inequality holds
because W r

i (bi0,τ )<ω∗<W r
i (bis), hence from (17) and the

monotonicity property in Lemma 5(i),

αi(i
∗,W r

i (bi0,τ ), 0)=αi(i
∗,W r

i (bi0,τ+1), 1)

=αi(i
∗, ω∗, ρ∗) if W r

i (bi0,τ )<ω∗<W r
i (bi0,τ+1),

αi(i
∗,W r

i (bi0,τ ), 0)=αi(i
∗,W r

i (bi0,τ+1), 1)

≥αi(i∗, ω∗, 1) ≥ αi(i∗, ω∗, ρ∗) if W r
i (bi0,τ+1)≤ω∗<W r

i (bis).

3) If ω∗ = W r
i (bi0,τ ), similarly, for i ∈ Θ,

ατi (i∗, ω∗, ρ∗) > αi(i
∗, ω∗, ρ∗).

Hence from 1)-3) we have ατi (i∗, ω∗, ρ∗) ≥ αi(i
∗, ω∗, ρ∗)

for i ∈ Θ. Also noting that, for i /∈ Θ, αi(i∗, ω∗, ρ∗) =
ατi (i∗, ω∗, ρ∗), we hence have

N∑
i=1

ατi (i∗, ω∗, ρ∗) =
∑
i∈Θ

ατi (i∗, ω∗, ρ∗) +
∑
i/∈Θ

ατi (i∗, ω∗, ρ∗)

=
∑
i∈Θ

ατi (i∗, ω∗, ρ∗) +
∑
i/∈Θ

αi(i
∗, ω∗, ρ∗)

≥
∑
i∈Θ

αi(i
∗, ω∗, ρ∗) +

∑
i/∈Θ

αi(i
∗, ω∗, ρ∗)

=

N∑
i=1

αi(i
∗, ω∗, ρ∗)=M.

Hence if we implement the policy with threshold parameters
(i∗, ω∗, ρ∗) over the fictitious truncated belief space, the
expected number of transmissions will equal to or exceed
the constraint. Therefore, from the monotonicity property in
Lemma 2, to ensure the constraint (11) on the long-term
expected number of transmissions over the truncated state
space, it must be one of the following three cases ωτ > ω∗, or
ωτ = ω∗ with ρτ < ρ∗ and iτ = i∗, or ωτ = ω∗ with iτ > i∗.
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From this property as well as Lemma 5(i), we have,

αi(iτ , ωτ , ρτ ) ≤ αi(i∗, ω∗, ρ∗) for all i, (24)

and, because i ∈ Θ,

υi(iτ , ωτ , ρτ )≤υi(i∗, ω∗, ρ∗)≤υi(i,W r
i (bi0,τ ), 1), for i∈Θ.

(25)

Hence, for i ∈ Θ,∣∣υi(i∗, ω∗, ρ∗)−υi(iτ , ωτ , ρτ )
∣∣≤υi(i,W r

i (bi0,τ ), 1)

≤ri·αi(i,W r
i (bi0,τ ), 1), (26)

where the first inequality is from (25) and the last equality
holds because instantaneous reward is upper bounded by ri.

Similar to (25), from the monotonicity properties of
ατi (j, ω, ρ) and αi(j, ω, ρ) and because i ∈ Θ,

ατi (iτ , ωτ , ρτ ) ≤ ατi (i∗, ω∗, ρ∗) ≤ ατi (i,W r
i (bi0,τ ), 1), i ∈ Θ,

(27)

αi(i
∗, ω∗, ρ∗) ≤ αi(i∗, ω∗, 1) ≤ αi(i,W r

i (bi0,τ ), 1), i ∈ Θ.
(28)

For i /∈ Θ, we have ατi (i∗, ω∗, ρ∗) = αi(i
∗, ω∗, ρ∗). Hence,∑

i/∈Θ

∣∣υi(i∗, ω∗, ρ∗)−υi(iτ , ωτ , ρτ )
∣∣

≤
∑
i/∈Θ

ri·
∣∣αi(i∗, ω∗, ρ∗)−αi(iτ , ωτ , ρτ )

∣∣
=
∑
i/∈Θ

ri ·
[
αi(i

∗, ω∗, ρ∗)− αi(iτ , ωτ , ρτ )
]

≤
∑
i/∈Θ

ri ·
∑
i/∈Θ

[
αi(i

∗, ω∗, ρ∗)− αi(iτ , ωτ , ρτ )
]

≤
∑
i/∈Θ

ri ·
[∑
i/∈Θ

[
αi(i

∗, ω∗, ρ∗)− ατi (iτ , ωτ , ρτ )
]
+

∑
i/∈Θ

[
ατi (iτ , ωτ , ρτ )− αi(iτ , ωτ , ρτ )

]]
, (29)

where the first inequality is from Lemma 5(ii) and the first
equality holds from (24).

Consider the first summand inside the parenthesis of
(29). Since

∑N
i=1 αi(i

∗, ω∗, ρ∗) =
∑N
i=1 α

τ
i (iτ , ωτ , ρτ ) =

M , subtracting both sides by
∑
i/∈Θ α

τ
i (iτ , ωτ , ρτ ) +∑

i∈Θ αi(i
∗, ω∗, ρ∗) we have∑

i/∈Θ

[
αi(i

∗, ω∗, ρ∗)−ατi (iτ , ωτ , ρτ )
]

=
∑
i∈Θ

[
ατi (iτ , ωτ , ρτ )−αi(i∗, ω∗, ρ∗)

]
≤
∑
i∈Θ

∣∣ατi (iτ , ωτ , ρτ )−αi(i∗, ω∗, ρ∗)
∣∣. (30)

Note that, for i ∈ Θ, from (27)-(28),∣∣ατi (iτ , ωτ , ρτ )− αi(i∗, ω∗, ρ∗)
∣∣ ≤ αi(i,W r

i (bi0,τ ), 1). (31)

Substituting (31) back to (30), we have∑
i/∈Θ

[
αi(i

∗, ω∗, ρ∗)−ατi (iτ , ωτ , ρτ )
]
≤
∑
i∈Θ

αi(i,W
r
i (bi0,τ ), 1).

(32)

Now consider the second summand inside (29), we have,
for i /∈ Θ,

ατi (iτ , ωτ , ρτ )−αi(iτ , ωτ , ρτ ) = 0, if ωτ < W r
i (bi0,τ ),

(33)
ατi (iτ , ωτ , ρτ )−αi(iτ , ωτ , ρτ )

≤αi(i,W r
i (bi0,τ ), 1), if ωτ=W r

i (bi0,τ ), (34)

where (34) holds because both ατi (iτ , ωτ , ρτ ) ≤
αi(i,W

r
i (bi0,τ ), 1) and αi(iτ , ωτ , ρτ ) ≤ αi(i,W

r
i (bi0,τ ), 1).

Therefore, ∑
i/∈Θ

[
ατi (iτ , ωτ , ρτ )−αi(iτ , ωτ , ρτ )

]
≤
∑
i/∈Θ

αi(i,W
r
i (bi0,τ ), 1). (35)

Substituting (32) and (35) in (29),∑
i/∈Θ

∣∣υi(i∗, ω∗, ρ∗)−υi(iτ , ωτ , ρτ )
∣∣≤∑
i/∈Θ

ri

N∑
i=1

αi(i,W
r
i (bi0,τ ), 1).

(36)

From (26) and (36), the difference in (23) can be bounded
as follows,∣∣V ∗(r,M)− V ∗τ (r,M)

∣∣
≤
∑
i∈Θ

ri · αi(i,W r
i (bi0,τ ), 1) +

∑
i/∈Θ

ri

N∑
i=1

αi(i,W
r
i (bi0,τ ), 1)

≤
N∑
i=1

ri ·
N∑
i=1

αi
(
i,W r

i (bi0,τ ), 1
)
.

We let fi(τ)=αi
(
i,W r

i (bi0,τ ), 1
)

and f(τ)=
∑N
i=1 fi(τ).

Since αi
(
i,W r

i (bi0,τ ), 1
)
→ 0 as τ →∞, part (i) of the lemma

is established. From (24), we have

Zτ (q,M) =

N∑
i=1

αi(iτ , ωτ , ρτ ) ≤
N∑
i=1

αi(i
∗, ω∗, ρ∗) = M,

which proves part (ii). �

APPENDIX B
PROOF OF PROPOSITION 1

Define Lyapunov function L(q) = 1
2

∑N
i=1 q

2
i . We consider

the T -frame average Lyapunov drift ∆L(q[kT ]) over the k-th
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frame, expressed as,

∆L(q[kT ])/T

=
1

T
E
[
L(q[(k + 1)T ])− L(q[kT ])

∣∣ q[kT ],π[kT ]
]

≤BT +

N∑
i=1

qi[kT ] · λi −
N∑
i=1

qi[kT ] · 1

T

· E
[ T−1∑
t=0

πi[kT+t]·aφτ (q[kT ],M−g(τ)/2)
i [kT+t]

∣∣∣π[kT ]
]
,

(37)

where B is a constant whose value is determined by the second
moment of the arrival process [37]. Because λ+ g(τ)1 ∈ Γ,
for any non-negative vector q, we have

N∑
i=1

qi · (λi + g(τ)) ≤ V ∗(q,M),

where V ∗(q,M) is defined in (12). The Lyapunov drift (37)
now becomes,

∆L(q[kT ])/T ≤ BT−g(τ)

N∑
i=1

qi[kT ]+

V ∗(q[kT ],M)−V Tτ (q[kT ],M−g(τ)/2)

= BT−g(τ)

N∑
i=1

qi[kT ]+V ∗(q[kT ],M)−Vτ (q[kT ],M)

+ Vτ (q[kT ],M)−Vτ (q[kT ],M−g(τ)/2)

+ Vτ (q[kT ],M−g(τ)/2)−V Tτ (q[kT ],M−g(τ)/2). (38)

where Vτ (q[kT ],M) is defined in (13), and V Tτ (q[kT ],M) is
the T -horizon expected transmission rate achieved under the
policy φτ (q[kT ],M), i.e.,

V Tτ (q[kT ],M)

=

N∑
i=1

qi[kT ]
1

T
E
[ T−1∑
t=0

πi[kT+t]·aφτ (q[kT ],M)
i [kT+t]

∣∣∣π[kT ]
]
.

Note that, in (38), the difference V ∗(q[kT ],M) −
Vτ (q[kT ],M) is bounded in Lemma 3. We proceed to
bound the rest of the terms in (38). Specifically, the
difference Vτ (q[kT ],M−g(τ)/2)−V Tτ (q[kT ],M−g(τ)/2) is
bounded in Lemma 6, and the difference Vτ (q[kT ],M) −
Vτ (q[kT ],M−g(τ)/2) is bounded in Lemma 7. These bounds
help us to bound the Lyapunov drift ∆L(q[kT ])/T and later
to establish the proof using Lyapunov stability theory.

We denote ZTτ (q,M) as the finite T -horizon expected
number of transmissions, under the policy φτ (q[kT ],M), i.e.,

ZTτ (q,M) =
1

T
E
[ T−1∑
t=0

N∑
i=1

a
φτ (q,M)
i [t]

]
.

The next lemma states that, as the length of the time horizon
tends to infinity, the expected achieved rate in finite horizon
asymptotically converges to infinite horizon achievable rate,
and the expected number of transmissions converges to the
value M . The proof of the lemma is moved to [40].

Lemma 6. For any M and κ > 0, we have, uniformly over q,
M , and the initial state π[kT ],
(a) there exist positive constants c1 and c2 such that∣∣∣Vτ (q,M)− V Tτ (q,M)

∣∣∣ < (κ+ c1 exp(−c2T )
) N∑
i=1

qi.

(b) there exist positive constants d1 and d2 such that∣∣∣ZTτ (q,M)−M
∣∣∣ < (κ+ d1 exp(−d2T )

)
.

The next lemma bounds the difference between Vτ (q,M)
and Vτ (q,M − ε).

Lemma 7. When τ>τ0, for any ε>0, the difference be-
tween the expected transmission rate achieved under policy
φτ (q,M) and φτ (q,M − ε) satisfies the following bound,

∣∣Vτ (q,M)− Vτ (q,M − ε)
∣∣ ≤ ε N∑

i=1

qi.

Proof: Suppose, under the weight q, the policies φτ (q,M)
and φτ (q,M − ε) correspond to parameter set {iτM , ωτM , ρτM}
and (iτM−ε, ω

τ
M−ε, ρ

τ
M−ε), respectively. For user i, we let yi(ε)

denote be the difference between activation time under policy
φτ (q,M − ε) and φτ (q,M), i.e., yi(ε) = αi(i

τ
M , ω

τ
M , ρ

τ
M )−

αi(i
τ
M−ε, ω

τ
M−ε, ρ

τ
M−ε), where, recall that, αi(j, ω, ρ) is de-

fined in (17). From Lemma 5(i), we have yi(ε) ≥ 0,∀i. Since
the difference of the total expected number of transmissions
between the two policies is ε, we have

∑N
i=1 yi(ε) = ε. From

Lemma 5(ii), we have,∣∣Vτ (q,M)− Vτ (q,M−ε)
∣∣

=
∣∣∣ N∑
i=1

vi(i
τ
M , ω

τ
M , ρ

τ
M )−

N∑
i=1

υi(i
τ
M−ε, ω

τ
M−ε, ρ

τ
M−ε)

∣∣∣
≤

N∑
i=1

∣∣∣vi(iτM , ωτM , ρτM )− υi(iτM−ε, ωτM−ε, ρτM−ε)
∣∣∣

≤
N∑
i=1

qi ·
∣∣∣αi(iτM , ωτM , ρτM )− αi(iτM−ε, ωτM−ε, ρτM−ε)

∣∣∣
=

N∑
i=1

qi · yi(ε) ≤
N∑
i=1

qi

[ N∑
j=1

yj(ε)
]

= ε

N∑
i=1

qi.

We hence have proved the lemma. �

From Lemma 3 and Lemma 6-7, the Lyapunov drift (38)
can be further bounded as follows,

∆L(q[kT ])/T

≤BT+[
−g(τ)+f(τ)+

g(τ)

2
+
(
κ+ c1 exp(−c2T )

)]
·
N∑
i=1

qi[kT ]

=BT+
[
−g(τ)

2
+f(τ)+

(
κ+c1 exp(−c2T )

)] N∑
i=1

qi[kT ]

=BT +
[
−f(τ)/2+

[
κ+c1 exp(−c2T )

]] N∑
i=1

qi[kT ] (39)
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where the last equality holds because we let g(τ) = 3f(τ).
For fixed τ , by choosing κ sufficiently small and T sufficiently
large, say T > T1, the Lyapunov drift is negative whenever the
sum of the queue lengths gets sufficiently large. Therefore, the
queues are stable according to the Foster-Lyapunov criterion.

Note that, under the policy Q-Indexτ (T,M−g(τ)/2),
the expected number of transmissions in the k-th frame,
ZTτ (q[kT ],M − g(τ)/2), is bounded by Lemma 6 as,∣∣∣ZTτ (q[kT ],M−g(τ)/2)−(M−g(τ)/2)

∣∣∣<(κ+d1 exp(−d2T )
)
,

for some constant d1 and d2. Therefore, there exists T2 such
that ZTτ (q[kT ],M − g(τ)/2) < M for T > T2. Hence, the
long term constraint on the average number of transmissions is
satisfied. From Lemma 3, we have limτ→∞ g(τ) = 0. Letting
T ′ = max{T1, T2}, the proposition is then established.
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