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Abstract The Foster-Lyapunov theorem and its variants serve as the primary
tools for studying the stability of queueing systems. In addition, it is well known
that setting the drift of the Lyapunov function equal to zero in steady-state pro-
vides bounds on the expected queue lengths. However, such bounds are often very
loose due to the fact that they fail to capture resource pooling effects. The main
contribution of this paper is to show that the approach of “setting the drift of a
Lyapunov function equal to zero” can be used to obtain bounds on the steady-state
queue lengths which are tight in the heavy-traffic limit. The key is to establish an
appropriate notion of state-space collapse in terms of steady-state moments of
weighted queue length differences, and use this state-space collapse result when
setting the Lyapunov drift equal to zero. As an application of the methodology, we
prove the steady-state equivalent of the heavy-traffic optimality result of Stolyar
for wireless networks operating under the MaxWeight scheduling policy.

1 Introduction

The performance of control policies in queueing systems is evaluated by study-
ing the sum of appropriately weighted queue lengths, either in steady-state and
along almost every sample path. However, deriving optimal control policies is dif-
ficult because any stochastic optimal control formulation of the problem is often
intractable. An alternative is to study the system in heavy-traffic, i.e., when the
vector of exogenous arrival rates to the queueing system is close to the capacity
region in the network. In such regimes, the behavior of the network often sim-
plifies: a multi-dimensional state description of the queueing system reduces to a
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single dimension (or to a small number of dimensions) and it is easier to reason
about the optimality of the control policies in one dimension. This behavior of the
queueing system in heavy-traffic, called state-space collapse, is at the heart of most
heavy-traffic optimality results.

Heavy-traffic analysis of queueing systems using diffusion limits was initiated
by Kingman in [21] and state-space collapse was observed for priority queues by
Whitt in [42]. The use of state-space collapse to study heavy-traffic optimality was
introduced by Foschini and Salz in [8] in their classic paper on join-the-shortest
queue (JSQ) routing. Since then, the methodology and applicability of this tech-
nique have been extended in a number of papers; see, for example, the works of
Reiman [32], Bramson [5], Williams [43], Harrison [16], Harrison and Lopez [17],
and Bell and Williams [2]. This list of papers is by no means exhaustive, it is only
meant to be a representative sampling of the papers in the area. Many of these
papers which consider multi-queue models served by multiple resources rely on the
so-called resource pooling condition, under which the behavior of the queueing sys-
tem under study in heavy-traffic is governed by a single bottleneck resource. This
results in the state-space collapse mentioned earlier, which is critical to establish-
ing heavy-traffic optimality. In addition, these papers also implicitly assume that
the scheduling policy in the queueing system is work conserving, i.e., backlogged
work is served at the maximum possible rate by each station. In a seminal paper
on generalized switches, Stolyar extended the notion of state-space collapse and
resource pooling to systems where such per-node work-conserving policies are hard
to define [36]. In particular, he showed that a class of scheduling policies called
the MaxWeight policies, introduced by Tassiulas and Ephremides [38] (see [27,31,
7,29] for extensions) is heavy-traffic optimal in an appropriate sense. While Stol-
yar’s work considered single-hop traffic only, the proof of heavy-traffic optimality
in the multi-hop case was provided by Dai and Lin [6]. Extensions to other types
of scheduling policies were presented in [35] by Shakkottai, Stolyar and Srikant. It
should be noted that the MaxWeight policy was shown to be optimal at all traffic
loads for a simple wireless network model (with symmetric Bernoulli arrival and
service processes) by Tassiulas and Ephremides [39], who also obtained optimal
policies (which are not of MaxWeight type) for wireless networks where the links
are arranged in a line [40].

In general, state-space collapse does not lead to a one-dimensional state space.
When the state-space collapse is to a multi-dimensional state, it is often harder to
prove optimality in heavy-traffic. A model of the Internet with multi-dimensional
state-space collapse has been considered by Kang, Kelly, Lee and Williams [19].
While the resource allocation policy considered there is not optimal in heavy-
traffic, an important contribution there is to show that the expected workload
is only a function of the number of resources in the system and not the number
of flows in the system. State-space collapse is key to establishing such a result.
Multi-dimensional state-space collapse has also been studied by Shah and Wischik
for generalized switches [33]. In addition to recovering many of the earlier results
for other models as special cases, a key contribution in [33] is the introduction and
study of appropriate notions of optimality when the arrival rates lie outside the
capacity region of the system. Multi-dimensional state-space collapse for a very
simple four-link wireless network has been considered by Ji, Athanasopoulou and
Srikant in [18] who derive the heavy-traffic optimal policy for a network which has
two bottleneck resources in the heavy-traffic limit. In contrast to heavy-traffic lim-
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its, Venkatramanan and Lin have shown the optimality of the MaxWeight policies
in a large-deviations sense [41].

Much of work on heavy-traffic analysis of queueing systems relies on showing
that a scaled version of the queue lengths in the system converges to a regulated
Brownian motion. The typical result shows sample-path optimality in scaled time
over a finite time interval. Often, the results allow a straightforward conjecture re-
garding the distribution in steady-state. Proving convergence to the steady-state
distribution is an additional step which is not often undertaken. (Some exceptions
are the works by Gamarnik and Zeevi [9] and the recent work of Stolyar and Yudov-
ina [37].) For example, to establish the convergence of steady-state distributions in
[36], one has to show that the limits used for the diffusion scaling and the steady-
state limit (i.e., time going to ∞) can be interchanged, which can be done using
the results already established in [36]. In parallel with the development of analyz-
ing the heavy-traffic limits of queueing systems, Harrison [15] suggested directly
approximating the stochastic arrival and service processes in queueing systems by
Brownian motions. This theme was further developed by Laws [26], and Kelly and
Laws [20]. The main idea in these papers is to study convex optimization prob-
lems suggested by flow conservation equations, along with the Brownian control
problems. This theme has been influential in much of the work on heavy-traffic
optimality of control policies for queueing systems.

Instead of establishing optimality of control policies, if one is simply interested
in evaluating the performance of a particular policy, a common technique is to
study the drift of an appropriate Lyapunov function in steady-state. Assuming
that appropriate moments exist, which sometimes might be non-trivial to estab-
lish as in the work of Glynn and Zeevi [12], setting the drift equal to zero in
steady-state immediately provides bounds on the steady-state moments of queue
lengths. An early use of this technique was used by Kingman to derive his well-
known bound on the expected waiting time in a G/G/1 queue [22]. This idea was
pursued successfully by Kumar and Kumar [24] and by Bertsimas, Paschalidis and
Tsitsiklis [4] who present many extensions of the basic idea to different types of
queueing systems. The method was extended to loss models by Kumar, Srikant
and Kumar in [25]. The study of Lyapunov drift to analyze performance has its
roots in Markov chain stability theory using the Foster-Lyapunov theorem (see
the books by Asmussen [1], Meyn [28], and Meyn and Tweedie [30]). An explicit
connection between moment bounds and Lyapunov drift-based stability was pro-
vided by Kumar and Meyn in [23]. While most of these papers obtain bounds
on polynomial moments, Hajek [14] and Bertsimas, Gamarnik and Tsitsiklis [3]
obtained exponential-type bounds on the queue lengths. The bounds obtained by
Hajek will be very useful to us in this paper.

Now that we have described prior work on heavy-traffic analysis and perfor-
mance evaluation of queueing systems, we present our motivation for this paper.
The Lyapunov drift-based moment bounding techniques are simple to derive since
they require elementary probabilistic tools. Although the arrival and service pro-
cesses are assumed to be quite simple to apply these techniques, the queueing
models and control techniques can be quite complicated, thus making the tech-
niques fairly general in their applicability. However, in many cases, the bounds
obtained from these techniques are extremely loose in complex queueing systems
such as wireless networks operating under the MaxWeight policy, or sometimes
even in simple systems such as parallel servers to which arrivals are routed accord-
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ing to the JSQ policy. Therefore, the bounds obtained from drift considerations
are sometimes not very useful to evaluate control policies for queueing systems.
The main reason is that, simple drift-based bounds do not exploit resource pooling
effects observed in heavy-traffic. The key to introducing resource pooling effects
into the drift-based arguments is to define an appropriate notion of state-space
collapse that can be easily incorporated into the derivation of the drift-based mo-
ment bounds. In this paper, we present techniques for doing so, i.e., we present
techniques for introducing the notion of state-space collapse into the drift-based
moment bound derivations. In particular, we obtain upper bounds on the expected
value of weighted functions of queue lengths for queueing systems operating un-
der certain control policies, which coincide with lower bounds in heavy-traffic.
Additionally, our techniques provide explicit bounds on moments even when the
system is not in heavy-traffic, and can thus serve as a performance evaluation tool
for the pre-limit systems when combined with optimization techniques such as
those suggested in [34].

We consider two types of queueing systems to illustrate our methodology:
parallel servers where arrivals are routed according to the JSQ policy and wire-
less networks operating under the MaxWeight policy. In this paper, we call these
two problems, the routing problem and the scheduling problem, respectively. The
scheduling problem is directly motivated by scheduling in wireless networks and
high-speed networks, while the routing problem is an abstraction of multi-path
routing in communication networks, wireless or wireline. The proofs of results are
simpler for the JSQ problem, and so for ease of exposition, we illustrate all the
steps in our derivation using JSQ first. The MaxWeight policy is harder to analyze,
but once the basic idea behind the proof is presented for JSQ, the extension to
MaxWeight follows when the geometrical insight in Stolyar’s work [36] is trans-
lated into the Lyapunov drift framework. We note that the work of Gans and van
Ryzin [10,11] is similar in spirit to our work. They study heavy-traffic optimality
in terms of steady-state moments. They first obtain a lower bound on the workload
in a G/G/1 queue, which is similar to the Kingman-type bound [22] that we also
use. However, beyond these similarities, their work is quite different in the follow-
ing aspects: their upper bounds are derived for policies which make explicit use of
the knowledge of the arrival rates and the topology of the capacity region (which
is unknown in wireless networks with time-varying channels as we will see later).
In contrast, the policies that we study do not require any of this information, and
further, our Lyapunov drift-based approach appears to be quite different from the
techniques used in [10,11]. Also related is the work of Gupta and Shroff [13], who
use Lyapunov-based bounds to numerically study the performance of MaxWeight
algorithms. However, their bounds are not provably tight although they perform
well in numerical studies and simulations. Thus, they cannot be used to establish
heavy-traffic optimality.

1.1 Outline of the Methodology

The main contribution of the paper is a Lyapunov-drift based approach to ob-
taining bounds on steady-state queue lengths that are tight in heavy traffic. Our
approach consists of three major steps:
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1. Lower bound: First, we present a lower bound for the expected queue lengths
in a single-server queue, and use this to identify appropriate lower bounds
for both the parallel server model and the wireless network model. The lower
bound that we obtain for the single-server queue is perhaps well-known and it
follows the basic idea behind the Kingman bound [22]. However, we have not
seen it explicitly stated, so we provide it here along with a short derivation.

2. State-space collapse: The next step is to show state-space collapse to a single
dimension for both models. Unlike fluid limit proofs, in our model, the state
does not actually collapse to a single dimension. What we show is that com-
pared to the queue lengths, the differences between appropriately weighted
queue lengths is small in an expected sense in steady-state.

3. Upper bound: The final step is to derive an upper bound on the expected
steady-state queue lengths. For this step, as we will see, we use a natural
Lyapunov function suggested by the resource pooling to be expected in the
two problems. However, setting the drift of the Lyapunov function equal to
zero directly does not yield a good upper bound. In addition, one has to use
the state-space collapse result from the previous step to get an asymptotically
tight upper bound. Once the upper bound is derived, checking that the upper
and lower bounds coincide in heavy-traffic is straightforward. Even when the
system is not in heavy-traffic, the upper bounds hold and can be of independent
interest for performance analysis.

2 Notation, System Models and Other Preliminaries

In this section, we introduce some notation that will be used throughout the paper.
We consider the control of a network of L queues that synchronously evolve in a
time-slotted fashion. The evolution of the length of queue l is governed by:

Ql[t+ 1] = (Ql[t] +Al[t]− Sl[t])
+

= Ql[t] +Al[t]− Sl[t] + Ul[t], for each l = 1, · · · , L, (1)

where Al[t] and Sl[t] respectively denote the amount of arrivals and offered ser-
vices to queue l in slot t, and Ul[t] , max(0, Sl[t]−Al[t]−Ql[t]) denotes the unused
service by queue l in slot t. We assume that Al[t] and Sl[t] are non-negative integer
valued so that Ql[t], for each l, evolves over the space of non-negative integers. For
convenience, we will sometimes use boldface letters Q,A,S, and U to represent the
L-dimensional vectors of queue-lengths, arrivals, offered services, and unused ser-
vices, respectively. In our models in this paper, the queue length process {Q[t]}t≥0

will form a Markov chain. We will say that the queueing system is stable if this
Markov chain is positive recurrent, and use Q to denote the random vector whose
probability distribution is the same as the steady-state distribution of {Q[t]}t≥0.

Since the queue-length vector Q[t] evolves over integer values in the nonnega-
tive quadrant of the L-dimensional real vector space R

L
+, we will have occasion to

use the following notation in the paper and so we state them once for convenience:
for two vectors x = (xl) and y = (yl) in R

L, their inner product, Euclidean norm,
and the angle between them are respectively given by

〈 x,y 〉 ,
L∑

l=1

xlyl, ‖x‖ ,
√

〈 x,x 〉 =

√√√√
L∑

l=1

x2
l
, θx,y , arccos

(
〈 x,y 〉
‖x‖‖y‖

)
. (2)
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We use �,≺,� to denote component-wise comparison of two vectors, and 0 and 1

to denote all-zero and all-one vectors, respectively. We call two vectors orthogonal,
denoted x ⊥ y, if their inner product is zero, in which case the Pythagorean
Theorem applies:

‖x+ y‖2 = ‖x‖2 + ‖y‖2, for x ⊥ y. (3)

Additional characteristics and constraints on the arrival and service processes
depend on the particular problem we will consider, which will be discussed in
Sections 2.2 and 2.3 in the context of routing and scheduling, respectively. Next,
we present a result that provides a bound on the steady-state moment-generating
function of a random process using drift conditions.

2.1 A Useful Result

Our heavy-traffic analysis of the above models uses a result developed by Hajek
[14] in a more general context. In particular, this result will be useful in proving
state collapse in the sense mentioned in Section 1.1. We present it below for easy
reference.

Lemma 1 For an irreducible and aperiodic Markov Chain {X[t]}t≥0 over a countable

state space X , suppose Z : X → R+ is a nonnegative-valued Lyapunov function. We

define the drift of Z at X as

∆Z(X) , [Z(X[t+ 1])− Z(X[t])] I(X[t] = X),

where I(.) is the indicator function. Thus, ∆Z(X) is a random variable that measures

the amount of change in the value of Z in one step, starting from state X. This drift

is assumed to satisfy the following conditions:

(C1) There exists an η > 0, and a κ <∞ such that

E[∆Z(X)|X[t] = X] ≤ −η, for all X ∈ X with Z(X) ≥ κ.

(C2) There exists a D <∞ such that

P (|∆Z(X)| ≤ D) = 1, for all X ∈ X .

Then, there exists a θ? > 0 and a C? <∞ such that

lim sup
t→∞

E

[
eθ

?Z(X[t])
]
≤ C?.

If we further assume that the Markov Chain {X[t]}t is positive recurrent, then Z(X[t])
converges in distribution to a random variable Z̄ for which

E

[
eθ

?Z̄
]
≤ C?,

which directly implies that all moments of Z̄ exist and are finite.

We now introduce the two queueing control problems that will be considered
in this paper.
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2.2 Routing Problem and the JSQ Routing Policy

In the routing problem, we consider a system of L parallel servers and their asso-
ciated queues. Packets are routed to one of the queues upon arrival (see Figure 1).
The goal is to find a routing policy which minimizes the total workload in the
system.

Router

...
...

AS

 [t]

A1 [t]
Q1 [t]

Ql [t]

QL [t]

S1 [t]

Sl [t]

SL [t]

Al [t]

AL [t]

Fig. 1 System model for the routing problem.

We let AΣ[t] denote the random number of exogenous arrivals to the router
at the beginning of slot t. The router is then required to distribute the incoming
packets to L queues for service. In other words, in each time slot t, the router is

expected to select a nonnegative-valued vector A[t] = (Al[t])l such that
L∑

l=1

Al[t] =

AΣ[t]. Then, the queues will evolve as in (1) based on this routing decision. We
make the following assumptions on the arrival and service processes.

Assumption 1 (Assumptions for the Routing Problem) We assume that the ex-

ogenous arrival process and the service processes for different queues are independent

(not necessarily identically distributed). Also, we assume that the exogenous arrival

process {AΣ[t]}t and each service process {Sl[t]}t is composed of a sequence of in-

dependent and identically distributed (i.i.d.) nonnegative-integer-valued and bounded

random variables with AΣ[t] ≤ Amax <∞ and Sl[t] ≤ Smax <∞, for all l and all t.

We additionally use the following notation for the mean and variance of dif-
ferent random variables in the routing problem: for the arrival process, λΣ ,

E[AΣ[1]], σ2Σ , var(AΣ[1]); for the service process of each queue l, µl , E[Sl[1]],
ν2l , var(Sl[1]); and for the hypothetical total service process, defined as SΣ[t] ,∑L

l=1 Sl[t], we let µΣ ,
∑L

l=1 µl, ν
2
Σ ,

∑L
l=1 ν

2
l . Finally, we also introduce the

boldface notation for the L-dimensional vector of mean and variances for the ser-
vice processes: µ , (µl)l, and ν

2 , (ν2l )l. Without loss of generality1, we assume
that µmin , minl µl > 0.

1 We can eliminate any server with µl = 0 from the system since Sl[t] = 0 for all t with
probability one for any such server.
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We are interested in the performance of a well-known and very natural routing
policy, called Join the Shortest Queue (JSQ) Routing Policy, defined next.

Definition 1 (JSQ Routing Policy) For the routing problem introduced above
(see Figure 1), in each time slot t, the Join-Shortest-Queue (JSQ) Routing Policy

forwards all incoming packets to one of the the queues with the shortest queue-
length in that time-slot, breaking ties uniformly at random, i.e., given Q[t], and
AΣ[t], the arrival vector A[t] is selected as

A[t] = RAND

{
argmin

{A≥0:
∑

l Al=AΣ[t]}
〈A,Q[t] 〉

}
,

where RAND denotes that ties are broken uniformly at random.

The principle behind the JSQ routing policy is very intuitive: it constantly tries
to equalize the queue-lengths at all servers by routing all the incoming packets in
each time slot to one of the smallest queues. Thus, it hopes to make sure that
no server is idle when there is work to be done. If this can be achieved, then the
system will behave as though all the servers pool their resources together and act
like a single server queue. In this paper, we make this claim precise by using a
Lyapunov-based analysis.

It is clear that the maximum achievable service rate for the parallel queue
system is µΣ =

∑L
l=1 µl. A control policy is said to be throughput optimal if it

can stabilize any set of arrival rates which can be stabilized by another policy.
The JSQ routing policy is well known to be throughput-optimal; additionally, the
following lemma states that all moments are finite in steady-state. The proof is
provided in Appendix A for completeness.

Lemma 2 If the mean exogenous arrival rate λΣ lies outside the capacity region R,
i.e., λΣ > µΣ , then the queueing network cannot be stabilized by any feasible routing

policy.

For any λΣ in the interior of R, i.e., λΣ < µΣ , the JSQ Routing Policy stabilizes

the network in the following strong sense: {Q[t]}t converges in distribution to a random

vector Q whose all moments are bounded, i.e., there exist constants {Mr}r=1,2,··· such
that E[‖Q ‖r] =Mr.

2.3 Scheduling Problem and the MW Scheduling Policy

In the scheduling problem, the goal is to select an instantaneous service rate vector
for L queues with independent packet arrival processes, subject to certain feasi-
bility constraints on the rates at which the queues can be simultaneously served
(see Figure 2).

Here, the feasibility constraints can be used to model various types of cou-
pling between service availability at different queues. For example, in the context
of wireless networks with collision-based interference constraints, the feasibility
constraints can capture interference among simultaneous wireless transmissions.
Generically, we let S denote the set of feasible service rate vectors that the controller
is allowed to select from. Hence, each element S , (Sl)l of S is a vector of service
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Scheduler

...
...

A1 [t]
Q1 [t]

Ql [t]

QL [t]

S1 [t]

Sl [t]

SL [t]

Al [t]

AL [t]

S[t] :=(Sl [t])l Î ��

��: Set of feasible

service rates

Fig. 2 System model for the scheduling problem.

rates that can be offered to the queues in one slot, and hence it contains the all
zero vector 0, corresponding to no service.

In each time slot t, the scheduler is required to select a feasible service vector
S[t] ∈ S . Then, the queues will evolve according to (1) based on this scheduling
decision. We make the following assumptions on the arrival processes and the set
of feasible service rates.

Assumption 2 (Assumptions for the Scheduling Problem) We assume that the

arrival processes to different queues are independent (not necessarily identically dis-

tributed). Also, we assume that each exogenous arrival process {Al[t]}t is composed

of a sequence of i.i.d. nonnegative-integer-valued and bounded random variables with

Al[t] ≤ Amax <∞ for all l and all t. We assume that each feasible service rate vector

S ∈ S is nonnegative-integer-valued and bounded with Sl ≤ Smax <∞, for all l.

We additionally use the following notation for the mean and variance of dif-
ferent processes in the scheduling problem: for the exogenous arrival process for
each queue l, λl , E[Al[1]], σ

2
l , var(Al[1]); for the service process of each queue

l, µl , E[Sl[1]], ν
2
l , var(Sl[1]); for the hypothetical total arrival process, defined

as AΣ[t] ,
∑L

l=1 Al[t], we let λΣ ,
∑L

l=1 λl, σ
2
Σ ,

∑L
l=1 σ

2
l . Finally, we also in-

troduce the boldface notation for the L-dimensional vector of mean and variances
for the arrival and service processes: λ , (λl)l, and σ

2 , (σ2l )l; and µ , (µl)l, and
ν2 , (ν2l )l. Without loss of generality2, we can assume that λl > 0, ∀l.

In the rest of paper, we are interested in the performance of a well-known
queue-length-based scheduling policy, called Maximum Weight (MW) Scheduling
Policy, defined next.

Definition 2 (MW Scheduling Policy) For the scheduling problem introduced
above (see Figure 2), in each time slot t, the Maximum Weight (MW) Scheduling

Policy selects the service rate vector S[t] from S to optimize the following objective,
breaking ties uniformly at random,

S[t] = RAND

{
argmax

S∈S
〈Q[t],S 〉

}

2 We can eliminate any arrival with λl = 0 from the system since Al[t] = 0 for all t with
probability one for any such arrival.
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where 〈 ·, · 〉 is the vector inner product in R
L defined in (2).

2.4 Capacity Region for the Scheduling Problem

Definition 3 (MaximumAchievable Rate (Capacity) Region for the Schedul-

ing Problem, R) For the scheduling problem described in Section 2.3 operating
under Assumption 2 and the given set of feasible service rate vectors S , the max-
imum achievable rate region R is the convex hull3 of S , i.e.,

R , Convex Hull(S).

Under the assumed finite size and nonnegative nature of the set S , the region
R becomes a polyhedron in the nonnegative quadrant of RL, and hence can be
equivalently described by

R = {r ≥ 0 : 〈 c(k), r 〉 ≤ b(k), k = 1, · · · ,K}, (4)

where K denotes the finite (and minimal) number of hyperplanes that fully de-
scribe the polyhedron, and the pair (c(k), b(k)) defines the kth hyperplane, H(k),

through its normal vector c(k) ∈ R
L and its inner product value b(k) ∈ R as

H(k) , {r : 〈 c(k), r 〉 = b(k)}. Further, since the allowed feasible service rates are
nonnegative-valued, the pairs (c(k), b(k))k, are assumed to satisfy:

‖c(k)‖ = 1, c(k) � 0, b(k) > 0, for k = 1, · · · ,K.

Furthermore, we call the intersection of the kth hyperplane with R the kth face

F(k) of the achievable rate region, i.e., F(k) , H(k) ∩R. �

Figures 3 and 4 illustrate the above concepts for a 2-dimensional and a 3-
dimensional capacity region. The next lemma states the well-known throughput-
optimality of MW Scheduling, and shows that the steady-state moments of the
queue length vector are bounded. As in the routing problem, the proof of the
following lemma uses Lemma 1 and is omitted.

Lemma 3 If the arrival rate vector λ � 0 lies outside the capacity region R, i.e.,
λ /∈ R, then the queueing network cannot be stabilized by any feasible scheduling policy.

For any arrival rate vector λ in the interior of R, i.e., λ ∈ Int(R), the MW

Scheduling Policy stabilizes the network in the following strong sense that the queue-

length vector process {Q[t]}t converges in distribution to a random vector Q whose all

moments are bounded, i.e., there exist finite numbers {Mr}r=1,2,··· such that E[‖Q‖r] =
Mr.

3 Lower Bounds

We first consider a simple single-server queueing system, depicted in Figure 5 and
obtain a lower bound on the steady-state expected queue length in this system.
This lower bound will then be used to obtain lower bounds for both the routing
and scheduling problems.

3 The convex hull of a set S ⊂ R
L is the smallest convex set that contains S.
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�  
(1)

�  
(2)

�  
(3)

c
(1) c

(2)

c
(3) ! 

" : Red points

r2

r1

Fig. 3 The figure illustrates the capacity region for a 2-
dimensional example, indicating the hyperplanes H(k) and
the associated normal vectors c(k).
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r1

r2

r3

��
(1)

��
(2)

��
(3)

��
(4)

��
(7)

��
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(8)
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!�: Red points

Fig. 4 The figure illustrates the capacity region for a 3-
dimensional example (L = 3), indicating that each F(k) is
polyhedral in R

L−1 with a non-empty interior.

α[t]
F[t]

β[t]

Fig. 5 Lower bounding system with i.i.d. arrival and service processes over time with bounded
support.

We assume that the arrival and service processes to the single-server queue are,
respectively, described by two independent sequences of i.i.d. nonnegative-valued
random variables {α[t]}t and {β[t]}t.We assume that both distributions have finite
support, i.e., there exist αmax < ∞ and βmax < ∞ such that α[t] ≤ αmax and
β[t] ≤ βmax with probability 1 for all t. We also denote the means and variances
of the arrival and service processes as α , E[α[1]], σ2α , var(α[1]), and β , E[β[1]],
ν2β , var(β[1]). Then, the queue-length of the server Φ[t] evolves as

Φ[t+ 1] = (Φ[t] + α[t]− β[t])
+
, t ≥ 0. (5)
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We are now ready to provide a useful lower bound on the steady-state performance
of this system.

Lemma 4 For the system of Figure 5 with a given service process {β[t]}t, consider the
arrival process {α(ε)[t]}t, parameterized by ε > 0, with mean α(ε) satisfying ε = β−α(ε),

and with variance denoted as σ2
α(ε) . Let the queue-length process, denoted by {Φ(ε)[t]}t,

evolve as in (5) with α[t] := α(ε)[t].
Then, {Φ(ε)[t]}t is a positive Harris recurrent Markov Chain ([30]) for any ε > 0,

and converges in distribution to a random variable Φ
(ε)

with all bounded moments.

Moreover, the mean of Φ
(ε)

can be lower-bounded as

E

[
Φ
(ε)

]
≥ ζ(ε)

2ε
−B1, (6)

where ζ(ε) , σ2α + ν2β + ε2, and B1 ,
βmax

2 .

Therefore, in the heavy-traffic limit as the mean arrival rate approaches the mean

service rate from below, i.e., as ε ↓ 0, and assuming the variance σ2
α(ε) converges to a

constant σ2α, the lower bounds become

lim inf
ε↓0

εE
[
Φ
(ε)

]
≥ ζ

2
, (7)

where ζ , σ2α + ν2β .

Proof In the following argument, we will omit the (ε) superscript for ease of ex-
position, and revive it when necessary. The claim that {Φ[t]}t is positive Harris
recurrent follows from standard negative drift conditions ([30]). Then, Lemma 1
applies to the Lyapunov function V (Φ) , ‖Φ‖ as in the proofs of Lemmas 2 and 3,
and is omitted here. These establish that Φ[t] converges in distribution to Φ with
all bounded moments, i.e., E[‖Φ‖r] <∞ for each r = 1,2, · · · .

To prove the lower bound (6), we first expand (5) as

Φ[t+ 1] = Φ[t] + α[t]− β[t] + χ[t], t ≥ 0. (8)

where χ[t] denotes the unused service in slot t. For the quadratic Lyapunov function
W (Φ) , ‖Φ‖2, the mean drift ∆W (Φ) , [W (Φ[t + 1]) − W (Φ[t])] I(Φ[t] = Φ) in
steady-state must be zero, i.e., E[∆W (Φ)] = 0. Next, we expand the conditional
mean drift of W , omitting the time reference [t] for brevity:

E[∆W (Φ) | Φ[t] = Φ] = E[(Φ+ α− β + χ)2 − Φ2 | Φ]
= E[(Φ+ α− β)2 + 2(Φ+ α− β)χ+ χ2 − Φ2 | Φ]
= E[(α− β)2 | Φ] + 2E[(α− β) | Φ]Φ− E[χ2 | Φ]

where the last step uses the fact that χ(Φ+ α− β) = −χ2 by definition, and the
independence of the arrival and service processes from each other, and from Φ.

Taking expectations of both sides with respect to the steady-state distribution
of {Φ[t]} and using the fact that E[∆W (Φ)] = 0 yields, after re-organizing and
reviving the (ε) notation,

εE[Φ
(ε)

] =
E[(α(ε) − β)2]

2
− E[χ(Φ

(ε)
)2]

2

≥ ζ(ε)

2ε
− ε βmax

2
,
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where the last step follows from simple manipulations of the first term, and from

the facts that E[χ(Φ
(ε)

)] = ε, and χ[t] ≤ βmax for all t. �

Next, we will discuss the implications of this lower bound on the routing and
scheduling problems, respectively.

3.1 Lower Bounds for the Routing Problem

To lower bound the performance of any feasible routing policy, we assume resource

pooling whereby we consider a hypothetical single server that serves all exogenous
arrivals with a service rate of {SΣ [t]} defined as the sum of the service processes

of all servers in the actual system, i.e., SΣ ,
∑L

l=1 Sl[t]. This results in a single-
server queueing system of Figure 5 with the arrival process α[t] = AΣ[t], for all
t with αmax = Amax, and the service process β[t] = SΣ[t], for all t with βmax =
LSmax. It is then easy to see that the corresponding queue-length process {Φ[t]}t
is stochastically smaller than the total queue-length process {

∑L
l=1Ql[t]}t of the

original multi-server system in Figure 1 under any feasible routing policy. Thus,
utilizing the lower bounds from Lemma 4, we next establish lower bounds on the
performance of any routing policy (and hence JSQ) for all arrival rates.

Lemma 5 For the routing problem of Section 2.2 with a given service vector process

{S[t]}t, consider the exogenous arrival process {A(ε)
Σ [t]}t, parameterized by ε > 0, with

mean λ
(ε)
Σ

satisfying ε = µΣ −λ
(ε)
Σ

, and with variance denoted as (σ(ε)
Σ

)2. Accordingly,
let the queue-length process under JSQ Routing with this arrival process be denoted as

{Q(ε)[t]}t, evolving as in (1). Moreover, let Q
(ε)

denote the limiting random vector with

all bounded moments that the process {Q(ε)[t]}t is known (by Lemma 2) to converge

to, for any ε > 0.

Then, the first moment of the sum length of Q
(ε)

can be lower-bounded, with nota-

tion ζ(ε) , (σ
(ε)
Σ )2 + ν2Σ + ε2, as:

E

[
L∑

l=1

Q̄
(ε)
l

]
≥ ζ(ε)

2ε
−B1, (9)

where B1 , LSmax

2 .

Therefore, in the heavy-traffic limit as the mean arrival rate approaches the mean

service rate from below, i.e., as ε ↓ 0, and as the variance (σ(ε)
Σ

)2 converges to a constant

σ2Σ , the lower bound becomes, with notation ζ , σ2Σ + ν2Σ ,

lim inf
ε↓0

εE

[
L∑

l=1

Q̄
(ε)
l

]
≥ ζ

2
. (10)

3.2 Lower Bounds for the Scheduling Problem

Unlike the routing problem, where there is a single natural lower bound on the
total queue-length in the system, in the case of scheduling, the polyhedral nature
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of the capacity region R (see Definition 3), implies that there are many possible
lower bounds.

Assume that λ ∈ Int(R). From Definition 3, recall that the capacity region is
bounded by K hyperplanes, each hyperplane H(k) described by its normal vector
c(k) and the value b(k). Then, we can define the distance of λ to the kth hyperplane
and the closest point, respectively, as

ε(k) , min
r∈H(k)

‖λ− r‖, (11)

λ
(k)

, λ+ ε(k)c(k), (12)

where ε(k) is strictly positive for each k since λ is assumed to be in the interior of
R. We let ε , (ε(k))Kk=1 denote the vector of distances to all hyperplanes, which
will later be used to alternatively refer to the arrival rate vector λ. Noting that λ(k)

may be outside the capacity region R for some hyperplanes, we next distinguish
those for which λ(k) is within R as

Kλ , {k ∈ {1, · · · ,K} : λ(k) ∈ R}. (13)

Notice that Kλ identifies the set of dominant hyperplanes whose closest point to
λ is on the boundary of the capacity region R, hence is a feasible average rate
for service. We note that for any λ ∈ Int(R), the set Kλ is non-empty, and hence

is well-defined. Figure 6 illustrates the distance ε(k) and the projection λ(k) of a
given arrival vector λ for the 2-dimensional rate region of Figure 3.

�  (1)

�  (2)�  (3)

c
(1) c

(2)

c
(3) ! 

l(1)

l

l(2) l(3)e(1)
e(2)

e(3)

" : Red points

r2

r1

# 
(1)

# 
(2)

# 
(3)

Fig. 6 Illustration of the introduced parameters ε(k) and λ(k) in the 2-dimensional rate region
of Figure 3. Note that, for the selected λ, Kλ includes the first two faces, but not the third

face since λ(3) is outside the rate region R.

Associated with each hyperplane, say H(k), we construct the following hypo-
thetical single-server queue: following the notation in Figure 5 with the superscript
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(k) to distinguish different hyperplanes, we set α(k)[t] = 〈 c(k),A[t] 〉, where A[t] is
the vector of arrivals to the L queues in the scheduling problem, and β(k)[t] = b(k),

where b(k) is the positive constant defining the value of the kth hyperplane. Ac-
cordingly, the single server queue-length Φ(k)[t] evolves as in (5) with these arrival
and service process mappings. Then, {Φ(k)[t]}t is stochastically smaller than the
queue-length process {〈c(k),Q[t]〉}t under any feasible (and hence MW) scheduling
policy. Hence, utilizing Lemma 4, we can find the following lower bounds on the
moments of the limiting queue-length vector under MW Scheduling.

Lemma 6 For the scheduling problem of Section 2.3 with a given set of feasible sched-

ules S , consider the exogenous arrival vector process {A(ε)[t]}t with mean vector λ(ε) ∈
Int(R) and with variance vector denoted as (σ(ε))2 ,

(
(σ

(ε)
l

)2
)L

l=1
. Here, the super-

script vector is given by ε = (ε(k))Kk=1 � 0, where ε(k) and λ(k) gives the distance and

the projection of λ(ε) to the kth hyperplane as defined in (11) and (12), respectively.

Accordingly, let the queue-length process under MW Scheduling with this arrival process

be denoted as {Q(ε)[t]}t, evolving as in (1). Moreover, let Q
(ε)

denote a random vector

with the same distribution as the steady-state distribution of {Q(ε)[t]}t (by Lemma 3).

Then, for each k ∈ {1, · · · , K}, and with ζ(ε,k) , 〈 (c(k))2, (σ(ε))2 〉 + (ε(k))2 =
L∑

l=1

(c(k)
l

)2(σ(ε)
l

)2 + (ε(k))2,

E

[
〈 c(k),Q(ε) 〉

]
≥ ζ(ε,k)

2ε(k)
−B

(k)
1 (14)

where B
(k)
1 , b(k)

2 .

Further, for each k ∈ K
λ(ε) , consider the heavy-traffic limit ε(k) ↓ 0; and suppose

that the variance vector (σ(ε))2 approaches a constant vector σ2. Then, defining ζ(k) ,

〈 (c(k))2,σ2 〉, we have

lim inf
ε(k)↓0

ε(k)E
[
〈 c(k),Q(ε) 〉

]
≥ ζ(k)

2
(15)

4 State-Space Collapse

In this section, we will show a moment condition which is the equivalent of state-
space collapse in prior literature of fluid and diffusion limit analysis of the routing
and scheduling problems. Specifically, we will show that the steady-state queue-
length vector concentrates around a line within the L-dimensional state space
in the following sense: the deviations from the line are bounded, independent of
heavy-traffic parameter ε. Since the lower bounds on the queue lengths are of the
order of 1/ε, this would then show that the deviations from the line are small
compared to the queue lengths themselves. To establish state-space collapse, in
both problems, we will first identify a vector and show that the queue lengths
concentrate along this vector. For this purpose, we first introduce some notation.
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Let c � 0 be a vector with unit norm. The components of the queue length
vector Q parallel and perpendicular to c are, respectively, given by:

Q‖ , 〈 c,Q 〉 c,

Q⊥ , Q−Q‖ = [Ql − 〈 c,Q 〉 cl]Ll=1 .

If c represents the direction along which state-space collapse occurs, then we study
the statistics of Q⊥ to show that all its moments are bounded by constants that
do not depend on the proximity of the arrival rate vector to the boundary of the
capacity region. To that end, we utilize Lemma 1 by studying the drift of the
Lyapunov function V⊥(Q) = ‖Q⊥‖ to show that: (i) the drift of this Lyapunov
function is always bounded; (ii) and that, when ‖Q⊥‖ value is sufficiently large,
it has a strictly negative drift whose value does not depend on the distance of the

arrival rate vector from the boundary of the capacity region, denoted as ε and ε in
Sections 3.1 and 3.2. This latter property will be important in establishing the
heavy-traffic optimality of the schemes. It turns out that studying of the drift of
‖Q⊥‖ is hard; instead, as we will see later, it is easier to study the drift of ‖Q‖2
and ‖Q‖‖2. The following lemma serves as a useful preliminary step which relates
the drift of these three quantities; the proof is provided in Appendix B. We will
use this result in deriving our state-space collapse results later.

Lemma 7 Consider the generic queueing system described in Section 2 with queues

evolving according to (1), where the arrival and service processes are respectively bounded

by Amax and Smax for each link and each time slot. Define the following Lyapunov

functions:

V⊥(Q) , ‖Q⊥‖, W (Q) , ‖Q‖2, and W‖(Q) , ‖Q‖‖2, (16)

with the corresponding single-step drifts denoted by:

∆V⊥(Q) , [V⊥(Q[t+ 1])− V⊥(Q[t])] I(Q[t] = Q), (17)

∆W (Q) , [W (Q[t+ 1])−W (Q[t])] I(Q[t] = Q), (18)

∆W‖(Q) , [W‖(Q[t+ 1])−W‖(Q[t])] I(Q[t] = Q). (19)

Then, the following properties hold for the random variable ∆V⊥(Q):

1. We can bound the drift of V⊥ with the drifts of W and W‖ as follows:

∆V⊥(Q) ≤ 1

2‖Q⊥‖
(
∆W (Q)−∆W‖(Q)

)
, for all Q ∈ R

L
+. (20)

2. The drift of V⊥ is absolutely bounded as:

|∆V⊥(Q)| ≤ 2
√
Lmax(Amax, Smax), for all Q ∈ R

L
+, (21)

where, recall from Section 2 that, Amax and Smax respectively bounds the number

of arrivals to and departures from a queue, and L is the number of queues in the

network.
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Notice that (21) verifies Condition (C2) of Lemma 1 with

D = 2
√
Lmax(Amax, Smax)

for the Lyapunov function V⊥(Q). To conclude that V⊥(Q[t]) converges to ‖Q⊥‖
with finite moments, we also need to verify condition (C1) of Lemma 1. In the
following subsections, we do so for both the JSQ Routing and MW Scheduling
policies. Further, we will show that the moments bounds on ‖Q⊥‖ are independent
of the proximity of the arrival rate vectors to the boundary of the capacity regions
– a key feature to be used for the proof of heavy-traffic optimality of these policies
in Section 5.

4.1 State-Space Collapse for the Routing Problem under the JSQ Policy

We recall the model introduced in Lemma 5 for the routing problem, where the

exogenous arrival process {A(ε)
Σ }t is parameterized by a positive valued ε , µΣ −

λ
(ε)
Σ , and where the queue-length process and the limiting queue-length random

vector under the JSQ Router are respectively denoted by {Q(ε)[t]}t and Q
(ε)
.

Recall that the JSQ policy attempts to equalize the queue lengths, so one would
expect the state-space to collapse along the direction of a unit vector, all of whose
components are equal, i.e., the vector c , 1√

L
= ( 1√

L
)Ll=1. Then, the projection

and the perpendicular of any given Q(ε) ∈ R
L
+ with respect to this line become:

Q
(ε)

‖ ,
Q

(ε)
Σ

L
1, and Q

(ε)
⊥ ,

[
Ql −

1

L
Q

(ε)
Σ

]L

l=1

,

where Q(ε)
Σ

,
∑L

l=1Q
(ε)
l

denotes the total number of packets in the network. We

already know, from Lemma 2, that Q(ε)[t] converges to Q
(ε)

in distribution for any

ε > 0. Due to continuous mapping theorem, this implies that Q
(ε)

‖ [t] also converges

in distribution to Q
(ε)

‖ . The following result establishes the boundedness of all

moments of the limiting Q
(ε)
⊥ uniformly for all ε > 0.

Proposition 1 Consider the limiting queueing process Q
(ε)

under JSQ Routing, serv-

ing the exogenous arrival process {A(ε)
Σ

}t parameterized by ε , µΣ − λ
(ε)
Σ
. Then, for

any choice of δ ∈ (0, µmin) there exists a sequence of finite numbers {Nr}r=1,2,··· such

that E
[
‖Q(ε)

⊥ ‖r
]
≤ Nr, for all ε ∈ (0, (µmin − δ)L) and for each r = 1,2, · · · .

Proof The proof follows from Lemma 1 applied to the Lyapunov function V⊥(Q
(ε)) ,

‖Q(ε)
⊥ ‖, where the following argument omits the superscript (ε) for ease of expo-

sition. Note that (21) already establishes Condition (C2) of Lemma 1. Thus, the
proof is done once we verify Condition (C1) for the JSQ policy. To that end, we
use the bound on ∆V⊥(Q) in (20) and study the mean conditional drift of ∆W (Q)
and ∆W‖(Q) next.
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We start by upper-bounding E[∆W (Q) | Q] , E[∆W (Q) | Q[t] = Q]. In what
follows, we will omit the time reference [t] after the first step for brevity.

E[∆W (Q) |Q] = E

[
‖Q[t+ 1]‖2 − ‖Q‖2 |Q

]

= E

[
‖Q+A− S+U‖2 − ‖Q‖2 |Q

]

= E

[
‖Q+A− S‖2 + 2〈Q+A− S,U 〉+ ‖U‖2 − ‖Q‖2 |Q

]

(a)

≤ E

[
‖Q+A− S‖2 − ‖Q‖2 |Q

]

= E

[
2〈Q,A− S 〉+ ‖A − S‖2 |Q

]

≤ 2 E [〈Q,A− S 〉 |Q] +K1, (22)

where the inequality (a) follows from the fact that Ul(Ql + Al − Sl) = −U2
l ≤ 0,

for each l, and K1 , Lmax(Amax, Smax)
2 is bounded since both the arrival and

service processes are bounded.

Next, we bound the first term in (22) by first defining a hypothetical arrival
rate vector λ = (λl)l with respect to the given service rate vector µ and the
ε ∈ (0, (µmin − δ)L) as λ , µ − ε√

L
c. Note that λmin , minl λl > δ, where δ

is a fixed constant in (0, µmin), and that
∑L

l=1 λl = µΣ − ε, which is identical
to the assumed rate λΣ of the exogenous arrival process {AΣ [t]}t. The following
derivation starts by adding and subtracting λ to the first term in (22):

E [〈Q,A− S 〉 |Q] = 〈Q,E [A |Q]− λ 〉 − 〈Q,µ− λ 〉
(a)
= 〈Q,E [A |Q]− λ 〉 − ε√

L
〈Q, c 〉

(b)
= E[AΣ |Q]Qmin − 〈Q,λ 〉 − ε√

L
‖Q‖‖

= λΣ Qmin −
L∑

l=1

λlQl −
ε√
L
‖Q‖‖

= −
L∑

l=1

λl(Ql − Qmin)−
ε√
L
‖Q‖‖

≤ − λmin

L∑

l=1

|Ql − Qmin| −
ε√
L
‖Q‖‖

= −‖Q− Qmin 1‖1 λmin − ε√
L
‖Q‖‖

(c)

≤ −‖Q− Qmin 1‖ λmin − ε√
L
‖Q‖‖

(d)

≤ −‖Q− 1

L
QΣ 1‖ λmin − ε√

L
‖Q‖‖

(e)

≤ −δ ‖Q⊥‖ − ε√
L
‖Q‖‖
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where

Qmin , min
1≤m≤L

Qm ≥ 0; ‖x‖1 ,

L∑

l=1

|xl| is the l1-norm of x,

and step (a) follows from the definition of λ; (b) follows from the definitions of
the JSQ policy (see Definition 1) and of Q‖; (c) is true since l1 norm ‖x‖1 of any

vector x ∈ R
L is no smaller than its l2 (Euclidean) norm ‖x‖; (d) is true since 1

LQΣ

minimizes the convex function ‖Q− y 1‖ over y ∈ R; (e) is true since λmin > δ by
construction of λ. This bound, when substituted in (22), yields:

E[∆W (Q) |Q] ≤ −2 δ ‖Q⊥‖ − 2 ε√
L
‖Q‖‖+K1. (23)

Next, we lower bound E[∆W‖(Q) |Q] , E[∆W‖(Q) |Q[t] = Q]:

E[∆W‖(Q) |Q] = E

[
〈 c,Q[t+ 1] 〉2 − 〈 c,Q[t] 〉2 |Q

]

= E

[
〈 c,Q+A− S+U 〉2 − 〈 c,Q 〉2 |Q

]

= E

[
〈 c,Q+A− S 〉2 + 2〈 c,Q+A− S 〉〈 c,U 〉

+〈 c,U 〉2 − 〈 c,Q 〉2 |Q
]

= E

[
2〈 c,Q 〉〈 c,A− S 〉+ 〈 c,A− S 〉2

+2〈 c,Q+A− S 〉〈 c,U 〉+ 〈 c,U 〉2 |Q
]

= 2〈 c,Q 〉〈 c,E [A |Q]− µ 〉 − 2E [〈 c,S 〉〈 c,U 〉 |Q]

+E

[
〈 c,A− S 〉2 + 2〈 c,Q+A 〉〈 c,U 〉+ 〈 c,U 〉2 |Q

]
(24)

≥ 2〈 c,Q 〉〈 c,E [A |Q]− µ 〉 − 2E [〈 c,S 〉〈 c,U 〉 |Q] , (25)

where the inequality follows from the observation that (24) ≥ 0 as c � 0, U � 0,

Q � 0. We further lower-bound the remaining terms in (25) individually. For the
first term, we first recall that 〈 c,Q 〉 = ‖Q‖‖. Also noting that c = 1/

√
L here and

that λΣ = µΣ − ε,

〈 c,E [A |Q]− µ 〉 = 1√
L

L∑

l=1

(E[Al |Q]− µl) =
λΣ − µΣ√

L
= − ε√

L
.

Finally, we can lower-bound the second term in (25) easily by −K2, where K2 ,

2LS2
max, since Sl ≤ Smax and Ul ≤ Smax for all l. Thus, using these lower bounds

in (25) yields:

E[∆W‖(Q) |Q] ≥ − 2 ε√
L
‖Q‖‖ −K2. (26)

We now substitute the bounds (23) and (26) in (20), and cancel common terms,
to bound the conditional mean drift of V⊥(Q) as

E[∆V⊥(Q) |Q] ≤ −δ + K1 +K2

2‖Q⊥‖ ,
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where δ, K1, and K2 are positive constants defined above, all independent of ε.
Note that this inequality verifies Condition (C1) of Lemma 1, and hence establishes

the claimed existence of finite constants {Nr}r=1,2,··· for which E[‖Q(ε)
⊥ ‖r] ≤ Nr ,

for all ε ∈ (0, (µmin − δ)L), and for each r = 1, 2, · · · . �

This proposition establishes that even for a heavily loaded network, where ε
approaches zero, the steady-state queue-length vector concentrates around the line
along c, and the difference between the queue lengths have bounded moments. In
contrast, the lower bound on the total queue length goes to infinity as ε goes to
zero. Thus, in comparison to the total queue length, the differences in the queue
lengths are negligible. This observation will be critical in Section 5 for arguing
that the queueing network performs close to the lower-bounding resource-pooled
system of Section 3. Since relative to the queue lengths, the differences in the
queue lengths are negligible, the queue lengths can be thought as being attracted
towards the line defined by the vector c.We will call this line, the line of attraction.

4.2 State-Space Collapse for the Scheduling Problem under the MW Policy

We recall the model introduced in Lemma 6 for the scheduling problem, where the

exogenous arrival vector process {A(ε)
Σ }t is parameterized by the vector ε � 0 that

measures the distance of the arrival rate vector λ(ε) ∈ Int(R) to each of the K
hyperplanes of R. The corresponding queue-length vector process and the limiting
queue-length random vector under the MW Scheduler are respectively denoted by

{Q(ε)[t]}t and Q
(ε)
.

Different from the routing case, in the scheduling problem, depending upon the
arrival rate vector, the line of attraction can be different. In general, associated
with each hyperplane enclosing the capacity regionR (cf. Definition 3) is a possible
line of attraction. Recall that the pair (c(k), b(k)) defines the kth hyperplane H(k)

through its unit norm normal vector c(k) and its value b(k) > 0. Accordingly, we
define the projection and the perpendicular vector of any given Q(ε) with respect
to the kth normal as:

Q
(ε,k)
‖ , 〈 c(k),Q(ε) 〉 c(k)

Q
(ε,k)
⊥ , Q(ε) −Q

(ε,k)
‖ .

Also recall the notion of dominant hyperplanes K
λ(ε) from (13) to note that for

each k ∈ K
λ(ε) , the corresponding projection λ(k) as defined in (12) lies on the kth

face F(k) (see Definition 3) of the capacity region R. Next, we further distinguish
those faces in K

λ(ε) for which λ(k) lies in the relative interior of the face, i.e., λ(k)

is not shared by more than one hyperplane:

K◦
λ(ε) , {k ∈ K

λ(ε) : λ
(k) ∈ Relint(F(k))}, (27)

where Relint(F(k)) indicates the relative interior of the polyhedral set F(k), which
is non-empty for each k by construction4. It is also easy to verify that, for each

4 This follows from the assumed minimality of the set of hyperplanes that define the capacity
region R.
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λ(ε) ∈ Int(R), the set K◦
λ(ε) is non-empty. In the example of Figure 6, we can

see that Kλ = {1, 2}, while K◦
λ = {2} since the projection λ(1) is at the corner of

face F(1), hence is not in its relative interior. With this terminology, we can now
present the state-space collapse result for the MW Scheduler.

Proposition 2 Assume λ(ε) ∈ Int(R) in the scheduling problem with the correspond-

ing set of {ε(k)}k as defined in (11). Then, under the MW Scheduling Policy, for each

k ∈ K◦
λ(ε) , there exist finite constants {N(k)

r }r=1,2,··· such that E
[
‖Q(ε,k)

⊥ ‖r
]
≤ N

(k)
r ,

for all ε � 0, each Face k belonging to K◦
λ(ε) as ε ↓ 0, and each r = 1,2, · · · .

Proof Assuming a given ε � 0, the following argument omits the superscript (ε)

for notational convenience so that Q(ε),λ(ε),Q(ε,k) are respectively denoted as
Q,λ,Q(k). For any k ∈ K◦

λ, let us recall the Lyapunov functions in (16) to define

their counterparts associated with the normal vector c(k) :

V
(k)
⊥ (Q) , ‖Q(k)

⊥ ‖, W (Q) , ‖Q‖2, and W
(k)

‖ (Q) , ‖Q(k)

‖ ‖2,

The rest of the proof follows the same line of reasoning as in the proof of Proposi-

tion 1 to bound ∆V (k)
⊥ (Q) by utilizing (20). However, before we start analyzing the

mean conditional drift of ∆W (Q(k)) and ∆W‖(Q
(k)), we need to establish some

basics related to the geometry of the scheduling capacity region R.
Since λ is in the interior of R, for each k ∈ K◦

λ, we have λ(k) in the relative

interior of F(k) by definition. This means that, for each k ∈ K◦
λ, there exists a

small enough δ(k) > 0 such that the set

B(k)

δ(k) , H(k) ∩ {r ∈ R
L
+ : ‖r− λ(k)‖ ≤ δ(k)},

denoting the set of vectors on the hyperplane H(k) that are within δ(k) distance
from λ(k), lies strictly within the face F(k).

We are now ready to upper-bound E[∆W (Q) | Q] , E[∆W (Q) | Q[t] = Q]
exactly as in the derivation of (22) to obtain:

E[∆W (Q) |Q] ≤ 2 E [〈Q,A− S 〉 |Q] +K1, (28)

where K1 , Lmax(Amax, Smax)
2. Next, we use the definition of projection λ(k)

from (12) to expand the first term as:

E [〈Q,A− S 〉 |Q] = 〈Q,λ(k) − ε(k)c(k) 〉 − E [〈Q,S 〉 |Q]

= −ε(k)〈Q, c(k) 〉+ 〈Q,λ(k) − E [S |Q] 〉
= −ε(k)‖Q(k)

‖ ‖+ 〈Q,λ(k) − E [S |Q] 〉 (29)

We note that the definition of the MW Scheduler (see Definition 2) directly implies
that

〈Q,E [S |Q] 〉 = max
r∈R

〈Q, r 〉, (30)
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where R is described in Definition 3. Thus, noting that the set B(k)

δ(k) ⊂ R, we can
upper-bound (29) as follows:

E [〈Q,A− S 〉 |Q] ≤ −ε(k)‖Q(k)

‖ ‖+ min
r∈B(k)

δ(k)

〈Q,λ(k) − r 〉

(a)
= −ε(k)‖Q(k)

‖ ‖+ min
r∈B(k)

δ(k)

〈Q(k)
⊥ ,λ(k) − r 〉

(b)
= −ε(k)‖Q(k)

‖ ‖ − δ(k)‖Q(k)
⊥ ‖

where (a) follows from the facts that Q
(k)
⊥ = Q− 〈 c(k),Q 〉 c(k) by definition, and

that the vector λ(k) − r is perpendicular to the normal vector c(k) since both λ(k)

and r are restricted to be on the hyperplane H(k); (b) follows from a key idea in

[36] where it is noted that the inner product between Q
(k)
⊥ is minimized when r is

selected on the boundary of B(k)

δ(k) , i.e., with ‖λ(k) − r‖ = δ(k), such that λ(k) − r

points in the opposite direction to Q
(k)
⊥ . Substituting the above result in (28) yields

our first bound:

E[∆W (Q) |Q] ≤ −2ε(k)‖Q(k)

‖ ‖ − 2δ(k)‖Q(k)
⊥ ‖+K1. (31)

The lower-bounding argument on E[∆W
(k)

‖ (Q) | Q] , E[∆W
(k)

‖ (Q) | Q[t] =

Q] follows the exact same steps until (24) as in the JSQ case, with the minor
modification in the final expression (25) that the conditioning on Q remains for
the service vector S instead of the arrival vector A, since the MW Scheduler
controls S while the JSQ Router controls A. This yields

E[∆W (k)

‖ (Q) |Q] ≥ 2〈 c(k),Q 〉〈 c(k),λ− E [S |Q] 〉 − 2E
[
〈 c(k),S 〉〈 c(k),U 〉 |Q

]

(a)

≥ 2〈 c(k),Q 〉〈 c(k),λ− E [S |Q] 〉 −K2

(b)
= −2ε(k)‖Q(k)

‖ ‖+ 2‖Q(k)

‖ ‖min
r∈R

〈 c,λ(k) − r 〉 −K2

(c)

≥ −2ε(k)‖Q(k)

‖ ‖+ 2‖Q(k)

‖ ‖
(
〈 c,λ(k) 〉 − b(k)

)
−K2

(d)

≥ −2ε(k)‖Q(k)

‖ ‖ −K2, (32)

where step: (a) is true for K2 , 2LS2
max; (b) uses the definitions of projection λ

(k)

and Q
(k)

‖ together with the fact that the MW Scheduler achieves (30); (c) is true

since {r � 0 : 〈 c(k), r 〉 ≤ b(k)} ⊃ R from (4); and (d) follows from the fact that
〈 c(k),λ(k) 〉 = b(k) since λ(k) ∈ H(k).

Finally, utilizing the bounds (31) and (32) in (20), and canceling common

terms, yields the following bound on the conditional mean drift of V
(k)
⊥ (Q) as:

E[∆V
(k)
⊥ (Q) |Q] ≤ −δ(k) + K1 +K2

2‖Q(k)
⊥ ‖

, for each k ∈ K◦
λ,

where δ(k), K1, and K2 are positive constants defined above, all independent of ε.
By verifying Condition (C1) of Lemma 1, this result proves the claimed existence
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of finite constants {N(k)
r }r=1,2,··· such that E

[
‖Q(ε,k)

⊥ ‖r
]
≤ N

(k)
r , for all ε � 0,

each k ∈ K◦
λ(ε) , and each r = 1,2, · · · . �

The above proposition provides bounds on the deviation of Q from different
lines of attraction corresponding to the normals of different hyperplanes in K◦

λ(ε) .

However, in the heavy-traffic limit as λ(ε) approaches the relative interior of one
of the faces, only one of the hyperplanes becomes a dominant face and therefore,
there will be a single line of attraction associated with the normal of that face
only, as one would expect.

5 Upper Bounds and Heavy-Traffic Optimality

The purpose of this section is to derive upper-bounds on the steady-state queue-
length through simple Lyapunov-based methods that will be shown to be asymp-
totically tight under heavy-traffic, i.e., when the arrival rates will approach the
boundary of the capacity regions. In particular, we use the state-space collapse
results established in Section 4.

As in the case of the state-space collapse results, here too the analysis is similar
for both the JSQ and MW Policies. The derivation of the upper bounds for both
cases use the following lemma.

Lemma 8 Consider the generic queueing system described in Section 2 with queues

evolving according to (1), where the arrival A[t] and service S[t] vectors at time t are

allowed to depend on Q[t]. To indicate this dependence, we will use the notation A(Q)
and S(Q) to refer to these two processes. Suppose {Q[t]}t converges in distribution

to a valid random vector Q, with all bounded moments, i.e., E[‖Q‖r] < ∞ for each

r = 1, 2, · · · . Then, for any positive vector c ∈ R
L
++, we have

E
[
〈 c,Q 〉〈 c,S(Q)−A(Q) 〉

]
=

E
[
〈 c,A(Q)− S(Q) 〉2

]

2
+

E
[
〈 c,U(Q) 〉2

]

2
(33)

+E
[
〈 c,Q+A(Q)− S(Q) 〉〈 c,U(Q) 〉

]
, (34)

where U(Q) is the random vector of unused service (cf. (1)) in steady state.

Proof Recall the definition of W‖(Q) , ‖Q‖‖2 from (16) and the subsequent defi-
nition of its one-step drift ∆W‖(Q).We can expand this drift expression as follows:

∆W‖(Q) =
[
〈 c,Q[t+ 1] 〉2 − 〈 c,Q[t] 〉2

]
I(Q[t] = Q)

= 〈 c,Q+A− S+U 〉2 − 〈 c,Q 〉2

= 〈 c,Q+A− S 〉2 + 2〈 c,Q+A− S 〉〈 c,U 〉+ 〈 c,U 〉2 − 〈 c,Q 〉2

= 2〈 c,Q 〉〈 c,A− S 〉+ 〈 c,A− S 〉2 + 2〈 c,Q+A− S 〉〈 c,U 〉
+〈 c,U 〉2

Now, since ‖Q‖‖2 ≤ ‖Q‖2 and E[‖Q‖2] < ∞, we clearly have E[W‖(Q)] < ∞.

Hence, in steady state, ∆W‖ must have a zero mean. Thus setting E[∆W‖(Q)] = 0
gives the desired result. �
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The state-space collapse result is crucial in bounding the expectation in (34).
To provide some intuition, we first note the following useful property concerning
the unused service.

Lemma 9 For a queueing network evolving according to (1) and for any given vector

c � 0 with ‖c‖ = 1, the following property always holds for any policy:

〈 c,Q[t+ 1] 〉〈 c,U[t] 〉 = 〈 −Q⊥[t+ 1],U[t] 〉, (35)

where Q⊥[t+ 1] = Q[t+ 1]− 〈 c,Q[t+ 1] 〉 c.

Proof We use the notationQ+ , Q[t+1] and omit [t] for the remaining parameters,
Q[t],A[t],S[t],U[t]. Accordingly, we define the projections and perpendiculars of
Q+ and U with respect to c as:

Q+
‖ , 〈 c,Q+ 〉 c, Q+

⊥ , Q+ −Q+
‖ , U‖ , 〈 c,U 〉 c, U⊥ , U−U‖.

The following argument uses the fact that Q+
l
Ul = 0 for all l, since either Ul[t] or

Ql[t+1] must be zero for each t. Hence, U is orthogonal to Q+. We can now prove
the claim:

〈 c,Q+ 〉〈 c,U 〉 = ‖Q+
‖ ‖‖U‖‖

(a)
= 〈Q+

‖ ,U‖ 〉

= 〈Q+ −Q+
⊥,U‖ 〉 (b)

= 〈Q+,U−U⊥ 〉
(c)
= 〈Q+

⊥ +Q+
‖ ,−U⊥ 〉 (d)

= 〈 −Q+
⊥,U⊥ 〉,

(e)
= 〈 −Q+

⊥,U 〉,

where step: (a) corresponds to the equality case of the Cauchy-Schwartz inequality
since Q+

‖ � 0 and U‖ � 0 are aligned by definition; (b) follows from the facts

that Q+
⊥ ⊥ U‖ and U‖ = U − U⊥; (c) utilizes the facts that Q+ ⊥ U and that

Q+ = Q+
⊥ + Q+

‖ ; (d) uses the fact that Q+
‖ ⊥ U⊥; and (e) uses the facts that

U = U⊥ +U‖ and Q+
⊥ ⊥ U‖. �

Now, we present some intuition regarding the usefulness of the state-space
collapse results (cf. Propositions 1 and 2). Using (35) and noting that Q[t+ 1] =
Q[t] +A[t]− S[t] +U[t], we can re-write (34) as:

(34) = E
[
〈 c,Q[t+ 1] 〉〈 c,U(Q) 〉

]
− E

[
〈 c,U(Q) 〉2

]

≤ E
[
〈 c,Q[t+ 1] 〉〈 c,U(Q) 〉

]

= E
[
〈 −Q⊥[t+ 1],U(Q) 〉

]

(a)

≤
√

E
[
‖Q⊥[t+ 1]‖2

]
E
[
‖U(Q)‖2

]

(b)
=

√
E
[
‖Q⊥‖2

]
E
[
‖U(Q)‖2

]
, (36)

where step (a) follows from Cauchy-Schwartz inequality and step (b) is true since
the distributions of Q[t+1] and Q[t] are the same in steady state. The last expres-
sion reveals the intuition behind why the state-space collapse results are useful:
the expression vanishes as ε ↓ 0 since E

[
‖Q⊥‖2

]
is uniformly bounded, and un-

used service goes to zero as ε ↓ 0. Next, we will build on this intuition to prove
heavy-traffic optimality of both the JSQ Routing and MW Scheduling Policies.
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5.1 Upper Bounds and Heavy-Traffic Optimality of JSQ Routing

The following proposition presents a bound on the steady-state total queue-length
under JSQ routing, and establishes the first-moment heavy-traffic optimality of
JSQ as the network load approaches the capacity of the network.

Proposition 3 Consider the routing problem under the exogenous arrival process {A(ε)
Σ [t]}t

with mean rate λ
(ε)
Σ ∈ Int(R) satisfying ε , µΣ − λΣ > 0, and with variance (σ

(ε)
Σ )2.

Then, under the JSQ Routing Policy, the limiting steady-state queue-length vector Q
(ε)

satisfies

E

[
L∑

l=1

Q̄
(ε)
l

]
≤ ζ(ε)

2ε
+ B

(ε)
1 , (37)

where we recall that ζ(ε) , (σ(ε)
Σ

)2 + ν2Σ as it is defined in Section 3.1, and B
(ε)
1 is

o
(
1
ε

)
, i.e., lim

ε↓0
εB

(ε)
1 = 0.

Also, in the heavy traffic limit, where we consider a sequence of exogenous arrival

processes {A(ε)
Σ

[t]}t with ε ↓ 0 so that λ
(ε)
Σ

approaches µΣ and (σ(ε)
Σ

)2 approaches a

constant σ2Σ , we have

lim sup
ε↓0

ε E

[
L∑

l=1

Q̄
(ε)
l

]
≤ ζ

2
, (38)

where ζ , σ2Σ + ν2Σ .

Hence, comparing the heavy-traffic lower-bound (7) for any feasible policy to the

heavy-traffic upper-bound (38) for JSQ Router establishes the first moment heavy-
traffic optimality of JSQ Routing Policy.

Proof Recalling the definition of c , 1√
L

in the JSQ case, we first note a useful

fact:

E[〈 c,U(Q
(ε)

) 〉] = µΣ − λΣ√
L

=
ε√
L
, (39)

which follows from the fact that the mean drift of 〈c,Q(ε) 〉 must be zero in steady
state. Next, we will temporarily omit the superscript (ε) for ease of exposition and
study the terms in (33) and (34) under JSQ operation.

E
[
〈 c,Q 〉〈 c,S(Q)−A(Q) 〉

]
=

(
µΣ − λΣ√

L

)
E[〈 c,Q 〉] =

ε

L
E

[
L∑

l=1

Q̄l

]
, (40)

which follows from the independence of the total exogenous arrival process and
individual service rate processes from the queue-length levels.

E

[
〈 c,A(Q)− S(Q) 〉2

]
=

1

L
E

[
(AΣ − SΣ)2

]
=

(σ2Σ + ν2Σ + ε2)

L
, (41)
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where we recall that σ2Σ and ν2Σ are respectively the variances of the exoge-
nous arrival process {AΣ [t]}t and the hypothetical total service process defined

as SΣ[t] ,
∑L

l=1 Sl[t].

E

[
〈 c,U(Q) 〉2

]
≤ 〈 c, Smax1 〉 E

[
〈 c,U(Q) 〉

]
=

εSmax

L
, (42)

where we use the bound Ul ≤ Smax for all l, and the identity (39).
Finally, to bound (34), we take the same steps as in the argument leading to

(36), and use the facts that c = 1/
√
L and Ul ≤ Smax for all l, to get:

(34) ≤
√

E
[
‖Q⊥‖2

]
E
[
‖U(Q)‖2

]

≤
√

E
[
‖Q⊥‖2

]
Smax

√
LE

[
〈 c,U(Q) 〉

]

≤
√
εN2Smax, (43)

where, in the last step, we used (39) and N2 from Proposition 1.
We reintroduce the superscript (ε) to highlight the dependence on ε and sub-

stitute (40)-(43) in (33)-(34) to get, after minor algebraic manipulations,

E

[
L∑

l=1

Q̄
(ε)
l

]
≤ ((σ

(ε)
Σ )2 + ν2Σ + ε2)

2ε
+
Smax

2
+ L

√
N2 Smax

ε
=

ζ(ε)

2ε
+B

(ε)
1 ,

where ζ(ε) , (σ
(ε)
Σ )2 + ν2Σ + ε2 and B

(ε)
1 , L

√
N2 Smax

ε + Smax

2 , which is o(1/ε) as

claimed. Then, (38) follows immediately by taking the limit of both sides. �

5.2 Upper Bounds and Heavy-Traffic Optimality of MW Scheduling

The following proposition yields upper bounds on the steady-state weighted total
queue-length under MW Scheduling, and then establishes the first-moment heavy-
traffic optimality of MWS as the network load approaches the boundary of the
capacity region of the network.

Proposition 4 Consider the scheduling problem under the exogenous arrival vector

process {A(ε)[t]}t with mean vector λ(ε) ∈ Int(R) and with variance vector (σ(ε))2 ,(
(σ(ε)

l
)2
)L

l=1
. The parameter ε = (ε(k))Kk=1 � 0, where ε(k) gives the distance and

the projection of λ(ε) to the kth hyperplane as defined in (11). Then, under the MW

Scheduling, the limiting steady-state queue-vector Q
(ε)

satisfies, for each k ∈ K◦
λ(ε) ,

E

[
〈 c(k),Q(ε) 〉

]
≤ ζ(ε,k)

2ε(k)
+B

(ε,k)
1 , (44)

where we recall that ζ(ε,k) , 〈(c(k))2, (σ(ε))2 〉 as it is defined in Lemma 6, and B
(ε,k)
1

is o
(

1
ε(k)

)
, i.e., lim

ε(k)↓0
ε(k)B

(ε,k)
1 = 0.

Also, in the heavy traffic limit, where we consider a sequence of exogenous arrival

processes {A(ε,k)[t]}t with their mean vector λ
(ε)
A approaching the kth dominant face
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in K◦
λ(ε) along its normal c(k), and variance vectors (σ(ε)

A
)2 approaching a constant

vector σ2, we have

lim sup
ε(k)↓0

ε(k)E
[
〈 c(k),Q(ε) 〉

]
≤ ζ(k)

2
, (45)

where ζ(k) , 〈 (c(k))2,σ2 〉.
Hence, comparing the heavy-traffic lower-bound (15) for any feasible policy to the

heavy-traffic upper-bound (45) for MW Scheduler establishes the first moment heavy-
traffic optimality of MW Scheduling Policy.

Proof We temporarily omit the superscript (ε) associated with the arrival and
queue-length processes for ease of exposition, and consider any k ∈ K◦

λ. Before we
embark upon the investigation of (33) and (34) under MW Scheduler operation,
we make several useful remarks. We first utilize the fact that the mean drift of
〈 c(k),Q 〉 must be zero under steady-state operation to get:

E[〈 c(k),U(Q) 〉] = 〈 c(k),E[S(Q)] 〉 − 〈 c(k),λ 〉
(a)
= 〈 c(k),E[S(Q)] 〉 − (b(k) − ε(k))

(b)

≤ ε(k), (46)

where (a) follows from (12) and the fact that 〈 c(k),λ(k) 〉 = b(k) since λ(k) ∈ H(k);
and (b) follows from the facts that E[S(Q)] must be in R and that 〈 c(k), r 〉 ≤ b(k)

for all r ∈ R by (4).
Next, we define

π(k) , P

(
〈 c(k),S(Q) 〉 = b(k)

)
, (47)

to be the fraction of time that the service rate vector is selected from face F(k) by
the MW Scheduler in steady-state. Also, we define

γ(k) , min{b(k) − 〈 c(k), r 〉 : for all r ∈ S \ F(k)}. (48)

Since the set S is discrete and finite, γ(k) is a strictly positive number with a
constant value (independent of ε) associated with the geometry of the capacity
region R. This constant helps us establish the following useful claim associated
with π(k).

Claim 1 For any ε(k) ∈ (0, γ(k)), we have

(1− π(k)) ≤ ε(k)

γ(k)
(49)

where the upper-bound is O(ε(k)), i.e., vanishes as ε(k) ↓ 0.

Proof (Claim 1) We start with the observation that

E[〈 c(k),S(Q) 〉] ≥ 〈 c(k),λ 〉 = b(k) − ε(k)
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where the inequality follows from the stability of the queueing network (cf. Propo-
sition 3), and the equality follows from the utilization of (12). We can split the
left-hand-side into two parts by using the definition of π(k) to write

π(k)b(k) + E

[
〈 c(k),S(Q) 〉 I

(
〈 c(k),S(Q) 〉 6= b(k)

)]
≥ (b(k) − ε(k)),

which, when re-arranged, leads to the following lower-bound on the expectation:

E

[
〈 c(k),S(Q) 〉 I

(
〈 c(k),S(Q) 〉 6= b(k)

)]
≥ b(k) (1− π(k))− ε(k), (50)

Separately, we can upper-bound the same expectation as

E

[
〈 c(k),S(Q) 〉 I

(
〈 c(k),S(Q) 〉 = b(k)

)]
≤ (b(k) − γ(k)) E

[
I
(
〈 c(k),S(Q) 〉 6= b(k)

)]

= (b(k) − γ(k)) (1− π(k)),

where the inequality follows from the definition of γ(k) in (48), and from the
equality from the definition of π(k) in (47). Using this bound together with (50)
yields (49). �

Claim 1 implies the following additional fact:

E

[(
b(k) − 〈 c(k),S(Q) 〉

)2
]

= (1− π(k))E

[(
b(k) − 〈 c(k),S(Q) 〉

)2
|
(
〈 c(k),S(Q) 〉 6= b(k)

)]

≤ ε(k)

γ(k)

(
(b(k))2 + 〈 c(k), Smax1 〉2

)
(51)

= O(ε(k))

where the inequality follows from (49) and the fact that Sl ≤ Smax for all l. This
result establishes in a certain probabilistic sense that 〈 c(k),S(Q) 〉 is close b(k) if
ε(k) is small. This result confirms the intuition that when ε(k) is small, i.e., when
λ is close to the face F(k), the MW Scheduler must mostly select service rates on
F(k) so that the average service rate vector exceeds the given arrival rate vector
componentwise to ensure stability.

Our final remark before studying (33) and (34) concerns the geometry of the
scheduling capacity region R. Since the number of possible rate vectors is finite,
the number of faces in the rate region is finite. Therefore, for each face F(k) of the
region R, there exists an angle θ(k) ∈ (0, π/2] such that

〈 c(k),S(Q) 〉 = b(k), for all Q such that
‖Q(k)

‖ ‖
‖Q‖ ≥ cos(θ(k)), (52)

where S(Q) is the service rate vector selected by the MW Scheduler for the given
Q as in Definition 2. Note that θ(k) identifies a cone around the line c(k) such that
any Q in the cone leads to a rate allocation on the face F(k).

We are now ready to study each term in (33) and (34) with c := c(k) to estab-
lish (44).
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E

[
〈 c(k),Q 〉〈 c(k),S(Q)−A(Q) 〉

]

= E
[
‖Q‖‖

]
(b(k) − 〈 c(k),λ 〉)− E

[
‖Q‖‖(b(k) − 〈 c(k),S(Q) 〉)

]

(a)
= ε(k)E

[
‖Q‖‖

]
− E

[
‖Q‖ cos(θ

Q,Q
(k)

‖

)(b(k) − 〈 c(k),S(Q) 〉)
]

(b)
= ε(k)E

[
‖Q‖‖

]
− E

[
‖Q‖ cos(θ

Q,Q
(k)

‖

)I(θ
Q,Q

(k)

‖

> θ(k))(b(k) − 〈 c(k),S(Q) 〉)
]

(c)
= ε(k)E

[
‖Q‖‖

]
− E

[
‖Q(k)

⊥ ‖ cot(θ
Q,Q

(k)

‖

)I(θ
Q,Q

(k)

‖

> θ(k))(b(k) − 〈 c(k),S(Q) 〉)
]

(d)

≥ ε(k)E
[
‖Q‖‖

]
− E

[
‖Q(k)

⊥ ‖I(θ
Q,Q

(k)

‖

> θ(k))(b(k) − 〈 c(k),S(Q) 〉)
]
cot(θ(k))

≥ ε(k)E
[
‖Q‖‖

]
− E

[
‖Q(k)

⊥ ‖(b(k) − 〈 c(k),S(Q) 〉)
]
cot(θ(k))

(e)

≥ ε(k)E
[
‖Q‖‖

]
− cot(θ(k))

√
E

[
‖Q(k)

⊥ ‖2
]
E
[
(b(k) − 〈 c(k),S(Q) 〉)2

]

(f)

≥ ε(k)E
[
‖Q‖‖

]
− cot(θ(k))

√
ε(k)N

(k)
2

γ(k)

(
(b(k))2 + 〈 c(k), Smax1 〉2

)
, (53)

where the step (a) follows from the definitions of ε(k) in (11) and of the angle θx,y
between two vectors x and y given in (2); (b) is true from the definition of θ(k);

(c) is true since ‖Q(k)
⊥ ‖ = ‖Q‖ sin(θ

Q,Q
(k)

‖

); (d) is true since cotangent function

is a decreasing nonnegative-valued function in (0, π/2]; (e) follows from Cauchy-
Schwartz Inequality; and (f) follows from Proposition 2 and (51). We note that,
in (53), the first term is O(ε(k)) while the second term is O(

√
ε(k)).

Next, we bound the first right-hand-side term in (33): E
[
〈 c(k),A(Q)− S(Q) 〉2

]

(a)
= E

[
(〈 c(k),A 〉 − b(k))2

]
+ E

[
(b(k) − 〈 c(k),S(Q) 〉)2

]

+2
(
〈 c(k),λ 〉 − b(k)

)
E

[
b(k) − 〈 c(k),S(Q) 〉

]

(b)
= E

[
(〈 c(k),A 〉 − b(k))2

]
+ E

[
(b(k) − 〈 c(k),S(Q) 〉)2

]
− 2 ε(k)E

[
b(k) − 〈 c(k),S(Q) 〉

]

(c)

≤ E

[
(〈 c(k),A− λ 〉+ 〈 c(k),λ 〉 − b(k))2

]
+ E

[
(b(k) − 〈 c(k),S(Q) 〉)2

]

(d)
= E

[
〈 c(k),A− λ 〉2

]
+ 2ε(k)〈 c(k),E[A]− λ 〉+ (ε(k))2 + E

[
(b(k) − 〈 c(k),S(Q) 〉)2

]

(e)

≤ 〈 (c(k))2,σ2 〉+ (ε(k))2 +
ε(k)

γ(k)

(
(b(k))2 + 〈 c(k), Smax1 〉2

)

(f)
= ζ(ε,k) +

ε(k)

γ(k)

(
(b(k))2 + 〈 c(k), Smax1 〉2

)
(54)

where the step (a) follows simply from expanding the square after adding and
subtracting b(k), and noting that the exogenous arrival rate vector A has mean λ
and is independent of the service rate vector S(Q); (b) follows from the definition
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of ε(k) in (11); (c) follows from adding and subtracting λ in the first expression, and
from noting that b(k) −〈c(k), r 〉 ≥ 0 for any r ∈ R and hence for S(Q); (d) follows,
again, from the definition of ε(k); (e) follows from (51) and uses the notation σ2

for the variance vector for the arrival process; and (f) uses the definition of the
parameter ζ(ε,k). Notice that all the terms except the first term vanishes in (54)
as ε(k) ↓ 0.

Next, we bound the last term in (33) using (46) and the fact that Ul ≤ Smax

for all l :

E

[
〈 c(k),U(Q) 〉2

]
≤ 〈 c, Smax1 〉 E

[
〈 c(k),U(Q) 〉

]
≤ ε(k)〈 c(k), Smax1 〉, (55)

which is also vanishing as ε(k) ↓ 0.
Finally, we consider the term (34). While the argument essentially follows that

of (36), we need to pay more attention to the zero entries of c(k), which did not exist

in the JSQ case. To that end, we define L(k)
++ , {l ∈ {1, · · · , L} : c(k)

l
> 0} to denote

the strictly positive entries of c(k). Then, we focus on only these components by

defining the following restricted vectors living in the |L(k)
++|-dimensional real space:

c̃(k) , (c(k)
l

)
l∈L(k)

++

, Q̃ , (Ql)l∈L(k)
++

, Ũ , (Ul)l∈L(k)
++

.

For convenience, we will denote Q̃[t+1] = (Ql[t+1])
l∈L(k)

++

as Q̃+. In this reduced

space, we further define the projection and perpendicular of Q̃+ and Ũ with respect
to c̃(k) as:

Q̃+
‖ , 〈 c̃(k), Q̃+ 〉 c̃(k), Q̃+

⊥ , Q̃+ − Q̃+
‖ , Ũ‖ , 〈 c̃(k), Ũ 〉 c̃(k), Ũ⊥ , Ũ− Ũ‖.

Now, since c̃(k) � 0 satisfies ‖c̃(k)‖ = 1, the statement of Lemma 9 applies to
c̃(k), Q̃+, and Ũ to yield

〈 c̃(k), Q̃+ 〉〈 c̃(k), Ũ 〉 = 〈 −Q̃+
⊥, Ũ 〉.

This result, together with the fact that 〈c(k),Q+ 〉〈c(k),U 〉 = 〈 c̃(k), Q̃+ 〉〈 c̃(k), Ũ 〉,
where we used the notation Q+ , Q[t+ 1], allows us to bound (34) as follows (in
the following we temporarily use E

Q
to imply that Q is distributed as Q in the

expectation):

(34) ≤ E
Q

[
〈 c(k),Q+ 〉〈 c(k),U 〉

]

= E
Q

[
〈 c̃(k), Q̃+ 〉〈 c̃(k), Ũ 〉

]

= E
Q

[
〈 −Q̃+

⊥, Ũ 〉
]

(a)

≤
√

E
Q

[
‖Q̃+

⊥‖2
]
E
Q

[
‖Ũ‖2

]

(b)

≤
√

E
Q

[
‖Q̃⊥‖2

]
E
Q

[
‖Ũ‖2

]
, (56)

where (a) follows from Cauchy-Schwartz inequality, and (b) is true since the distri-
bution ofQ+ is the same asQ under steady-state. Next, we bound the expectations
in (56).
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The first expectation of (56) satisfies:

E
Q

[
‖Q̃⊥‖2

]
≤ E

[
‖Q⊥‖2

]
≤ N

(k)
2 , (57)

where the first inequality follows from the fact that Q⊥ and Q̃⊥ are equal for

all positions L(k)
++, while Q⊥ potentially contains additional non-zero components,

and hence cannot be smaller in magnitude. The second inequality follows from
Proposition 2 that establishes the state-space collapse of MWS.

The second expectation of (56) satisfies:

E
Q

[
‖Ũ‖2

]
= E

Q




∑

l∈L(k)
++

Ũ2
l


 ≤ Smax

c
(k)
min

E

[
〈 c(k),U(Q) 〉

]
, (58)

where c(k)min , min
m∈L(k)

++

c
(k)
m > 0. Here, the last inequality is true since c(k)

l
≥ c

(k)
min

for all l ∈ L(k)
++, and Ũl ≤ Smax for all l.

Substituting the bounds (57) and (58) back in (56) together with the fact (46)
yields:

(34) ≤
√
ε(k)N

(k)
2

Smax

c
(k)
min

(59)

To complete, we reintroduce the (ε),(ε,k) superscript to emphasize the depen-
dence on ε and substitute the derived bounds (53), (54), (55), (59) in (33) and
(34) to get

E

[
〈 c(k),Q(ε) 〉

]
≤ ζ(ε,k)

2ε(k)
+B

(ε,k)
1 ,

where

B
(ε,k)
1 , cot(θ(k))

√
N

(k)
2

(
(b(k))2 + 〈 c(k), Smax1 〉2

)

ε(k)γ(k)

+

(
(b(k))2 + 〈 c(k), Smax1 〉2

)

2γ(k)
+

〈 c(k), Smax1 〉
2

+

√√√√N
(k)
2 Smax

ε(k) c
(k)
min

,

which is o(1/ε(k)) as claimed. Then, (45) immediately follows by taking the limit
as ε(k). �

6 Some Extensions of the Results on the Scheduling Problem

In this section, we obtain bounds on the nth moment of the steady-state queue
lengths for the scheduling problem, and we also discuss how to handle channel
fading in the derivations of the bounds. Both of these extensions introduce some
challenges, but can be essentially addressed by the methodology presented in the
previous sections. The nth moment analysis can also be performed for JSQ routing,
but is omitted here since it is quite similar to the scheduling case.
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6.1 nth Moment Analysis

We follow the steps outlined in Section 1.1 to first develop lower bounds on the nth

moment of steady-state queue-lengths, and utilize the state-space collapse result
of Section 4 to find corresponding upper bounds. Then, we will establish, as be-
fore, the heavy-traffic optimality of these policies by showing that the appropriate
dominant terms of the lower and upper bounds match as the arrival rate vector
approaches one of the faces of the capacity region R.

1. Lower Bounds on the nth moment: We first extend the approach applied in Sec-
tion 3 to the nth moment of the lower-bounding system in Figure 5.

Lemma 10 For the system of Figure 5 with a given service process {β[t]}t, consider
the arrival process {α(ε)[t]}t, parameterized by ε > 0, with mean α(ε) satisfying ε =
β − α(ε), and with variance denoted as σ2

α(ε) . Let the queue-length process, denoted by

{Φ(ε)[t]}t, evolve as in (5) with α[t] := α(ε)[t].
Then, {Φ(ε)[t]}t is a positive Harris recurrent Markov Chain ([30]) for any ε > 0,

and converges in distribution to a random variable Φ
(ε)

with all bounded moments.

Moreover, the nth moment of Φ
(ε)

can be lower-bounded as

εn E

[(
Φ
(ε)

)n]
≥ n!

(
ζ(ε)

2

)n

−B
(ε)
n , n ≥ 1, (60)

where B
(ε)
n vanishes with ε ↓ 0, i.e., lim

ε↓0
B

(ε)
n = 0

Therefore, in the heavy-traffic limit as the mean arrival rate approaches the mean

service rate from below, i.e., as ε ↓ 0, and assuming the variance σ2
α(ε) converges to a

constant σ2α, the lower bounds become

lim inf
εn↓0

εn E

[(
Φ
(ε)

)n]
≥ n!

(
ζ

2

)n

, n ≥ 1, , (61)

where ζ , σ2α + ν2β .

Proof See Appendix C. �

Lemma 10 reveals an interesting fact that, in the heavy-traffic limit, the dom-

inant terms of the nth moment of Φ
(ε)

only depends on ζ, which in turn depends
only on the variances of the arrival and service processes. This is consistent with
Brownian approximations, which utilize central limit theorem to approximate the
system behavior using the first two moments of the arrival and service processes.

We can now apply this generic result to the scheduling problem using the same
construction as in Section 3.2.

Lemma 11 For the scheduling problem of Section 2.3 with a given set of feasible

schedules S , consider the exogenous arrival vector process {A(ε)[t]}t with mean vector

λ(ε) ∈ Int(R) and with variance vector denoted as (σ(ε))2 ,

(
(σ

(ε)
l

)2
)L

l=1
. Here,

the superscript vector is given by ε = (ε(k))Kk=1 � 0, where ε(k) and λ(k) gives the

distance and the projection of λ(ε) to the kth hyperplane as defined in (11) and (12),

respectively. Accordingly, let the queue-length process under MW Scheduling with this
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arrival process be denoted as {Q(ε)[t]}t, evolving as in (1). Moreover, let Q
(ε)

denote a

random vector with the same distribution as the steady-state distribution of {Q(ε)[t]}t
(by Lemma 3).

Then, for each k ∈ {1, · · · ,K}, and with ζ(ε,k) , 〈 (c(k))2, (σ(ε))2 〉,

(ε(k))nE
[
〈 c(k),Q(ε) 〉n

]
≥ n!

(
ζ(ε,k)

2

)n

−B
(ε,k)
n , n ≥ 1, (62)

where B
(ε,k)
n vanishes as ε(k) ↓ 0.

Further, for each k ∈ K
λ(ε) , consider the heavy-traffic limit ε(k) ↓ 0; and suppose

that the variance vector (σ(ε))2 approaches a constant vector σ2. Then, defining ζ(k) ,

〈 (c(k))2,σ2 〉, we have

lim inf
ε(k)↓0

(ε(k))nE
[
〈 c(k),Q(ε) 〉n

]
≥ n!

(
ζ(k)

2

)n

, n ≥ 1. (63)

2. State-Space Collapse: The state space collapse result for MW Scheduling pro-
vided in Proposition 2 applies directly. Next, we utilize this result to develop upper
bounds on the nth moment of the steady-state queue-lengths.

3. Upper Bounds and nth Moment Heavy-Traffic-Optimality of MW Scheduling: The
main idea behind the analysis is to utilize the state-space collapse result, which
implies that the total unused service under the MW Scheduler is small unless all

queue-lengths are small. Thus, as the system gets heavily loaded, the total unused
service vanishes, making the system act similarly to the lower bounding system
investigated above. The following result builds on this to establish the nth moment
heavy-traffic optimality of MW Scheduler.

Proposition 5 Consider the scheduling problem under the exogenous arrival vector

process {A(ε)[t]}t with mean vector λ(ε) ∈ Int(R) and with variance vector (σ(ε))2 ,(
(σ(ε)

l
)2
)L

l=1
. The parameter ε = (ε(k))Kk=1 � 0, where ε(k) gives the distance and

the projection of λ(ε) to the kth hyperplane as defined in (11). Then, under the MW

Scheduling, the limiting steady-state queue-vector Q
(ε)

satisfies, for each k ∈ K◦
λ(ε) ,

(ε(k))nE
[
〈 c(k),Q(ε) 〉

]
≤ n!

(
ζ(ε,k)

2

)n

+B
(ε,k)
n , n ≥ 1, (64)

where we recall that ζ(ε,k) , 〈(c(k))2, (σ(ε))2 〉 as it is defined in Lemma 6, and B
(ε,k)
n

is vanishing as ε(k) ↓ 0.
Also, in the heavy traffic limit, where we consider a sequence of exogenous arrival

processes {A(ε,k)[t]}t with their mean vector λ
(ε)
A

approaching the kth dominant face

in K◦
λ(ε) along its normal c(k), and variance vectors (σ(ε)

A
)2 approaching a constant

vector σ2, we have

lim sup
ε(k)↓0

(ε(k))nE
[
〈 c(k),Q(ε) 〉

]
≤ n!

(
ζ(k)

2

)n

, n ≥ 1, (65)

where ζ(k) , 〈 (c(k))2,σ2 〉.



34 Atilla Eryilmaz, R. Srikant

Hence, comparing the heavy-traffic lower-bound (63) for any feasible policy to the

heavy-traffic upper-bound (65) for MW Scheduler establishes the nth-moment heavy-
traffic optimality of MW Scheduling Policy.

Proof See Appendix D. �

We note that the nth moment argument concerns optimality of the norm of the

projection ‖Q(k)

‖ ‖ onto the vector c(k). It is interesting to relate this norm to the

norm of the queue-length vector ‖Q‖ when n = 2 to show the 2nd moment opti-
mality of MW Scheduling in minimizing limε(k)↓0(ε

(k))2E[‖Q‖2]. This consequence
is provided in the following corollary.

Corollary 1 Under the same conditions as in Proposition 5, the MW Scheduler achieves,

in the heavy-traffic limit,

lim sup
ε(k)↓0

(ε(k))2E
[
‖Q‖2

]
≤ (ζ(k))2

2
, (66)

where ζ(k) , 〈 (c(k))2,σ2 〉. Furthermore, since the right-hand-side is the smallest

heavy-traffic limit achievable by any policy, this establishes 2nd-moment heavy-traffic-

optimality of MW Scheduling.

Proof The proof simply follows from noting that

‖Q(k)

‖ ‖2 ≤ ‖Q‖2 = ‖Q(k)

‖ ‖2 + ‖Q(k)
⊥ ‖2,

from Pythagorean Theorem, and from combining the state-space collapse result

E[‖Q(k)
⊥ ‖2] ≤ N

(k)
2 where N(k)

2 is independent of ε(k) with the tight heavy-traffic

lower and upper bounds (61) and (65) on E[‖Q(k)

‖ ‖2]. �

6.2 Channel Fading

We consider the same setup as in Section 2.3, depicted in Figure 2, receiving
nonnegative-integer-valued vector of arrivals {A[t]}t≥0 with Al[t] ≤ Amax,∀l, t,
distributed independently over links and also identically over time. However, in-
stead of a fixed set of feasible rate vectors S , we allow the feasible set to evolve
randomly in time over a finite state space. In particular, we let {J[t]}t≥0 be an i.i.d.
sequence of random variables capturing the global state of the channel states of all
links in the network. We assume that J[t] ∈ J for some set J with finite cardinal-
ity, and let ψj , P(J[t] = j). Then, each global state j ∈ J yields a set of feasible

rate vectors S(j) that can be provided under that state. We assume that S(j) has
finite cardinality for each j with Sl ≤ Smax, for all l and each S , (Sl)l ∈ S(j).

For simplicity, we also assume that each feasible rate vector in S(j) is composed of
non-negative integers, although the arguments hold for any discrete set of choices.
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Capacity Region Under Channel Fading: With channel fading, the maximum achiev-
able rate region becomes

R ,
∑

j∈J
ψj Convex Hull (S(j))

= Convex Hull





∑

j∈J
ψj s

(j) : s(j) ∈ S(j), for each j ∈ J





which is henceforth called the Fading Capacity Region. Notice that the set Convex Hull(S(j))
for each j ∈ J simply yields a convex polyhedral set in R

L
+ as in (4). Thus, their

finite weighted-sum also yields a polyhedral set that can be equivalently described,
with a convenient abuse of notation, as:

R = {r ≥ 0 : 〈 c(k), r 〉 ≤ b(k), k = 1, · · · ,K}, (67)

where K denotes the finite (and minimal) number of hyperplanes that fully de-
scribe the polyhedron. We refer the reader to Definition 3 for the notions of the
hyperplane H(k), the pair (c(k), b(k)), and the face F(k), which identically apply to
R.

Maximum Weight (MW) Scheduler Under Fading: In each slot, the purpose of the
scheduler is to select a feasible rate vector from the feasible set to achieve stability
of the queueing network in the long run. A well-known generalization (introduced
in [38]) of the earlier MW Scheduler (cf. Definition 2) to this fading case is the
following: given the queue-length vector Q[t] and the global channel state J[t] at
the beginning of slot t, the service rate vector is selected as

S[t] , S(Q[t], J[t]) = RAND

{
argmax
S∈SJ[t]

〈Q[t],S 〉
}
. (68)

Note that the rate vectors in R are typically not instantaneously realizable, but
only in the mean sense. In particular, mean service rate vector over the channel
variations provided by the above MW Scheduler conditioned over a queue-length
vector Q satisfies:

R(Q) , E[S[t] |Q[t] = Q] = RAND

{
argmax

R∈R
〈Q,R 〉

}
. (69)

We next comment on the application of the three steps of our methodology
outlined in Section 1.1 to the steady-state performance of this MW Scheduler in
the fading scenario.

1. Moment Bounds and Lower Bounds under Fading: The statement and proof of
Lemma 3 apply once we replace the non-fading capacity region with the above
fading capacity region. However, we note that the specific values of c(k) and b(k)

are different in the non-fading and fading capacity regions, as the latter also in-
corporates the channel fading distribution ψ , (ψj)j .

Next, we construct the lower-bounding system associated with the kth face
of R, for any given k ∈ {1, · · · ,K}, as in the non-fading case, except that the
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service process is no longer at a constant rate but must incorporate the channel
fading distribution ψ. Recalling that the pair (c(k), b(k)) describes the associated
hyperplane, we first define

b(j,k) , max
s∈ S(j)

〈 c(k), s 〉, for each j ∈ J ,

which yields the maximum c(k)-weighted service rate available in channel state j.
We are now ready to describe the governing arrival and service statistics of the

lower bounding system (cf. Figure 5): the arrival process {α(k)[t]}t≥0 of the lower

bounding system associated with hyperplane H(k) is set to α(k)[t] = 〈 c(k),A[t] 〉,
while the service process {β(k)[t]}t≥0 is distributed as:

P

(
β(k)[t] = b(j,k)

)
= ψj , for each j ∈ J .

We note that {b(j,k)}j∈J may be identical for different j, in which case their

probabilities are aggregated. It is also true that b(k) = E[β(k)[t]] by construction
of R.

We note that the queue-length process {Φ(k)[t]}t≥0 driven by the above arrival

{α(k)[t]}t≥0 and service {β(k)[t]}t≥0 processes as in (5) is stochastically smaller

than {〈 c(k),Q[t] 〉}t≥0, where {Q[t]}t≥0 is the queue-length vector process under
any feasible scheduling strategy. This follows from a coupling argument that utilizes
the facts that: the service process of both the lower bounding and the actual
queueing systems are governed by the same fading distribution ψ; and that b(j,k),
by definition, is the largest c(k)-weighted service that can be provided to the
queueing system under channel state j. Hence, any lower bound on {Φ(k)[t]}t is
also a lower bound on {〈 c(k),Q[t] 〉}t.

The setup and definitions of Section 4.2 apply directly to the fading case given
that R is the fading capacity region defined above rather than the the non-fading
capacity region of Definition 3. Then, we have the following equivalent of Lemma 6.

Lemma 12 For the above scheduling problem with a given set of channel fading dis-

tribution ψ = (ψj)j and their associated set of feasible schedules {S(j)}j , consider
the exogenous arrival vector process {A(ε)[t]}t with mean vector λ(ε) ∈ Int(R) and

with variance vector denoted as (σ(ε))2 ,

(
(σ

(ε)
l

)2
)L

l=1
. Here, the superscript vector

is given by ε = (ε(k))Kk=1 � 0, where ε(k) and λ(k) gives the distance and the projec-

tion of λ(ε) to the kth hyperplane of (67) as defined in (11) and (12), respectively.

Accordingly, let the queue-length process under MW Scheduling (see (68)) with this ar-

rival process be denoted as {Q(ε)[t]}t, evolving as in (1). Moreover, let Q
(ε)

denote

a random random vector with the same distribution as the steady-state distribution of

{Q(ε)[t]}t.
Then, for each k ∈ {1, · · · ,K}, we have

E

[
〈 c(k),Q(ε) 〉

]
≥ ζ(ε,k)

2ε(k)
−B

(k)
1 (70)

where ζ(ε,k) , E

[(
〈 c(k),A(ε) 〉 − β(k)

)2
]
= 〈(c(k))2, (σ(ε))2 〉+V ar(β(k))+(ε(k))2,

and B
(k)
1 , Smax

2 .
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Further, for each k ∈ K
λ(ε) , consider the heavy-traffic limit ε(k) ↓ 0; and suppose

that the variance vector (σ(ε))2 approaches a constant vector σ2. Then, defining ζ(k) ,

〈 (c(k))2,σ2 〉+ V ar(β(k)), we have

lim
ε(k)↓0

ε(k)E
[
〈 c(k),Q(ε) 〉

]
≥ ζ(k)

2
(71)

Comparing these lower bounds with their non-fading counterparts (14) and
(15), we note that they include V ar(β(k)) which captures the impact of the fading
distribution ψ on the steady-state mean queue-length levels.

2. State-Space Collapse of MW Scheduling under Fading: The state-space collapse
argument under fading follows the same line of argument as in Section 4. First,
the statement and proof of Lemma 7 applies without modification since the max-
imum service rate is uniformly bounded by Smax in every channel state. Next, we
follow the development of Section 4.2 to consider the performance of a sequence of
systems associated with a sequence of arrival processes {A(ε)[t]}t≥0 parameterized

by ε = (ε(k))k � 0 as defined in (11).

Then, the corresponding queue-length vector process under MW Scheduling

{Q(ε)[t]}t converge in distribution to Q
(ε)
. Also, the definitions of Q

(ε,k)
‖ , Q

(ε,k)
⊥ ,

and K◦
λ(ε) remain the same as in Section 4.2 with R representing the fading ca-

pacity region (67). Then, the following state-space collapse result follows.

Proposition 6 Assume λ(ε) ∈ Int(R) in the scheduling problem with the correspond-

ing set of {ε(k)}k as defined in (11). Then, under the MW Scheduling Policy, for each

k ∈ K◦
λ(ε) , there exist finite constants {N(k)

r }r=1,2,··· such that E
[
‖Q(ε,k)

⊥ ‖r
]
≤ N

(k)
r ,

for all ε � 0, each k ∈ K◦
λ(ε) , and each r = 1, 2, · · · .

Proof (Outline) The proof of Proposition 2 directly applies to this statement with
R defined as in (67), and by replacing E[S |Q] with R(Q) as defined in (69). Most
importantly, with these substitutions, the key property (30) continues to hold for
the MW Scheduler under fading, which allows the rest of the argument to apply
without modification. �

3. Upper Bounds and Heavy-Traffic-Optimality of MW Scheduling under Fading: Sim-
ilarly to the first two steps, the upper bound arguments of Section 5 extend to the
fading scenario with minor modifications. First, Lemma 8 applies once we replace
S(Q) with S(Q, J) (see (68)) to capture the channel randomness, and let the ex-
pectation be over the channel fading distribution ψ as well. Then, the statement
of Proposition 4 applies almost without modification to the fading case, which is
repeated here for convenience.

Proposition 7 Consider the scheduling problem under fading with capacity region (67)

serving the exogenous arrival vector process {A(ε)[t]}t with mean vector λ(ε) ∈ Int(R)

and with variance vector (σ(ε))2 ,

(
(σ

(ε)
l

)2
)L

l=1
. The parameter ε = (ε(k))Kk=1 � 0,

where ε(k) gives the distance and the projection of λ(ε) to the kth hyperplane of R
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as defined in (11). Then, under MW Scheduling, the limiting steady-state queue-vector

Q
(ε)

satisfies, for each k ∈ K◦
λ(ε) ,

E

[
〈 c(k),Q(ε) 〉

]
≤ ζ(ε,k)

2ε(k)
+B

(ε,k)
1 , (72)

where we recall that ζ(ε,k) , 〈 (c(k))2, (σ(ε))2 〉+ V ar(β(k)) + (ε(k))2 as it is defined

in Lemma 12, and B
(ε,k)
1 is o

(
1

ε(k)

)
, i.e., lim

ε(k)↓0
ε(k)B

(ε,k)
1 = 0.

Also, in the heavy traffic limit, where we consider a sequence of exogenous arrival

processes {A(ε,k)[t]}t with their mean vector λ
(ε)
A

approaching the kth dominant face

in K◦
λ(ε) along its normal c(k), and variance vectors (σ

(ε)
A

)2 approaching a constant

vector σ2, we have

lim
ε(k)↓0

ε(k)E
[
〈 c(k),Q(ε) 〉

]
≤ ζ(k)

2
, (73)

where ζ(k) , 〈 (c(k))2, (σ(ε))2 〉+ V ar(β(k)).
Hence, comparing the heavy-traffic lower-bound (71) for any feasible policy to the

heavy-traffic upper-bound (73) for MW Scheduler establishes the first moment heavy-
traffic optimality of MW Scheduling Policy under fading.

Proof (Outline) We point to a few modifications in the proof of Proposition 4 that
yields the proof of this statement. The need for these modifications arise from
the fact that the MW scheduler does not directly select its allocation from the
fading capacity region R, but from the instantaneous feasible set of schedules
{SJ[t]}t available at the time. This subtlety can be handled partly by working
with conditional expectation R(Q) defined in (69) instead of S(Q), and partly by
introducing conditional probabilities in the analysis.

Omitting the details, we point to the similarities and differences from the
non-fading case: the derivation of (46) follows with S(Q) replaced by R(Q); the
definition of π(k) in (47) is modified to per channel state j as

π(j,k) , P

(
〈 c(k),S(Q, J) 〉 = b(j,k) | J = j

)
,

for each j, k; the definition of γ(k) in (48) is unmodified; the statement of Claim 1

is true for the above conditional probability π
(k)
j , such that (1−π(k)j ) = O(ε(k)) for

each channel state j. This establishes that under heavy-traffic conditions, the MW
Scheduler will operate on the dominant face with high probability in every channel
state. The rest of the argument follows the non-fading case since the previous fact
allows us to approach the fading case as a time-average of non-fading cases, each
operating on rate vectors contributing to the dominant face F(k). �

7 Conclusions

The main contribution of the paper is to show that drift conditions in steady-
state can be used to obtain bounds on the moments of queue lengths that are
tight in heavy traffic. The key new idea here is to derive an appropriate notion
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of state-space collapse in steady-state which sharpen the bounds obtained using
drift conditions. The results presented in this paper apply to the case where the
state collapses to a single dimension. An interesting topic for further research is
to understand whether the ideas presented here apply more generally.
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A Proof of Lemma 2

The proof follows from the application of Lemma 1 to the Markov Chain X[t] := Q[t] using

the Lyapunov function Z(X) := V (Q) , ‖Q‖. First, we check that both conditions (C1) and
(C2) are satisfied. We start with (C1):

E [∆V (Q) |Q[t] = Q] = E [‖Q[t + 1]‖ − ‖Q[t]‖] |Q[t] = Q]

= E

[√
‖Q[t+ 1]‖2 −

√
‖Q[t]‖2 |Q[t] = Q

]

≤ 1

2‖Q‖
E
[
‖Q[t+ 1]‖2 − ‖Q[t]‖2 |Q[t] = Q

]
, (74)

where the inequality follows from the fact that f(x) =
√
x is concave for x ≥ 0 so that

f(y) − f(x) ≤ (y − x)f ′(x) = (y−x)
2
√

x
with y := ‖Q[t + 1]‖2 and x := ‖Q[t]‖2. Next, we study

the difference in (74), which is simply the mean drift of the quadratic Lyapunov function

W (Q) , ‖Q‖2. We shall omit the time reference [t] after the first step for brevity.

E[∆W (Q) |Q] = E
[
‖Q[t+ 1]‖2 − ‖Q‖2 |Q

]

= E
[
‖Q+A− S+U‖2 − ‖Q‖2 |Q

]

= E
[
‖Q+A− S‖2 + 2〈Q+A− S,U 〉 + ‖U‖2 − ‖Q‖2 |Q

]

(a)

≤ E
[
‖Q+A− S‖2 − ‖Q‖2 |Q

]

= E
[
2〈Q,A− S 〉+ ‖A− S‖2 |Q

]

≤ 2 E [〈Q,A− S 〉 |Q] +K1, (75)

where the inequality (a) follows from the fact that Ul(Ql+Al−Sl) = −U2
l
≤ 0, for each l, and

K1 , Lmax(Amax, Smax)2 is finite since both the arrival and service processes are bounded.

Next, we bound the first term in (75) by first defining ε , µΣ − λΣ , and then defining a
hypothetical arrival rate vector λ = (λl)l with respect to the given service rate vector µ and

ε such that λl , µl − ε
L
, for each l. Note that

∑L
l=1 λl = µΣ − ε = λΣ . Then, we can massage

the first term in (75) as

E [〈Q,A− S 〉 |Q] = 〈Q,E [A |Q]− λ 〉 − 〈Q,µ− λ 〉
(a)
= 〈Q,E [A |Q]− λ 〉 − ε

L
〈Q,1 〉

(b)
= E[AΣ |Q]Qmin − 〈Q,λ 〉 − ε

L
‖Q‖1

{
Qmin , min

1≤m≤L
Qm ≥ 0

}

= λΣ Qmin −
L∑

l=1

λlQl −
ε

L
‖Q‖

= −
L∑

l=1

λl(Ql − Qmin)−
ε

L
‖Q‖

(c)

≤ − ε

L
‖Q‖

where step (a) follows from the definition of λ; (b) follows from the definitions of the JSQ policy

(see Definition 1) and the l1 norm ‖Q‖1 ,
∑L

l=1 |Ql|; (c) is trivially true since Qmin ≤ Ql for
all l. Using this bound in (75) and back in (74) yields

E [∆V (Q) |Q[t] = Q] ≤ − ε

L
+

K1

2‖Q‖ ,



42 Atilla Eryilmaz, R. Srikant

which verifies Condition (C1). Moving on to Condition (C2), we have

|∆V (Q)| = |‖Q[t+ 1]‖ − ‖Q[t]‖| I(Q[t] = Q)

= ‖Q[t+ 1]−Q[t]‖ I(Q[t] = Q)

(a)

≤ ‖Q[t+ 1]−Q[t]‖1 I(Q[t] = Q)

≤ L max
1≤l≤L

|Ql[t+ 1]−Ql[t]| I(Q[t] = Q)

(b)

≤ 2Lmax(Amax, Smax) (76)

where (a) follows from the fact that ‖x‖1 ≥ ‖x‖ for any x ∈ R
L; and (b) is true since Al[t]

and Sl[t] are bounded by Amax and Smax, respectively, for all l = 1, · · · , L and all t ≥ 0. This
verifies Condition (C2) and completes the proof.

B Proof of Lemma 7

We first prove (20):

∆V⊥(Q) = [‖Q⊥[t+ 1]‖ − ‖Q⊥[t]‖] I(Q[t] = Q)

=

[√
‖Q⊥[t+ 1]‖2 −

√
‖Q⊥[t]‖2

]
I(Q[t] = Q)

≤ 1

2‖Q⊥[t]‖
[
‖Q⊥[t+ 1]‖2 − ‖Q⊥[t]‖2

]
I(Q[t] = Q)

=
1

2‖Q⊥[t]‖
[ (

‖Q[t+ 1]‖2 − ‖Q[t]‖2
)
I(Q[t] = Q)

︸ ︷︷ ︸
=∆W (Q)

−
(
‖Q‖[t+ 1]‖2 − ‖Q‖[t]‖2 I(Q[t] = Q)

)
︸ ︷︷ ︸

=∆W‖(Q)

]
,

where the inequality follows from the fact that f(x) =
√
x is concave for x ≥ 0 so that

f(y)− f(x) ≤ (y − x)f ′(x) = (y−x)
2
√

x
with y := ‖Q⊥[t+ 1]‖2 and x := ‖Q⊥[t]‖2. Also, the last

step follows from Pythagoras Theorem (3) with x := Q‖[·] and y := Q⊥[·].
Next, we prove (21):

|∆V⊥(Q)| = |‖Q⊥[t+ 1]‖ − ‖Q⊥[t]‖| I(Q[t] = Q)

(a)

≤ ‖Q⊥[t+ 1]−Q⊥[t]‖ I(Q[t] = Q)

(b)
= ‖Q[t+ 1]−Q[t]−Q‖[t] +Q‖[t+ 1]‖ I(Q[t] = Q)

(c)

≤
(
‖Q[t+ 1]−Q[t]‖+ ‖Q‖[t+ 1]−Q‖[t]‖

)
I(Q[t] = Q)

(d)

≤ 2‖Q[t+ 1]−Q[t]‖ I(Q[t] = Q)

(e)

≤ 2
√
L max

1≤l≤L
|Ql[t+ 1]−Ql[t]| I(Q[t] = Q)

(f)

≤ 2
√
Lmax(Amax, Smax)

where: (a) follows from the fact that |‖x‖−‖y‖| ≤ ‖x−y‖ for each x,y ∈ R
L; (b) follows from

the definition of Q = Q⊥ +Q‖; (c) follows from triangle inequality; (d) follows from the non-
expansive nature of the projection onto a convex set once we note that Q‖[·] is the projection
of Q[·] onto the line along c, which implies that ‖Q‖[t + 1] −Q‖[t]‖ ≤ ‖Q[t + 1] −Q[t]‖; (e)
trivially follows from the definition of ‖ · ‖; and (f) is true since Al[t] and Sl[t] are respectively
assumed to be bounded by Amax and Smax for all l = 1, · · · , L and all t ≥ 0.
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C Proof of Lemma 10

We have already argued the weak convergence and boundedness of all moments of the limiting

random variable Φ
(ε)

for each ε > 0 in the proof of Lemma 4. Recalling the evolution (8), we

study the mean drift of the Lyapunov function Wn(Φ) , ‖Φ‖n. In the following, we temporarily

omit the time reference [t] and the superscript (ε) for ease of exposition:

E[∆Wn(Φ[t]) | Φ[t] = Φ] = E[(Φ+ α− β + χ)n − Φn | Φ]

= E

[
(Φ+ α− β)n − Φn +

n−1∑

i=0

(
n
i

)
(Φ + α− β)iχn−i | Φ

]

(a)
= E

[
(Φ+ α− β)n − Φn + χn

n−1∑

i=0

(
n
i

)
(−1)i | Φ

]

= E [(Φ+ α− β)n − Φn − (−χ)n | Φ]

= E

[
n−1∑

i=0

(
n
i

)
Φi(α− β)n−i − (−χ)n | Φ

]

= E

[
n−2∑

i=0

(
n
i

)
Φi(α− β)n−i + nΦn−1(α− β)− (−χ)n | Φ

]
,

where (a) uses the fact that χ = −(Φ + α − β)I(Φ + α − β < 0) by definition of χ. Taking

expectations of both sides with respect to the steady-state distribution, i.e., setting Φ[t] = Φ,

and noting that E[∆Wn(Φ)] = 0 yields:

0 = E

[
n−2∑

i=0

(
n
i

)
Φ
i
(α− β)n−i + nΦ

n−1
(α− β)− (−χ)n

]

Re-arranging terms, noting the independence of the arrival and service processes from each
other and Φ, and recalling that E[β − α] = ε by construction allows us to write:

nεE[Φ
n−1

] =

n−2∑

i=0

(
n
i

)
E[Φ

i
] E
[
(α − β)n−i

]
− E[(−χ)n]

We separate the final term in the summation and multiply both sides with εn−2/n to get:

εn−1
E[Φ

n−1
] =

(n− 1)

2
ε(n−2)

E[Φ
n−2

]E[(α− β)2] (77)

+

n−3∑

i=0

(
n
i

)
ε(n−2)

E[Φ
i
]

n
E
[
(α− β)n−i

]
− ε(n−2)

E[(−χ)n]

n
. (78)

Next, we investigate terms in (78) to show that they vanish with ε ↓ 0. To that end, we first
note that

∣∣∣∣∣
ε(n−2)

E[(−χ)n]

n

∣∣∣∣∣ ≤
(
ε(n−2)Sn−1

max

n

)
E[χ] =

(
ε(n−1)Sn−1

max

n

)
, (79)

where the final equality follows from the fact that E[χ] = ε under steady-state operation.
Clearly, the final expression vanishes with ε ↓ 0 for any n ≥ 2.

Next, we turn the summation in (78) to argue inductively that lim
ε↓0

εn−2
E[Φ

i
] = 0 for all

n ≥ 3 and for each i = 0, 1, · · · , n − 3. This result, when proven, implies that the whole sum

is vanishing with ε. The first step of the induction holds trivially since εE[Φ
0
] = ε. Suppose

the claim is true for some n ≥ 3 and all i = 0, 1, · · · , n − 3. We would like to confirm it for
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(n+ 1) and i = 0, 1, · · · , n− 2 as well. This is straight-forward for all i = 0, 1, · · · , n− 1. The

case when i = n− 2 requires us to investigate εn−1
E[Φ

n−2
] using the expansion (77)-(78):

εn−1
E[Φ

n−2
] =

n−2∑

i=0

(
n
i

)(
εn−3

E[Φ
i
]

n

)
E
[
(α − β)n−i

]
− εn−2

E[(−χ)n]

n
.

The right-hand-side of this expression vanishes with ε since εn−2
E[Φ

i
] vanishes for each i =

0, 1, · · · , n− 3 by the induction hypothesis, and εn−2
E[(−χ)n] vanishes according to (79). We

note that the moments of (α− β) are bounded since the arrival and service processes are both

bounded. This completes the induction proof, and hence establish that lim
ε↓0

εn−2
E[Φ

i
] = 0 for

all n ≥ 3 and for each i = 0, 1, · · · , n− 3.

Returning to (77)-(78) and revoking the (ε) notation to highlight the dependence on ε, we

have thus proven that there exist {C(ε)
n }n≥1 that vanish with ε such that

εnE[(Φ
(ε)

)n] ≥ n

2
ε(n−1)

E[(Φ
(ε)

)n−1] E[(α(ε) − β)2]− C
(ε)
n

= n

(
ζ(ε)

2

)
ε(n−1)

E[(Φ
(ε)

)n−1]− C
(ε)
n

≥ n!

(
ζ(ε)

2

)n

− B
(ε)
n , (80)

where ζ(ε) , (σ
(ε)
Σ

)2 + ν2
Σ

+ ε2, and B
(ε)
n ,

∑n
k=1

n!
(n−k)!

(
ζ(ε)

2

)k
C

(ε)
n−k

also vanishes with ε,

which proves (60). The heavy-traffic result (61) then follows immediately by taking the limit
of both sides as ε ↓ 0.

D Proof of Proposition 5

We temporarily omit the superscript (ε) associated with the arrival and queue-length processes
for ease of exposition, and consider any k ∈ K◦

λ
. We, then, study mean drift of the Lyapunov
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function W
(k)
n (Q) , 〈 c(k),Q 〉n associate with the nth moment.

E[∆W
(k)
n (Q[t]) |Q[t] = Q] = E

[
〈 c(k),Q+A− S+U 〉n − 〈 c(k),Q 〉n |Q

]

= E

[
〈 c(k),Q+A− S 〉n − 〈 c(k),Q 〉n |Q

]

+

n−1∑

i=0

(
n
i

)
E

[
〈 c(k),Q+A− S 〉i〈 c(k),U 〉n−i |Q

]

= E

[
(〈 c(k),Q+A 〉 − b(k) + b(k) − 〈 c(k),S 〉)n − 〈 c(k),Q 〉n |Q

]

+

n−1∑

i=0

(
n
i

)
E

[
〈 c(k),Q+A− S 〉i〈 c(k),U 〉n−i |Q

]

= E

[
(〈 c(k),Q+A 〉 − b(k))n − 〈 c(k),Q 〉n |Q

]

+

n−1∑

i=0

(
n
i

)
E

[
(〈 c(k),Q+A 〉 − b(k))i(b(k) − 〈 c(k),S 〉)n−i |Q

]

+

n−1∑

i=0

(
n
i

)
E

[
〈 c(k),Q+A− S 〉i〈 c(k),U 〉n−i |Q

]

= n〈 c(k),Q 〉n−1
E[〈 c(k),A 〉 − b(k) |Q] (81)

+

n−2∑

i=0

(
n
i

)
E

[
〈 c(k),Q 〉i(〈 c(k),A 〉 − b(k))n−i |Q

]

+

n−1∑

i=0

(
n
i

)
E

[
(〈 c(k),Q+A 〉 − b(k))i(b(k) − 〈 c(k),S 〉)n−i |Q

]

+

n−1∑

i=0

(
n
i

)
E

[
〈 c(k),Q+A− S 〉i〈 c(k),U 〉n−i |Q

]

Note in (81) that E[〈c(k),A 〉− b(k) |Q] = −ε(k) by construction. Thus, taking the expectation

of both sides over the steady-state distribution, i.e. setting Q = Q, noting E[∆W
(k)
n (Q)] = 0,

and multiplying both sides with (ε(k))n−2 yields:

n(ε(k))n−1
E[〈 c(k),Q 〉n−1] =

n−2∑

i=0

(
n
i

)
(ε(k))n−2

E

[
〈 c(k),Q 〉i(〈 c(k),A 〉 − b(k))n−i

]
(82)

+

n−1∑

i=0

(
n
i

)
(ε(k))n−2

E

[
(〈 c(k),Q+A 〉 − b(k))i(b(k) − 〈 c(k),S(Q) 〉)n−i

]
(83)

+

n−1∑

i=0

(
n
i

)
(ε(k))n−2

E

[
〈 c(k),Q+A− S(Q) 〉i〈 c(k),U(Q) 〉n−i

]
(84)

We note the resemblance of this expression to (77)-(78) of the lower-bounding system with Φ

replaced with 〈 c(k),Q 〉. Accordingly, the claimed upper bound (64) follows from induction as

in the argument (80) once we establish that (83) and (84) both vanish as ε(k) ↓ 0. Thus, we

next study the behavior of each of these expressions with ε(k) for all n ≥ 2.

We first study the expectation in (83) to show that it is of order
√
ε(k) and hence (83)

must vanish as ε(k) ↓ 0 for any n ≥ 2. For any i = 0, 1, · · · , n− 1, we have
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E
[
(〈 c(k),Q+A 〉 − b(k))i(b(k) − 〈 c(k),S(Q) 〉)n−i

]

=
i∑

j=0

(
i
j

)
E

[
〈 c(k),Q 〉j(〈 c(k),A 〉 − b(k))j−i(b(k) − 〈 c(k),S(Q) 〉)n−i

]

=
i∑

j=0

(
i
j

)
E

[
‖Q(k)

‖ ‖j(b(k) − 〈 c(k),S(Q) 〉)n−i
]
E

[
(〈 c(k),A 〉 − b(k))j−i

]
(85)

where in the last step we used the independence of arrival processes, and used the definition of

Q
(k)
‖ . Following the same argument as in the derivation of (53) to bound the first expectation

as:

E

[
‖Q(k)

‖ ‖j(b(k) − 〈 c(k),S(Q) 〉)n−i
]
≤ (cot(θ(k)))jE

[
‖Q(k)

⊥ ‖j(b(k) − 〈 c(k),S(Q) 〉)n−i
]

≤ (cot(θ(k)))j
√

E

[
‖Q(k)

⊥ ‖2j
]
E
[
(b(k) − 〈 c(k),S(Q) 〉)2(n−i)

]

We know from Proposition 2 that E

[
‖Q(k)

⊥ ‖2j
]
≤ N

(k)
2j for some finite N

(k)
2j independent of

ε(k). Also, since i ∈ {0, · · · , n− 1}, we can show that

E

[
(b(k) − 〈 c(k),S(Q) 〉)2(n−i)

]
≤ ε(k)

γ(k)

(
(b(k))2(n−i) + 〈 c(k), Smax1 〉2(n−i)

)
= O(ε(k))

exactly as argued in (51). Thus, these two bounds together with the fact that Al ≤ Amax for

all l establishes that (85) = O
(√

ε(k)
)
, which, in turn, proves that (83) = O

(
(ε(k))n− 3

2

)
,

i.e., (83) vanishes as ε(k) ↓ 0 for all n ≥ 2.

Next, we study the expectations in (84) to show that they also vanish as ε(k) ↓ 0 for all

n ≥ 2. We recall the c̃, Q̃, Ũ, Q̃+, and E
Q
[·] notation introduced for the derivations (56)-(59)

and follow the same line of reasoning. In particular, we note that, for each i = 0, 1, · · · , n− 1,
the expectation in (84) can be bounded as

E
Q

[
〈 c(k),Q+A− S 〉i〈 c(k),U 〉n−i

]
≤ E

Q

[
〈 c(k),Q+ 〉i〈 c(k),U 〉n−i

]

= E
Q

[
〈 c̃(k), Q̃+ 〉i〈 c̃(k), Ũ 〉n−i

]

= E
Q

[
‖Q̃+

‖ ‖i‖Ũ‖‖n−i
]

(86)

To bound (86), we consider two cases separately: i ≤ n/2, and i > n/2. When i ≤ n/2, the

argument closely follows (56)-(59) to show that (86) = O
(√

ε(k)
)
. When i > n/2, we multiply

and divide (assuming the non-trivial case of ‖Ũ‖‖ 6= 0) by ‖Ũ‖‖2i−n to get

E
Q

[
‖Q̃+

‖ ‖i‖Ũ‖‖n−i
]

= E
Q




‖Q̃+

‖ ‖i‖Ũ‖‖i

‖Ũ‖‖2i−n





(a)
= E

Q

[
〈 Q̃+

⊥, Ũ 〉i

‖Ũ‖‖2i−n

]

= E
Q

[
〈 Q̃+

⊥,
Ũ

‖Ũ‖‖2−
n
i

〉i
]

(b)

≤
√

E
Q

[
‖Q̃+

⊥‖2i
]
E
Q

[
‖Ũ‖2(n−i)

]

where (a) follows from Lemma 9 similarly as in the derivation of (56); and (b) follows from
Cauchy-Schwartz inequality after minor modifications. It is then easy to show, as in (57) and



Queue Length Bounds via Drift Conditions 47

(58), that E
Q

[
‖Q̃+

⊥‖2i
]
≤ N

(k)
2i with N

(k)
2i defined in Proposition 2 and E

Q

[
‖Ũ‖2(n−i)

]
=

O(ε(k)) since i ≤ n − 1. Hence, we have shown that (86) = O
(√

ε(k)
)

in this case as well.

Substituting this result back in (84) proves the claimed result that (84) = O
(
(ε(k))n− 3

2

)
, i.e.,

(84) vanishes as ε(k) ↓ 0 for all n ≥ 2.

As we noted before, the fact that (83) + (84) vanishes with ε(k) is sufficient (exactly as in
the lower-bound argument of (80)) to inductively derive the upper-bound (64) via the recursive
relationship in (82). Consequently, the heavy-traffic result (65) follows immediately, completing
the proof.


