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Abstract—We consider the problem of detecting the active
wireless stations among a very large population. This problem
is highly relevant in applications involving passive and active
RFID tags and dense IoT settings. The state of the art mainly
utilizes interference avoiding (e.g., CSMA-based) approaches
with the objective of identifying one station at a time. We first
derive basic limits of the achievable delay with interference
avoiding paradigm. Then, we consider the setting in which each
station is assigned a signature sequence, picked at random from
a specific alphabet and active stations transmit their signatures
simultaneously upon activation. The challenge at the detector is
to detect all active stations from the combined signature signal
with low probability of misdetection and false positives. We show
that, such an interference embracing approach can substantially
reduce the detection delay, at an arbitrarily low probability of
both types of detection errors, as the number of stations scale.
We show that, under a randomized activation model the collision
embracing detection scheme achieves Θ

( log2(n)
log(log(n))

)
delay while

the expected delay of existing CSMA schemes are Ω
(

log2(n)
)

for a population of n stations. Finally, we discuss large-scale
implementation issues such as the design of low-complexity
detection schemes and present numerical investigations.

I. INTRODUCTION

Multi-station detection is commonly used in various large
scale tracking tasks such as sensor networks, supply chain
management and stock control. In this problem setting, there
is a large population of stations, a subset of which is present
in the range of a detector at the time and the goal is to
detect this subset with low probability of error. One of
the key challenges of multi-station detection is the multiple
access aspect of the network due to the unique challenges of
the problem. Many applications involve stations that have
very limited energy and computational capabilities, such
as mobile IoT nodes that are powered with very limited
batteries. Some applications even contain passive stations that
use backscatter techniques to communicate, such as passive
RFID tags. In order to be applicable to such cases, multi-
station detection methods address the potentially limited
computational capacity and energy of the stations, as well
as ensuring robustness to the varying station population in
detection range, scalability and the required quick detection
rates.

The existing methods used in practice are dominantly
collision avoidance techniques. One approach is to have the
detector broadcast messages, based on which the stations
decide whether they would transmit at the time or not.
The broadcast messages are usually based on a tree search
algorithm to find hierarchical subsets that contain active
stations [1]. Another line of work employs random access

methods inspired by slotted Aloha [2], [3], where each station
randomly picks a time-slot within a time-frame of a pre-
determined size. The detector controls the frame-size based
on the observed successes and failures on previous time-
frames.

There are also studies that investigate methods for simul-
taneous station detection, that are proposed as extensions
to collision avoidance methods. One of these approaches
is to use multi-antenna decoders as in [4], where multiple
linear combinations of transmitted signals are received at the
antennas and detection is done by solving these linear equa-
tions. Another line of research [5] employs signal processing
inspired techniques to cluster the complex-valued samples
of the received mixture. Later work [6], [7], [8] improve
this method by taking additional information into account,
such as considering the temporal information instead of only
using projection of the samples on the plane. These studies
share a common caveat inherent in the clustering technique;
as the station population increases, the number of clusters
grow exponentially and they become indistinguishable.

In [9], authors design binary codes and propose a scheme
to decode multiple stations at once over a binary-OR channel.
These described simultaneous detection methods work as part
of collision avoidance techniques aim to decode the collided
packets when an undesired collision occurs. Due to this use-
case, these methods expect only a few packets collide.

As an alternative perspective to the established collision
avoidance schemes, we describe a new coding scheme that
embraces collisions. A major goal of this approach is to
ensure scalability to be feasible for applications that involve
large populations of stations. We propose to have all active
stations transmit at once and detect them simultaneously
from the received signal mixture. The work in [10] also
embraces collisions to detect stations simultaneously. Despite
its practical appeal this work omits theoretical guarantees
and due to its use of clustering techniques, suffers from the
aforementioned lack of scalability.

In our problem formulation, we propose statistical models
that capture the statistics of stations’ activation. By consider-
ing these, we are able to connect the detection problem with
other fields like compressed sensing. This enables numerous
algorithms to be employed as potential solutions to the large-
scale detection problem.

The contributions of this paper can be summarized as

• We present basic limits of achievable delay by collision
avoidance approaches in multi-station detection.



• We propose a communication scheme for the simulta-
neous station detection and derive bounds for its error
probability and delay performance under the proposed
activation models. We show that the proposed approach
outperforms collision avoidance methods. More specif-
ically, we show that under the independent activation
model the delay of proposed simultaneous detection
scheme is Θ

( log2(n)
log(log(n))

)
, while collision avoidance ap-

proaches yield Ω
(

log2(n)
)

delay scaling.
• We discuss practical issues related to implementing

our scheme and describe a computationally feasible
decoding approach and present numerical investigations.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

Let there be a total of n stations in the system. We call a
station active (state 1) if it is within the reading range of the
detector and passive (state 0) otherwise. We consider two
cases that model the statistics of the distribution of states of
stations. We employ these models later in our analyses and
numerical investigations.
• Sparse Activation Model: There exists an upper bound
kmax ∈ Z+ on the number of active stations at a time.
This bound is independent of n.

• Independent Activation Model: The states of stations are
i.i.d. Bernoulli random variables with some p ∈ [0, 1],
where p is allowed to be a function of n.

The goal of multi-station detection problem is to detect the
set of active stations at a time with as small delay as possible
while achieving low detection error probability. Here, we
refer to the time it takes for a scheme to attempt detecting
the set of active tags in the system as the delay of the
scheme. It is measured in terms of the number of transmitted
symbols. We report this performance metric in the evaluations
we present in the following sections.

For detection of stations, users interact with the central
station using a variety of protocols. These protocols can be
classified as collision embracing or collision avoiding. These
paradigms are presented in Figure 1. As mentioned in the
previous section, the literature on multiple access of multi-
station detection dominantly relies on collision avoidance
approaches that aim to coordinate present stations to transmit
their signatures one at a time. Next, we describe the activation
process in our collision embracing scheme.

(a) Collision Avoidance
Scheme

(b) Collision Embracing
Scheme

Figure 1: Perspectives of Collision Avoidance and Collision
Embracing Schemes

We associate unique real-valued sequences, called sig-
nature sequences to each station to distinguish them from
each other. We propose to have all stations transmit their

signature sequences simultaneously and detect the set of
present stations from the received mixture of these signals.
The aforementioned collision avoidance approaches yield
iterative solutions to detect stations one at a time, while our
approach views this task as a one-shot problem.

Let m denote the length of the signature sequences of sta-
tions and these sequences be stored in a codebook Am×n of
real symbols satisfying the power constraint 1

m

∑m
j=1 a

2
ij ≤

P, ∀i ∈ {1, 2, ..., n} for a given power constraint P ∈ R.
In our analyses and numerical investigations we use random
Gaussian codebooks, entries of which are independent and
identically distributed (i.i.d.) as aij ∼ N (0, P ). We use
SNR = P

N0/2
to denote the signal-to-noise ratio per trans-

mitted symbol.
Let the states of stations be denoted by the state-vector

s ∈ {0, 1}n and si denote the state of the ith station. An
active station transmits its signature sequence to show its
presence, which for station i would be {Aij}mj=1. Letting y
denote the m-dimensional vector received at the detector, we
obtain the following model

y = As + w, (1)

where w = {wi}mi=1 is additive white Gaussian noise with
wi ∼ N (0, N0/2). Using y and the known codebook A, the
detector infers the set of active stations.

Let ŝ denote the recovered state-vector from y by the
detector. Since the simultaneous detection of stations is a one-
shot process, we consider the event {s 6= ŝ} as a detection
error. On the other hand, in the case of an erroneous detection
a collision avoidance scheme allows the detector to ask for
a re-transmission. Since the proposed scheme does not allow
any re-transmissions, we aim to achieve the following.

Problem Statement: Our goal is to design a codebook A
that achieves low detection delays and yields a probability
of detection error that vanishes with increasing number of
stations, n.

Since the multi station detection problem is commonly
used in large scale applications, the detection method is
required to be applicable to large populations of stations and
achieve low delay scaling to still be feasible. In our analyses,
we guarantee low probability of detection error for large n,
which is usually the case in practice. We provide theoretical
guarantees on the achieved delay and error probabilities by
the proposed scheme in the next sections.

In addition to the mentioned related literature, the infor-
mation theoretic many-user information paradigm presented
in [11] is similar to ours under certain conditions. This paper
aims to characterize the capacity of Gaussian channel. What
distinguishes this work is that they allow the number of
transmitters to grow with the block-size, instead of assuming
it to be constant. The independent activation model we
propose becomes in line with this perspective when p is a
function of n. In Section IV, we consider this case in our
analysis and compare the generality of our results with the
related investigations in [11].

III. BASIC LIMITS OF SIMULTANEOUS DETECTION

We present theoretical guarantees for the simultaneous
detection scheme when maximum likelihood (ML) decoding
is used by the detector. Let E denote the event of an erroneous



detection, that is the event of having a station whose state
is detected incorrectly. and let TSD denote the delay of the
simultaneous detection scheme.

We first present a bound on probability of detection error
for finitely many stations, that is independent of the station
activation model. Then, using this result we analyze E[TSD]
under both of the proposed activation models.

Lemma 1. The probability of detection error for the pro-
posed simultaneous detection scheme using maximum likeli-
hood decoding satisfies

P(E) ≤
n∑
k=1

(
n

k

)(
1 +

k

4
SNR

)−m2
. (2)

Proof. We proceed by following the random coding ar-
gument (as in [12], Chapter 5). Let x(s) = As denote the
encoding function that maps the state-vector s to its cor-
responding codeword, where the codebook A = {aij}m×n
consists of i.i.d. Gaussian random variables aij ∼ N (0, P ).
Let

P2(si, sj) = Q
( ||x(si)− x(sj)||√

2N0

)
,

which is the probability that an ML-detector confuses the
state-vectors si and sj with each other under an AWGN
channel [12]. For a given codebook and a particular state-
vector si, using union bound and the fact that there are 2n

possible state-vectors we obtain the following.

P(E) =

2n∑
i=1

P(si)P(E|si)

≤
2n∑
i=1

P(si)

2n∑
j=1,j 6=i

P2(si, sj).

Let Nv denote the `1-norm of a vector v. Then, N|si−sj |
denotes the number of differing indices between the two
state-vectors si and sj .

2n∑
j=1,j 6=i

P2(si, sj) ≤
n∑
k=1

(
n

k

)
P(N|si−sj | = k). (3)

Let ŝ to denote the decoded state-vector. By the construction
of our codebook, we have |x(s)− x(̂s)| = |x(s− ŝ)|. Using
this, we define a new random variable DN|s−ŝ| as

DN|s−ŝ| = ||x(s)− x(̂s)|| =

√√√√√ m∑
i=1

N|s−ŝ|∑
j=1

aij

2

.

We rewrite (3) using this definition and the fact that Q(x) <

e−
x2

2 .
2n∑

j=1,j 6=i

P2(si, sj) ≤
n∑
k=1

(
n

k

)
Q
(

Dk√
2N0

)

<

n∑
k=1

(
n

k

)
E

[
e−

D2
k

4N0

]
.

Note that (
∑k
i=1 aij) ∼ N (0, kP ) and (

D2
k

4N0
) ∼ kP

4N0
χ2
m,

where χ2
m denotes the chi-squared distribution with m-

degrees of freedom. Hence, this expectation is the evaluation

of the moment generating function of χ2
m distribution at

t = − kP
4N0

.

E

[
e−

D2
k

4N0

]
=

(
1 +

kP

2N0

)−m2
.

Plugging this expression in (3) we obtain the following
bound.

P(E) ≤
(

2n∑
i=1

P(si)

)(
n∑
k=1

(
n

k

)(
1 +

kP

2N0

)−m2 )

=

n∑
k=1

(
n

k

)(
1 +

kP

2N0

)−m2
This result is independent of the station activation model

since prior probabilities of sets of stations being active de-
couple from our bound for probability of error and disappear
by adding up to one.

We aim to choose m large enough to make sure that
the probability of detection error vanishes as n → ∞,
while achieving low delay. Using Lemma 1, we first prove
a sufficient condition on m towards this goal and use it to
provide theoretical guarantees for the delay of our scheme
under both of the proposed activation models.

As long as we can guarantee that probability of detection
error vanishes with increasing n, the delay performance of
our scheme converges to m as n→∞ since the probability
of correct detection of all stations approaches one. Hence,
the detection task would be completed in one trial with
probability converging one.

1) Sparse Activation Model: In this model, the maximum
number of active stations is bounded by an integer kmax that
is independent of n. Note that we do not have any restrictions
on the distribution of station population as long as its support
is bounded by [0, kmax].

Theorem 1. Let simultaneous detection scheme be used with
ML-decoding. Suppose that the number of active stations at
a time is bounded by some kmax ∈ Z+. If m(n) = ω(log(n))
then for any SNR > 0, lim

n→∞
P(E) = 0.

Proof. See Appendix A.

Corollary 1. For large enough n, the probability of cor-
rect detection for simultaneous detection scheme with ML-
decoding gets arbitrarily close to 1. Therefore, for any
SNR > 0 a delay of

TSD =
4kmax log(n)− 2 log(2kmax!)

log(1 + kmaxSNR)

is achievable with a probability of error that vanishes with
increasing n.

Proof. This result follows from the last step of the proof
of Theorem 1.

In the proof of these result, we exploit the boundedness
of the number of active stations to obtain a tight bound,
which is not an unrealistic expectation for many practical
applications. For example, sparsity can be guaranteed in
inventory related applications involving RFID tags since
activation of tags require them to be in the limited reading



range of the tag reader. Hence, no matter how large scale
of a tag population the problem has and how densely
they are placed, the range of tag reader might limit the
maximum number of active stations at a time. Another
domain that involves such sparsity is massive Internet of
Things (IoT) applications, where despite the possibly large
population of devices they are likely to be located much
more sparsely compared to an inventory application. Using
such structural properties of application at hand, one can
bound the maximum possible number of the active stations
in the range of the detector.

2) Independent Activation Model: In this model, the
states of stations are i.i.d. Bernoulli random variables with
parameter p, which is allowed to scale with n. For our
analysis, we set p(n) = f(n)

n , where f(n) is a monotonically
increasing sub-linear function of n. This choice is due to the
proof technique we are using, where under the restriction of
p(n) = ω(1/n) we bound the probability of the population
of active stations deviating from the expected population.

Theorem 2. Let simultaneous detection scheme be used with
ML-decoding. Suppose that the states of stations are i.i.d.
Bernoulli random variables with p(n) = f(n)

n , where f(n)
is a sub-linear monotonically increasing function of n. If

m(n) = ω

(
2f(n) log(n)− log (d2f(n)e!)

log(f(n))

)
then

lim
n→∞

P(E) = 0.

Proof. See Appendix B.

Corollary 2. For large enough n, the probability of cor-
rect detection for simultaneous detection scheme with ML-
decoding gets arbitrarily close to 1. Therefore, for p(n) =
f(n)
n and any SNR > 0 a delay of

TSD =
4f(n) log(n)− 2 log(d2f(n)− 1e!)

log
(

1 + f(n)
2 SNR

)
is achievable with a probability of error that vanishes with
increasing n.

Proof. This result follows from the last step of the proof
of Theorem 2.

This activation model is more challenging than the sparse
activation model. As discussed previously, many applications
can be modeled using the sparse activation model due to
problem specific properties like the possibly limited reading
range of detectors or sparse placement of stations. However,
this setting is still of interest as it demonstrates the robustness
of the scheme to the variation in active number of stations.
Moreover, the availability of such theoretical guarantees
might expand the possible applications of multi-station detec-
tion and make new use-cases feasible. Note that, under this
model the expected number of active stations is unbounded
and despite this challenge, the proposed simultaneous scheme
achieves a desirable delay performance.

Corollary 3. As a special case of the previous result, for
p(n) = c log(n)

n for some c ∈ R+ and any SNR > 0 a delay
of

TSD =
4c log2(n)− 2 log (d2c log(n)− 1e!)

log
(

1 + c log(n)
2 SNR

)
is achievable with a probability of error that vanishes with
increasing n.

As mentioned in Section I, part of the work presented in
[11] is similar to our scheme under the independent activation
model when p scales with n. In that study, minimum user
identification cost is reported as a measure, which is analo-
gous to m in our formulation. It is defined as the minimum
signature length for detection of the set of active transmitters,
which guarantees a vanishing error probability as n → ∞.
Using our notation, the main result for this part of this study
(Theorem 2 in [11]) requires the following hypothesis for
p(n) = f(n)

n .

lim
n→∞

ne−δf(n) = 0 for all δ > 0,

which is not satisfied by our benchmark setting of f(n) =
c log(n), since for δ = 1/c this limit yields 1. This condition
is equivalent to requiring f(n) = ω(log(n)). Regardless of
the result being used, we must have f(n) = o(n) to ensure
p(n) ∈ [0, 1] ∀n. Therefore, while our result is applicable for
any f(n) that is o(n), the similar theorem in [11] requires
f(n) to be ω(log(n)) and o(n).

IV. BASIC DELAY LIMITS OF COLLISION AVOIDANCE
SCHEMES

In this section, we present the fundamental limits of the
delay performance of collision avoidance schemes. We first
derive a bound for a genie-aided scheme assuming perfect
coordination. Despite being unachievable, the scaling of this
optimistic result is outperformed by the proposed simultane-
ous detection scheme. We then use dynamic programming
to present a fundamental limit for any CSMA scheme that
detects stations one at a time. Finally, we turn to a RFID tag
detection method used in practice, called QueryTree [1], as
a special case of our previous analyses and derive a bound
for it.

A. Genie-Aided Collision Avoidance Scheme with Perfect
Coordination

Regardless of how they schedule their transmissions, all
collision avoidance schemes try to coordinate the stations to
maximize the ratio of time-slots at which there is exactly
one transmission. Hence, the optimal situation for a collision
avoidance scheme is to achieve perfect coordination and
have exactly one station transmit at each time-slot, without
any idle slots. We now analyze this optimistic case by
considering a scheme, where we assume that there is a
genie that assigns each station a time-slot to achieve perfect
coordination without any overhead.

We denote the delay of this scheme by TGenie. We employ
the independent activation model with p(n) = c log(n)

n and
assume a power constraint of P and an AWGN channel with
a noise variance of N0/2.



Lemma 2. Suppose that the states of stations are i.i.d.
Bernoulli random variables with p(n) = c log(n)

n , for some
c ∈ R+. The delay performance of genie-aided scheme with
perfect coordination satisfies

E[TGenie] ≥
2c log2(n)

log(2) log
(
1 + SNR

) (4)

Proof. Under the independent activation model with
p(n) = c log(n)

n , the expected number of active stations at
a time is log(n). Therefore, even if there is exactly one
transmitter at a time at all time-slots without any errors due
to channel impairments, the expected number of time-slots
needed to have each station transmit their signature is at least
log(n). Since there are n stations in the system, the binary
signature length of each station must be at least log2(n).

By Theorem 9.1.1 of [13], the capacity of a Gaussian
channel with power constraint P and noise variance N0/2
is the following.

C =
1

2
log (1 + SNR) bits/real symbol (5)

Therefore, if the stations use capacity achieving channel
coding, a binary string of length log2(n) would be transmitted
by log2(n)

C symbols.

B. Query Tree Protocol

As proposed in [1], QueryTree protocol converts the multi-
ple access of RFID tag identification to a tree-search problem.
The tag reader has a hierarchical tree of the set of tags in
the system and traverses it in a depth-first manner. At the
beginning of each time-frame, the reader broadcasts the prefix
of the current node of the tree and the tags whose signatures
start with the prefix respond. If the reader observes collision,
it keeps traversing down the branch. Otherwise records the
response (or no response) and trims the sub-tree below the
current node and backtracks to the next unresolved node in
the tree.

Similar to the previous result, we let the expected number
of active tags be c log(n) and let m = log(n) bits, which is
the lower bound on m due to the population of n tags in the
system. By Equation (1) of [1], for n > 54 the expected num-
ber of queries sent by the reader for identifying c log(n) tags,
denoted by q, is bounded as E[q] ≥ 2.881c log(n) − 1. We
assume that the time-frames are of a fixed length of log2(n),
which is the minimum due to the signature length. Let Nb
denote the total number of bits exchanged for identifying
c log(n) tags. Since we are omitting the broadcasted queries
from the reader in Nb, we obtain the following bound.

E[Nb] ≥ (2.881c log(n)− 1) log2(n)

By (5), using a capacity achieving channel coding scheme,
Nb bits can be transmitted in Nb

C symbols. Hence, the
expected delay of QueryTree, denoted by TQT , satisfies

E[TQT ] ≥ 5.762c log2(n)− log(n)

log(2) log
(
1 + SNR

) . (6)

C. Fundamental Delay Limit of CSMA Schemes

Consider a CSMA scheme, where the number of active
stations, denoted by k, are known at the detector and the
frame-size is chosen optimally to minimize the detection
delay. Since any other CSMA scheme without centralized
coordination would achieve a delay at least as much as this
scheme, the delay obtained by this optimal algorithm serves
as a fundamental limit on CSMA approaches.

We formulate this scheme using dynamic programming.
We use the expected delay of the scheme as the objective
function J(k, q) with the control parameter q, which denotes
the choice of the number of time-slots. At the end of each
frame, the size of the next frame is chosen optimally based on
the number of undetected active stations. We use q∗(k) and
J∗(k) to denote the optimal frame-size and corresponding
minimum expected delay.

J∗(k) = min
q≥1

q +
∑
l≤k

P(k → l|q)J∗(l)

 ,

where P(k → l|q) denotes the probability of detecting (k− l)
stations and reducing the number of remaining stations to l.
In that event, the scheme would choose q accordingly to incur
the expected delay of J∗(l). Adding the size of the current
frame and the expected delay of detecting the remaining
active stations, we obtain the equation above. One caveat
of this formulation is that the channel is implicitly assumed
to be error-free and the only source of error is collision of
multiple packets.

The main challenge of this problem is to compute P(k →
l|q) terms. We use the fact that the decision of a station on
whether to use a particular time-slot or not is conditionally
independent from its decisions for the rest of time-slots. Let
X(k, q) be the random variable that denotes the number of
successful decoding in q time-slots and in the presence of
k stations. This value can be decomposed as the following,
where pi(k, q) is the probability of exactly i stations choosing
a fixed time-slot.

pi(k, q) =

(
k

i

)(
1

q

)i(
1− 1

q

)(k−i)

X(k, q) =


X(k, q − 1), w.p. p0(k, q)

X(k − 1, q − 1), w.p. p1(k, q)

X(k − i, q − 1), w.p. pi(k, q), k ≥ i ≥ 2

Since P(k → l|q) = P(X(k, q) = (k− l)), we can use the
random variable X as a surrogate to compute the probabilities
iteratively.

P(X(k, q) = i) = p0(k, q)P(X(k, q − 1) = i)

+ p1(k, q)P(X(k − 1, q − 1) = i− 1)

+

k∑
j=2

pj(k, q)P(X(k − j, q − 1) = i)

We numerically computed the (J∗(k), q∗(k)) for k ∈
{1, ..., 300} and obtained the optimal frame-size to be
q∗(k) = k. Moreover, the optimal expected delay turned out
to be an approximately linear curve with its slope rapidly
converging to e as shown in Figure 2. Based on these
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Figure 2: The slope of J∗(k) converges to e with growing
number of active stations.

observations, we present the following conjecture and use
that expression in the following discussions.

Conjecture 1. The expected delay of the CSMA scheme
that chooses the frame-sizes optimally satisfies the following,
where k denotes the number of active stations.

lim
k→∞

|J∗(k)− ek| = 0 (7)

Since we are interested in the scaling of this expression and
the convergence is observed to occur rapidly, we approximate
the expected delay cost of this scheme as J∗(k) ≈ ek.
Finally, we plug in E[k] = log(n) and as in QueryTree
analysis, we lower bound the duration of each time-slot with
log(n). Letting T ∗CSMA denote the delay of this optimal
scheme, we obtain a symbol-level expected delay as the
following with the use of a capacity achieving coding.

E[T ∗CSMA] ≈ e log2(n)

log(2) log(1 + SNR)
. (8)

D. Discussion

Due to the common use of multi-station detection in
large-scale applications, the scaling of delay performance
with the station population plays an important role in
the evaluation of multi-access schemes. Observe that the
detection times of existing collision avoidance schemes
scale with Ω(log2(n)), while the proposed scheme achieves
Θ
( 2c log2(n)−log(d2f(n)e!)

log(log(n))

)
with probability approaching 1 as

n→∞.
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Figure 3: Presented expressions for delay performances for
SNR=-15 dB

To demonstrate the difference between these scalings, we
plot these expressions in Figure 3 for SNR = −15 dB.
The gap between the delay of the proposed scheme and
the derived fundamental limit of CSMA schemes increases
significantly for large n. This suggests potentially significant
improvements for large scale applications, which are common
in many contexts that employ multi-station detection.

V. IMPLEMENTATION OF SIMULTANEOUS DETECTION &
NUMERICAL RESULTS

Despite its value for our theoretical work, ML-decoding is
not feasible for practical implementations due to its compu-
tational complexity growing exponentially with n. Hence, we
direct our attention to more applicable decoding methods.

Due to various other challenges in the decoding process,
we assume that the number of active stations, denoted by
k, is known at the decoder and omit the estimation of this
parameter. Estimating the number of active stations has been
studied extensively in the literature, especially in the context
of RFID tag detection. For high SNR levels, even simpler
methods like power detection can be used to accurately
estimate k. We assume that the decoder employs such a
method k is known.

A. Near-far Problem

In this paper we assumed that the transmissions are over an
AWGN channel. This model can also be used to approximate
problems concerning fading channels, where the gains of
channels between stations and the detector are close to each
other. In many applications, this assumption is not very
unrealistic as long as the stations have a line-of-sight with the
detector and are separated from it by approximately the same
distance. The following discussion on the practical decoding
methods assumes this structure. It is important to note that
if this assumption can not be satisfied in an application, one
might suffer from the near-far problem.

More specifically, due to factors like significant differences
between the distances of stations from the detector and high
variation among channel gains in the presence of fading
channels, signals received from some of the stations might
have much more power than the others. If not addressed,
the unbalanced powers of signals might cause problems in
the detection of k and especially complicate the detection of
stations whose signals were received with relatively smaller
power. In that case, additional steps like channel estimation
might be introduced to the decoding methodology.

B. Multi-User Decoding Methods

As a feasible alternative to ML-decoding, the decoding
methods proposed for multi-user decoding methods can be
used with our scheme. One of the established applications of
this framework is the multiple-input multiple-output (MIMO)
decoding problems, which we use as an example to de-
scribe how multi-user detection can be adapted to be used
with simultaneous detection scheme. One can interpret each
stream in a MIMO channel as the transmission of a station,
which replaces the channel gain coefficients in the original
problem setting with the signature sequences of stations.
Using this analogy, various MIMO decoding methods become
feasible candidates for replacing ML-decoding to use with



our scheme. Although some not straight-forward, decoding
methods like minimum mean squared error decoding, decor-
relator, matched filter [14], semidefinite relaxation and sphere
decoding [15] can be adapted to be used in place of ML-
decoding with simultaneous detection scheme. Interpreting
channel gain as the codewords of same power brings the
implicit assumption of having approximately the same chan-
nel gains for all stations. We omit the details of particular
decoding methods since they fall out of the scope of this
paper.

C. Decoding with Orthogonal Matching Pursuit

Another alternative is to consider compressed sensing
methods for decoding under the sparse activation model.
In this model, the state-vector s is a sparse vector and the
decoding process aims to recover it from the vector As with
additive noise, which falls in the framework of compressed
sensing and methods like orthogonal matching pursuit (OMP)
[16] can be used to detect the set of active stations. Similar
issues to near-far problem might appear with this method,
too, since factors like channel fading are not considered in
many of the compressed sensing problem formulations.

OMP is an influential iterative compressed sensing algo-
rithm that greedily detects the set of non-zero indices of a
sparse vector s from a noisy observation such as our model
y = As + w under the sparse activation model. The sparse
signal to be decoded in our case is the state vector s. OMP
keeps a residue parameter rt, which is initialized as r0 = y
and has a stopping threshold τ .

Let A(S) denote the submatrix of A obtained by only
keeping the set of columns of A in the index set S. At
each iteration, the algorithm searches for the index of s
that maximizes its projection onto rt, then subtracts this
projection from the residue. The algorithm keeps executing
these steps until ||r||2 ≤ τ is achieved.

Since we assume that k is known and the choice of τ
is not straight-forward, we use a variant of this algorithm,
which we call OMP-k. Its only difference from the original
OMP algorithm is the stopping rule, where instead of using
a threshold we run the algorithm for exactly k iterations.
The pseudo-code of this method is presented in Algorithm
1, where I denotes the identity vector and < rt,xt > is the
dot product of the two vectors.

Algorithm 1 OMP-k

Require: The active number of stations k
r1 = y and S = ∅
for t = 1, 2, .., k do

xt = arg maxxt∈x | < rt, xt > |
S = S ∪ {xt}
Pt = A(S)(A(S)TA(S))−1A(S)T

rt+1 = (I − Pt)y
end for
return S

D. Numerical Investigations

1) Simulation Setting: We conducted numerical inves-
tigations under the sparse activation model, using OMP-
k decoding for kmax = 20. In our simulations, we use

the implementation of the algorithm in the scikit-learn [17]
scientific computing software library. In order to capture the
behavior of our policy in various settings we report results
for a set of different SNR levels and span a large range of
n with our simulations. As the performance metric for our
investigations, we report the accuracy of the station detection,
where an attempt is considered successful if the states of
all stations are correctly detected. All reported results are
obtained using random Gaussian codebooks and by averaging
the results of 50 independent simulations.

Figure 4: The accuracy of OMP-k decoding for m chosen
as the lower bound in Corollary 1 under the sparse

activation model

2) Numerical Results: We set m to be equal to the bound
presented in Corollary 1, which is the minimum block-length
that ensures vanishing probability of error. With this choice,
we simulated the detection process for growing station popu-
lation and various SNR levels. The results of this simulation
is presented in Figure 4.

Note that despite the presented delay guarantees for the
simultaneous detection scheme were asymptotic and with
ML-decoding, accuracies very close to 1 are achieved with
minimum choice of m for relatively small n values using
OMP. This result shows the potential of the simultaneous
detection scheme for practical applications. Note that one
can obtain even higher accuracies for such small station
populations by setting m larger than the lower bound and
slightly sacrificing from the delay.

VI. DISCUSSION & CONCLUSION

In this paper we introduced a multiple access scheme
for the simultaneous detection of mobile stations. Unlike
the vast majority of existing approaches, we embrace col-
lisions rather than trying to avoid them. We presented both
finite-regime and asymptotic theoretical guarantees for this
scheme concerning its delay performance and error proba-
bility. Another contribution of this work is the analysis of
collision avoidance schemes and derivation of fundamental
limits on their delay performances. Using these results, we
showed that the proposed simultaneous scheme yields more
desirable scaling of detection delay compared to the any
delay achievable by a collision avoidance scheme. Finally,
we discussed the practical challenges and presented lower



complexity variants of our decoding method and presented
numerical investigations showing the applicability and high
performance of the proposed scheme.
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APPENDIX A
PROOF OF THEOREM 1

Due to the kmax bound, we have N|s(i)−s(j)| ≤ 2kmax.
Therefore, the probability of making errors with more than
2kmax mismatches is zero under this scheme. By Lemma 1
and by nk

k! ≥
(
n
k

)
, we obtain the following.

P(E) ≤
2kmax∑
k=1

nk

k!

(
1 +

kP

2N0

)−m2
Since this is a finite sum, it suffices to show that each
summand of the bound vanishes to show that P(E) → 0.
Hence, following is an equivalent condition.

lim
n→∞

{
nk

k!

(
1 +

kP

2N0

)−m2 }
= 0, ∀k ≤ 2kmax (9)

By taking the logarithm of both sides of (9), we obtain the
following.

lim
n→∞

{
k log(n)− log(k!)− m

2
log

(
1 +

kP

2N0

)}
= −∞

The following condition on the choice of m as a function of
n, ensures the stated condition above is satisfied.

m(n) ≥ 2
k log(n)− log(k!)

log

(
1 + kP

2N0

) + g(n),

where g(n) is any monotonically increasing non-negative
function of n. If this condition is satisfied for k = 2kmax,
then it holds for any other feasible k. Finally, setting k =
2kmax and reorganizing terms yield the desired result. .

APPENDIX B
PROOF OF THEOREM 2

Let ε > 0. We partition the event E over the number of
active stations, denoted by Ns.

P(E) = P(E|Ns ≥ np(1 + ε))P(Ns ≥ np(1 + ε))

+ P(E|Ns < np(1 + ε))P(Ns < np(1 + ε))

Bounding the first and fourth terms of the right hand-side by
1, we end up with the following bound. Then, we show that
both terms on the bound vanish as n→∞.

P(E) ≤ P(Ns ≥ np(1 + ε)) + P(E|Ns < np(1 + ε))

Since si are i.i.d. Bernoulli random variables with param-
eter p = f(n)

n , we can use Chernoff-Hoeffding bound.

P(Ns ≥ np(1 + ε)) ≤ e− ε
2np
3 = e−

ε2f(n)
3

Therefore, limn→∞ P(Ns ≥ np(1 + ε)) = 0.
To bound P(E|Ns < np(1 + ε)), we use (2) with the fact

that nk

k! ≥
(
n
k

)
.

P(E|Ns < np(1 + ε)) ≤
2bf(n)(1+ε)c∑

k=1

nk

k!

(
1 +

kP

2N0

)−m2
≤ 2f(n)(1 + ε) max

k

{
nk

k!

(
1 +

kP

2N0

)−m2 }
Instead of finding the maximizing k value for this bound, we
choose m such that this bound vanishes for all k. Similar to
(9), we require the following.

lim
n→∞

{
2f(n)(1 + ε)

nk

k!

(
1 +

kP

2N0

)−m2 }
= 0, ∀k

Since this expression holds for arbitrarily small ε > 0, we can
drop the (1 + ε) coefficient from our expression by choosing
it small enough. Taking the logarithm of both sides yields
the following condition.

m(n) ≥ 2
log(2f(n)) + k log(n)− log(k!)

log
(
1 + k

4SNR
) + g(n)

where g(n) is a monotonically increasing nonnegative func-
tion of n. Setting k = d2f(n)e and reorganizing terms
complete the proof.


