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Abstract— In this work, we describe and analyze a joint
scheduling, routing and congestion control mechanism for wire-
less networks, that asymptotically guarantees stability of the
buffers and fair allocation of the network resources. The queue-
lengths serve as common information to different layers of
the network protocol stack. Our main contribution is to prove
the asymptotic optimality of a primal-dual congestion controller,
which is known to model different versions of TCP well.
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I. I NTRODUCTION

Consider a set of flows that share the resources of a
fixed wireless network. Each flow is described by its source-
destination node pair, with no a priori established routes.The
limited power resources and interference amongst concurrent
transmissions necessitate multihop transmission. The nodes
that constitute the network must cooperate by forwarding each
others’ packets toward their destinations. Thus, each node
may need to maintain buffers to hold packets of those flows
other than its own. For such a system, we design a joint
routing, MAC and congestion control algorithm that stabilizes
the buffers, and drives the mean flow rates to a system-wide
fair allocation point.

The question of designing stable scheduling algorithms
for wireless networks was first addressed by Tassiulas and
Ephremides[29] under the assumption that the incoming flows
are inelastic, i.e., the flow rates are fixed as for voice or
video traffic. They showed that scheduling transmissions as
a function of the buffer occupancies (queue-lengths) stabilizes
the queues. Tassiulas[27] extended this technique to derive a
joint routing and scheduling algorithm that ensures the stability
of the queues. These results showed that the queue-length-
based resource allocation guarantees stability of the buffers as
long as the arrival rates lie within the capacity (stability) region
of the network. Subsequently, there has been a large body of
work that extended the same idea to different scenarios and
more general settings [30], [27], [28], [2], [24], [12], [22],
[11]. However, these works do not consider the case of traffic
whose rate can be adjusted online.

In the context of wireline networks, the idea of a distributed
flow control based on a system-wide optimization problem
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was developed in [13], and followed by others in [19], [35],
[15], [1], [31]; see [25] for a survey. In these works, the
main contribution was the design of a distributed congestion
control mechanism to drive the rates ofelastic flows towards
the system-wide optimum. In [36], [7], the authors use this
idea to develop congestion control algorithms for wireless
environments by reducing the available capacity region and
converting the network into essentially a wireline network.
The essential characteristics of wireless networks are notfully
addressed there.

More recently, the problem of serving elastic traffic over
wireless networks has been investigated in [23], [26], [16],
[8], [10], [21], [17], [6]. Here, the queues and the wireless
characteristics of the network are included in the system
model. The main idea in these works has been to combine the
results on scheduling inelastic traffic in wireless networks and
distributed congestion control in wireline networks to design
joint scheduling-congestion control mechanismsthat guarantee
optimal routes, stability and optimal rate allocation. These
papers prove that a decentralized congestion controller atthe
transport layer working in conjunction with a queue-length-
based scheduler at the medium access control (MAC) layer
will asymptotically achieve buffer stability, optimal routing
and fair rate allocation. Moreover, these layers are coupled
through common queue-length information.

In [16], [10], [21], [26], the authors propose and study rate
control algorithms that adapt the flow rates instantaneously
as a function of the entry queue-lengths. The rate control
mechanism studied in all of these works can be categorized
as theDual Congestion Controllersince it can be interpreted
as a gradient algorithm for the dual of an optimization
problem. The intrinsic assumption of the dual congestion
control mechanism is that the flow rates can be changed
instantaneously in response to congestion feedback in the
network. However, it is well known that adaptive window
flow control mechanisms such as TCP respond to congestion
feedback not instantaneously, but gradually. Such a response
is desired by practitioners because the rate fluctuations are
small. Thus, the study of another algorithm that modifies the
flow rates gradually is important. To this end, we propose
and study the so calledPrimal-Dual Congestion Controller
in this work. Primal-dual algorithms are well known in the
optimization literature and have been studied extensivelyin
different contexts[1], [31], [25], [18]. Since the response of the
primal-dual controller is more gradual compared to the dual
controller, it is not immediately clear as to whether the buffer
stability and rate convergence properties will be maintained.
We note that the algorithm considered in [26] updates its rates
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somewhat differently than the algorithm in [10], [21], [16],
[17], [6]. In [26], the users’ data rates are still determined
instantaneously as a function of the buffer occupancies and
channel conditions, but anaverage flow rateis maintained for
each user and used in the algorithm. On the other hand, in our
work, we update the data rates to mimic the characteristics of
widely-used versions of TCP [25]. Further, the proof technique
used in [26] is quite different from ours, and our algorithm can
be directly interpreted as a gradient algorithm for a primal
optimization problem that is implemented at the sources and
and a gradient algorithm for a dual optimization problem that
is implemented at the nodes.

Here, it must be stressed that even though the congestion
control is distributed, the scheduling is still assumed to be
centralized in this work. In [17], [32], [4], [33], [5], the impact
of decentralized implementations of the scheduler is studied.
We note that the results of this work can be extended to dis-
tributed and asynchronous implementations for a special class
of interference models using the approach in [4]. Finally, we
note that a related, but different, problem has been considered
in [34] where a distributed algorithm has been designed to
route inelastic flows to minimize delay costs in a wireless
network.

The rest of the paper is organized as follows: Section II
describes the system model. In Section III, we state the
objective of the resource allocation as an optimization problem
and characterize the optimum point. Section IV introduces
the queue-length-based resource allocation algorithm that is
implemented at the MAC and network (routing) layers. We
propose and study the primal-dual congestion controller (trans-
port layer) in Section V. Various modifications and extensions
to the system are described in Section VI. Finally, we give
concluding remarks in Section VII.

II. SYSTEM MODEL

We assume that the network is represented by a graph,G =
(N ,L), whereN is a set of nodes andL is a set of directed
links. If a link (n, m) is in L, then it is possible to send
packets from noden to nodem subject to the interference
constraints to be described shortly. We letµ = {µl}l∈L denote
the vector of rates at which data can be transferred over each
link l ∈ L. We assume that there is an upper bound,η̂ < ∞,
on eachµl, which is a reasonable assumption for any practical
system. We assume that zero is a feasible link rate for any link,
independent of the link rates chosen for the other links in the
network. Also, for ease of presentation we assume that there
is no fading in the environment. We will discuss the extension
of the model to include time-variations in Section VI.

We let Γ̂ denote a bounded region in the|L| dimensional
real space, representing the set ofµ that can be achieved in
a given time slot, i.e., it represents the interference constraint.
In general, the set need not be convex. In fact, a typical case
would be a discrete set of rates that can be achieved, and hence
be non-convex. We letΓ := CH{Γ̂} denote the convex hull
of the setΓ. It is well known that by time-sharing between
different rate vectors in̂Γ, any point inΓ can be attained.

We useF to denote the set of flows that share the network
resources. The routes of these flows are not specified a priori,

but established by the back-pressure scheduling algorithm
to be described in Section 2. We useb(f) to denote the
beginning node, ande(f) to denote the end node of flow
f. Figure 1 illustrates an example network with three flows
passing through it.
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Fig. 1. An example network model withb(f) = i, e(f) = j, b(g) = i,
e(g) = v, andb(h) = w, e(h) = v.

Associated with each flowf is a utility function Uf (xf ),
which is a function of the flow ratexf . The utility function,
denoted byUf(·) for flow f, is assumed to satisfy the
following conditions:

• Uf(·) is a twice differentiable, strictly concave, nonde-
creasing function of the mean flow rate,xf .

• For everym andM satisfying0 < m < M < ∞, there
exist constants̃c and C̃ satisfying0 < c̃ < C̃ < ∞ such
that

c̃ ≤ − 1

U ′′
f (x)

≤ C̃ ∀x ∈ [m, M ] (1)

We note that these conditions are not especially restrictive and
hold for the following class of utility functions.

Uf (x) = βf

x1−αf

(1 − αf )
∀ αf > 0. (2)

This class of utility functions is known to characterize a large
class of fairness concepts including weighted-proportional and
max-min fairness [20].

Next, we describe the capacity region of the network as in
[22], [16].

Definition 1 (Capacity region):The capacity region, Λ, of
the network contains the set of flow ratesx ≥ 0 for which

there exists a set
{

µ
(d)
l

}d∈N

l∈L
that satisfies

(i)

[

∑

d

µ
(d)
l

]

l

∈ Γ, whereµ
(d)
l ≥ 0 for all l ∈ L, d ∈ N .

(ii) For eachn ∈ N , andd 6= n,

µ
(d)
into(n) +

∑

f

xfI{b(f)=n,e(f)=d} ≤ µ
(d)
out(n),
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Fig. 2. Each node contains a queue for each destination node.This figure
zooms into noden of Figure 1.

where

µ
(d)
into(n) :=

∑

(k,n)∈L

µ
(d)
(k,n),

µ
(d)
out(n) :=

∑

(n,m)∈L

µ
(d)
(n,m).

Observe thatµ(d)
into(n) (or µ

(d)
out(n)) denotes the potential number

of packets that are destined for noded, incoming to (or
outgoing from) noden. The condition (i) captures the interfer-
ence constraints, while condition (ii) is the flow-conservation
constraint that must hold at each node. ⋄

It is assumed that each node maintains a separate queue for
those flows that have the same destination. We useqn,d[t] to
denote the number of packets that are destined for noded,
waiting for service at noden at time t. Figure 2 illustrates
one such node. We setqnn[t] = 0 for all n ∈ N and for all
t. For eachn ∈ N , andd ∈ N\{n}, the evolution ofqn,d is
given by

qn,d[t + 1] = qn,d[t] +
∑

f

xf [t] I{b(f)=n,e(f)=d}

+ s
(d)
into(n)[t] − s

(d)
out(n)[t],

(3)

where we define s
(d)
into(n)[t] :=

∑

(k,n)∈L

s
(d)
(k,n)[t] and

s
(d)
out(n)[t] :=

∑

(n,m)∈L

s
(d)
(n,m)[t], and s

(d)
(n,m)[t] denotes the

rate provided tod-destined packets over link(n, m) at slot
t. Notice that, this is the actual amount of packets served
over the link, not the potential amount denoted byµ

(d)
(n,m)[t].

Clearly, we haves(n,m)[t] =
∑

d s
(d)
(n,m)[t]. Also, s

(d)
(n,m)[t] =

min(µ
(d)
(n,m)[t], qn,d[t]) for all (n, m) ∈ L, d 6= n.

III. PROBLEM STATEMENT AND CHARACTERIZATION OF

THE OPTIMAL POINT

Our goal is to design a congestion control, scheduling
mechanism such that the flow rate vector,x, solves the
following optimization problem:

max
x∈Λ

∑

f∈F

Uf (xf ). (4)

We refer to (4) as theprimal problem. Due to the strict
concavity assumption ofUf (·) and the convexity of the

capacity regionΛ, there exists a unique optimizer of the primal
problem, which we refer to asx⋆. We call this thefair rate
allocation.

One can use duality theory by definingλn,d to be the
Lagrange multiplier associated with the constraint

µ
(d)
into(n) +

∑

f

xfI{b(f)=n,e(f)=d} ≤ µ
(d)
out(n)

to get the following dual function after algebraic manipulations
(see the appendix for the details):

D(λ) =
∑

f∈F

max
xf≥0

{Uf(xf ) − xfλb(f),e(f)}

+ max
µ∈Γ

∑

(n,m)∈L

µ(n,m) max
d∈N

(λn,d − λm,d), (5)

where λd,d is taken to be zero for alld. We note that we
use µ to denote the link rate vector{µ(n,m)}(n,m)∈L, not

{µ(d)
(n,m)}d∈N

(n,m)∈L.
In the dual function,λn,d can be interpreted as the price

of transferring a unit amount of data from noden to noded.
Thus,λb(f),e(f) is nothing but the price of transferring a unit
amount of data from the source of flowf to its destination.
Such an approach was taken in [16] where it was shown that
for this problem, the duality gap vanishes, and that there exists
a nonempty setΨ⋆ of optimal Lagrange multipliers that satisfy

∑

f∈F

Uf(x⋆
f ) = D(λ⋆), for all λ⋆ ∈ Ψ⋆.

The definition of the capacity region and the optimality
conditions imply that for eachλ⋆ there is an associated rate

vector
⋆
µ∈ Γ which satisfies:

(i)
∑

d

⋆
µ

(d)

(n,m)=
⋆
µ(n,m), for each(n, m) ∈ L.

(ii)
⋆
µ

(d)

into(n) +
∑

f

x⋆
fI{b(f)=n,e(f)=d} ≤ ⋆

µ
(d)

out(n), for all

n ∈ N andd ∈ N\{n}.
(iii)

⋆
µ ∈ argmax

µ∈Γ

∑

(n,m)∈L

µ(n,m) max
d

(λ⋆
n,d − λ⋆

m,d).

(iv) λ⋆
n,d(

⋆
µ

(d)

into(n) +
∑

f

x⋆
fI{b(f)=n,e(f)=d}−

⋆
µ

(d)

out(n)) = 0

for all n ∈ N andd ∈ N\{n}.
Using property (iv), and summing over alln ∈ N andd ∈ N ,
we get

∑

f

x⋆
fλ⋆

b(f),e(f) =
∑

n∈N

∑

d∈N

λ⋆
n,d(

⋆
µ

(d)

out(n) −
⋆
µ

(d)

into(n))

=
∑

n∈N

∑

d∈N

λ⋆
n,d





∑

k 6=n

⋆
µ

(d)

(n,k) −
∑

j 6=n

⋆
µ

(d)

(j,n)





=
∑

n∈N

∑

d∈N

∑

k 6=n

λ⋆
n,d

⋆
µ

(d)

(n,k)

−
∑

n∈N

∑

d∈N

∑

j 6=n

λ⋆
n,d

⋆
µ

(d)

(j,n) .

Next, we change the indices in the sums to make the link
rates the same. This yields
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∑

f

x⋆
fλ⋆

b(f),e(f)

=
∑

n∈N

∑

m 6=n

∑

d∈N

λ⋆
n,d

⋆
µ

(d)

(n,m)

−
∑

m∈N

∑

n6=m

∑

d∈N

λ⋆
m,d

⋆
µ

(d)

(n,m)

=
∑

(n,m)∈L

∑

d∈N

⋆
µ

(d)

(n,m) (λ⋆
n,d − λ⋆

m,d)

=
∑

(n,m)∈L

⋆
µ(n,m) max

d
(λ⋆

n,d − λ⋆
m,d)

≥
∑

(n,m)∈L

µ(n,m) max
d

(λ⋆
n,d − λ⋆

m,d), ∀µ ∈ Γ, (6)

where the last inequality follows from the property (iii). This
inequality will later be used in the proof of stability of the
system.

IV. SCHEDULING ALGORITHM

In this paper, we use a queue-length-based scheduler known
as theback-pressure schedulerintroduced by Tassiulas and
Ephremides [29]. This scheduler assigns a weight to each link
that equals to the maximum differential backlog between the
transmitting and receiving nodes, and then chooses link rates
to maximize the sum of the product of link weights and link
rates. The details of the scheduler is provided in the following
definition.

Definition 2 (Back-pressure Scheduler):At slot t, for each
(n, m) ∈ L, we define the differential backlog for destination
noded as

w(n,m),d[t] := (qn,d[t] − qm,d[t]).

Also, we let

w(n,m)[t] = max
d

{

w(n,m),d[t]
}

(7)

d(n,m)[t] = argmax
d

{

w(n,m),d[t]
}

.

Choose the rate vectorµ[t] ∈ Γ̂ that satisfies

µ[t] ∈ argmax
{η∈Γ̂}

∑

{(n,m)∈L}

η(n,m)w(n,m)[t], (8)

and then serve the queue holding packets destined for node
d(n,m)[t] over link (n, m) at rateµ(n,m)[t]. That is, we set

µ
(d(n,m)[t])

(n,m) [t] = µ(n,m)[t].

The rest of the queues at noden are not served at slott. ⋄
Such a resource allocation rule has been shown to achieve

throughput-optimality[29], i.e., any arrival rate that can sta-
bilize the network using any other resource allocation policy
can be supported by this policy. Next, we list two other facts
related to the back-pressure policy that will be used later.

Fact 1: The maximization in (8) can be performed overΓ
instead ofΓ̂, because the optimal rate vector must always
contain at least one element from̂Γ. This follows from the

linearity of the objective function and the fact thatΓ =
CH{Γ̂}.

Fact 2: Those flows that havewl,d[t] < 0 will get µ
(d)
l [t] =

0, because the objective of the optimization in (8) can only
decrease by choosingµ(d)

l [t] > 0, if wl,d[t] < 0.

V. PRIMAL -DUAL CONGESTIONCONTROLLER

The function of the congestion control mechanism is to
observe the congestion level of the network and respond to it
by increasing/decreasing the data rate of the flows so that they
evolve towards the fair allocation as described in Section III.
In this paper, we propose a primal-dual congestion control
mechanism that can be implemented in a decentralized fashion
for each flow. In particular, the source node of each flow
uses its local queue-length information as well as the utility
function associated with that flow to update the flow rate in an
iterative manner. This is similar, in principle, to window-based
flow control mechanisms implemented in many versions of
TCP, because for such mechanisms the flow rates are gradually
increased or decreased depending on the congestion feedback
from the network.

Definition 3 (Primal-Dual Congestion Controller):At the
beginning of time slott, each flow, sayf, has access to the
queue-length of its first node, i.e.qb(f),e(f)[t]. The data rate
xf [t] of flow f satisfies

xf [t + 1] =
{

xf [t] + α
(

KU ′
f (xf [t]) − qb(f),e(f)[t]

)}M

m
,

where the notation{y}b
a denotes a projection ofy to the closest

point in the interval[a, b]. We assume thatm < minf x∗
f

is a fixed positive number that can be arbitrarily small, and
M, K > 0. ⋄
Later, we will see that the parameterK determines how closely
the flow rates determined by the primal-dual congestion con-
troller approximate the optimal ratesx∗.

In the following sections, we prove that this congestion
control mechanism, when operated in conjunction with the
back-pressure scheduler, achieves flow rates arbitrarily close
to the fair allocation. To that end, we first study a heuristicfluid
model, and then consider the original discrete-time system.

For purposes of simplicity, we will study the system under
the following assumption in the main body of the paper.

Assumption 1:There is a flow between every source-
destination(n, d) pair with n ∈ N , d 6= n. ⋄

In Appendix B, we show that our results continue to hold
without this assumption.

A. Convergence of the Primal-Dual Controller

In this section, we first introduce a heuristic fluid model
of the joint scheduler-congestion control mechanism, and
prove its stability and convergence properties, and then show
the convergence properties of the discrete-time primal-dual
algorithm using the results of the fluid model.
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1) Analysis of a continuous-time fluid model:We first
present LaSalle’s invariance principle, used to determinethe
stability of differential equations [14], which will be useful
for subsequent analysis.

Theorem 1 (LaSalle’s Invariance Principle):Consider the
differential equation:ẏ(t) = f(y(t)). Let Y : D → R be
a radially unbounded1, continuously differentiable, positive
definite 2 function such thatẎ (z) ≤ 0 for all z ∈ D. Let
E be the set of points inD where Ẏ (z) = 0. Let M be the
largest invariant set3 in E . Then, every solution starting inD
approachesM as t → ∞. ⋄

Now, we present the heuristic fluid model of the primal-dual
algorithm. We assume that time is continuous and the evolution
of each queue is governed by the differential equation: for each
n ∈ N , andd ∈ N\{n},

q̇n,d(t) =





∑

f

xf (t) Ib(f)=n,e(f)=d + µ
(d)
into(n)(t)

−µ
(d)
out(n)(t)

)

qn,d(t)≥0
,

(9)

where (y)z≥a is equal toy when z > a and is equal to
max(y, 0) when z = a. Here, (t) is used instead of[t] to
signify that we are working in continuous-time. The back-
pressure algorithm computes the link schedules and rates at
every instant of time as described in Section 2. Finally, the
congestion controller is assumed to determine the instanta-
neous flow rates such that, for allf ∈ F ,

ẋf (t) = α
(

KU ′
f (xf (t)) − qb(f),e(f)(t)

)

xf (t)≥m
.(10)

Then, the following global asymptotic stability result holds.
Theorem 2:Starting from any initial condition

(x(0),q(0)), the state of the system(x(t),q(t)) converges
to (x⋆, Kλ⋆) as t → ∞, where λ⋆ := {λ⋆

n,d} is given by
λ⋆

b(f),e(f) = U ′
f (x⋆

f ) for eachf.

Proof: The proof is based on LaSalle’s invariance prin-
ciple. As in the case of the primal-dual congestion controller
for the Internet [25], we start with the following Lyapunov
function

Y (x,q; λ⋆) :=
∑

f∈F

(xf − x⋆
f )2

2αK

+
K

2

∑

n∈N

∑

d∈N

(qn,d

K
− λ⋆

n,d

)2

.

(11)

It is easy to see that this is a radially unbounded function.
Next, we study time-derivative of this function.

1FunctionF (z) is called radially unboundedif lim‖z‖→∞ F (z) = ∞.
2Y is positive definite ifY (z⋆) = 0 for somez

⋆, andY (z) > 0 for all
z 6= z

⋆.
3A setM is said to be aninvariant setif z(0) ∈ M implies thatz(t) ∈ M

for all t ≥ 0.

Ẏ (x(t),q(t); λ⋆)

=
∑

f∈F

(xf (t) − x⋆
f )

(

U ′
f (xf (t)) − qb(f),e(f)(t)

K

)

xf (t)≥m

(12)

+
∑

n,d

(
qn,d(t)

K
− λ⋆

n,d)





∑

f

xf (t) Ib(f)=n,e(f)=d

+µ
(d)
into(n)(t) − µ

(d)
out(n)(t)

)

qn,d(t)≥0

(13)

≤
∑

f∈F

(xf (t) − x⋆
f )

(

U ′
f (xf (t)) − qb(f),e(f)(t)

K

)

(14)

+
∑

n,d

(
qn,d(t)

K
− λ⋆

n,d)





∑

f

xf (t) Ib(f)=n,e(f)=d

+µ
(d)
into(n)(t) − µ

(d)
out(n)(t)

)

,

(15)

where (14) follows from (12) due to the assumption thatm <
x⋆

f , ∀f. Similarly, (15) follows from (13) when we note that
removing the lower bound onqn,d(t) can only increase the
sum sinceλ⋆

n,d ≥ 0 by definition.
Let us add and subtractU ′

f (x⋆
f ) = λ⋆

b(f),e(f), and
∑

f

x⋆
fI{b(f)=n,e(f)=d} to (14) and (15), respectively, and

rearrange terms to yielḋY (x(t),q(t); λ⋆)

≤
∑

f

(xf (t) − x⋆
f )(U ′

f (xf (t)) − U ′
f(x⋆

f )) (16)

+
∑

f

(xf (t) − x⋆
f )(λ⋆

b(f),e(f) −
qb(f),e(f)(t)

K
) (17)

+
∑

f

(
qb(f),e(f)(t)

K
− λ⋆

b(f),e(f))(xf (t) − x⋆
f ) (18)

+
∑

n,d

λ⋆
n,d

(

µ
(d)
out(n)(t) − µ

(d)
into(n)(t)

−
∑

f

x⋆
fI{b(f)=n,e(f)=d}





(19)

+
∑

n,d

qn,d(t)

K





∑

f

x⋆
fI{b(f)=n,e(f)=d}

+µ
(d)
into(n)(t) − µ

(d)
out(n)(t)

)

.

(20)

Notice that(17) and (18) cancel each other. The strict concavity
of Uf(·) implies that(16) ≤ 0 for all x(t) with strict inequality
wheneverx(t) 6= x⋆. Next, we study the (19) and (20)
separately to argue that they are both upper-bounded by zero.

We start with (19). Notice that we can write

∑

n,d

λ⋆
n,d

(

µ
(d)
out(n)(t) − µ

(d)
into(n)(t)

)

=
∑

(n,m)∈L

∑

d 6=n

µ
(d)
(n,m)(t)(λ

⋆
n,d − λ⋆

m,d)

≤
∑

f

x⋆
fλ⋆

b(f),e(f),
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where the equality follows from a change in the order of
summation, and the inequality is due to (6). Therefore, we
have(19) ≤ 0.

Next, we consider the expression (20). Recall the flow-
balance condition for destinationd at noden introduced in
Section III:

∑

f :b(f)=n,e(f)=d

x⋆
f ≤ ⋆

µ
(d)

out(n) −
⋆
µ

(d)

into(n), ∀n, d.

Next, we multiply both sides of this expression byqn,d(t)
and sum over alln, d to get:

∑

n,d

∑

f :b(f)=n,e(f)=d

x⋆
fqn,d(t)

≤
∑

n,d

(
⋆
µ

(d)

out(n) −
⋆
µ

(d)

into(n))qn,d(t)

=
∑

(n,m)∈L

∑

d

⋆
µ

(d)

(n,m) (qn,d(t) − qm,d(t))

(a)

≤
∑

(n,m)∈L

∑

d

µ
(d)
(n,m)(t)(qn,d(t) − qm,d(t)), (21)

where the inequality(a) holds due to (8). This shows that
(20) ≤ 0.

Note that since (17) + (18) = 0, we have
Ẏ (x(t),q(t); λ⋆) ≤ (16) + (19) + (20), and we have
just shown that(16) ≤ 0, (19) ≤ 0, and (20) ≤ 0. This
implies thatẎ (x(t),q(t); λ⋆) ≤ 0, and further it also implies
that

E := {(x,q) : Ẏ (x,q; λ⋆) = 0}
is contained in the set

S := {(x,q) : (16) = (19) = (20) = 0}.
Let M be the largest invariant set of the primal-dual

algorithm contained inE . By LaSalle’s invariance principle
(x(t),q(t)) converges to the setM as t → ∞. SinceM ⊂
E ⊂ S, as t → ∞, the pair (x(t),q(t)) must also satisfy
(16) = 0. Then, strict concavity of the utility functions imply
that limt→∞ xf (t) = x⋆

f for each flowf.
Further, sinceλ⋆

b(f),e(f) = U ′
f(x⋆

f ), the set {λ⋆
n,d} is

uniquely determined. For any(x,q) ∈ M, if qn,d(t)
K

6= λ⋆
n,d,

then ẋf (t) 6= 0, and hencexf (t) will not stay atx⋆
f . Thus, a

trajectory starting at such a(x,q) cannot stay inS, and since
M is the largest invariant set inE ⊂ S, such an(x,q) /∈ M.
This implies that if(x,q) ∈ M, thenx = x⋆, andq = Kλ⋆.

2) Analysis of the discrete-time model:Recall that the
evolution of the flow rates and queue lengths are given by
Definition 3 and (3), respectively. Throughout, we assume that
x⋆

f > m, ∀f, which is a reasonable assumption given that we
are free to choosem as small as necessary to satisfy it.

The following lemma provides a relationship between po-
tential service rateµ and the actual service rates, which will
be used in the proof of the subsequent theorem.

Lemma 1:The following relationship holds for anyq[t]
and someB < ∞ :

∑

(n,m)∈L

∑

d 6=n

s
(d)
(n,m)[t](qn,d[t] − qm,d[t])

≥
∑

(n,m)∈L

∑

d 6=n

µ
(d)
(n,m)[t](qn,d[t] − qm,d[t]) − B

Proof: We prove this lemma by considering three cases.
CASE 1: qn,d[t] < qm,d[t] : then, due to Fact 2, we have
µ

(d)
(n,m)[t] = 0 and subsequently, we must haves

(d)
(n,m)[t] = 0.

CASE 2: qn,d[t] ≥ qm,d[t] andqn,d[t] ≥ η̂ : then there can be
no unused service sinceµ(d)

(n,m)[t] < η̂ by assumption. Thus,

we haves
(d)
(n,m)[t] = µ

(d)
(n,m)[t].

CASE 3: η̂ > qn,d[t] ≥ qm,d[t] : then we haves(d)
(n,m)[t] < η̂

andµ
(d)
(n,m)[t](qn,d[t] − qm,d[t]) ≤ η̂2. Thus, in this case,

(s
(d)
(n,m)[t] − µ

(d)
(n,m)[t])(qn,d[t] − qm,d[t])

≥ −µ
(d)
(n,m)[t](qn,d[t] − qm,d[t])

≥ −µ
(d)
(n,m)[t]qn,d[t]

≥ −η̂2.

Combining the three cases, we have

(s
(d)
(n,m)[t] − µ

(d)
(n,m)[t])(qn,d[t] − qm,d[t]) ≥ −η̂2L3,

whereL3 is the number of indices(n, m, d) which satisfy the
conditions of Case 3. Clearly,L3 ≤ |L||N |, and thus, choosing
B := |L||N |η̂2 gives the desired result.

The next proposition establishes the asymptotic bounded-
ness of the queue-lengths, and hence the stability of the
system.

Proposition 1: There exists a constantc(α, K, τ) < ∞ that
depends onα andK and a free parameterτ ∈ Z+ such that

lim sup
t→∞

∑

n,d

q2
n,d[t] ≤ c(α, K, τ).

Further,c(α, K, τ) is such that, whenα is chosen to be1/K2

and τ is chosen to beK, then c(α, K, τ) is of the order of
K2, i.e., c(1/K2, K, K)/K2 tends to a constant asK → ∞.

Proof: Let us consider the Lyapunov function

L(q) =
1

2

∑

n∈N

∑

d∈N

q2
n,d,

and study its drift:

∆Lt(q) := L(q[t + 1]) − L(q[t])

≤ B1 +
∑

n,d

qn,d[t]





∑

f

xf [t]I{b(f)=n,e(f)=d}

+s
(d)
into(n)[t] − s

(d)
out(n)[t]

)

,

for someB1 < ∞ that is a function ofM and the maximum
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link rate η̂. Thus, we have

∆Lt(q) ≤ B1 +
∑

f

qb(f),e(f)[t]xf [t]

−
∑

n,d

qn,d(s
(d)
out(n)[t] − s

(d)
into(n)[t])

= B1 +
∑

f

qb(f),e(f)[t]xf [t]

−
∑

(n,m)

∑

d

s
(d)
(n,m)[t](qn,d[t] − qm,d[t])

(a)

≤ B1 + B +
∑

f

qb(f),e(f)[t]xf [t]

−
∑

(n,m)

∑

d

µ
(d)
(n,m)[t](qn,d[t] − qm,d[t])

= B1 + B +
∑

f

qb(f),e(f)[t](xf [t] − x⋆
f )

+
∑

f

qb(f),e(f)[t]x
⋆
f

−
∑

(n,m)

∑

d

µ
(d)
(n,m)[t](qn,d[t] − qm,d[t])

where the inequality(a) follows from Lemma 1, and the last
equality is obtained by adding and subtracting the term with
x⋆. We have already shown in the derivation of (21) that

∑

f

qb(f),e(f)[t]x
⋆
f ≤

∑

(n,m)

∑

d

µ
(d)
(n,m)[t](qn,d[t] − qm,d[t]).

Hence, we have

∆Lt(q) ≤ B1 + B +
∑

f

qb(f),e(f)[t](xf [t] − x⋆
f ).(22)

To complete the proof, we will show that when the queue
lengths are sufficiently large, the link rates are small making
the above drift negative. To that end, we first define

r := η̂ +
K

τ
max

f
U ′

f (m) +
M

ατ2
,

where τ is an integer to be determined. Note that the total
arrival rate into a queue can be bounded by someAmax < ∞
since the arrival rate of each flow is bounded byM , and the
link rates are bounded bŷη. Thus,qn,d[t] ≤ qn,d[t−1]+Amax.

Then, we claim that ifqb(f),e(f)[t] > τ(r + Amax) for any
flow f and anyt ≥ τ, then we must havexf [t] = m. To
see this, note thatqb(f),e(f)[t] > τ(r + Amax) implies that
qb(f),e(f)[t − τ ] > τr since in each slot, the queue-length
cannot increase by more thanAmax packets. Therefore, for
each time sloti ∈ {t − τ + 1, · · · , t} in which the ratexf [i]
of Flow-i is larger thanm, we have

xf [i] − xf [i − 1]

≤ α(KU ′
f(xf [i − 1]) − qb(f),e(f)[i − 1])

(a)

≤ αKU ′
f(m) − ατ(r − η̂)

≤ αKU ′
f(m) − ατ

(

K

τ
max

f
U ′

f(m) +
M

ατ2

)

≤ −M

τ
,

where inequality(a) follows from the fact thatxf [·] ≥ m and
that Uf (·) is a concave function. This further implies that,
for eachi ∈ {t − τ + 1, · · · , t}, xf [i] will keep decreasing
by at leastM/τ in each slot until it hits its minimum level
of m, and stay at that level until time slott. Thus, even if
xf [t− τ ] = M, at the end of the subsequentτ slots, the flow
rate will certainly decrease toxf [t] = m, which proves our
claim. Building on this claim, we let

g(α, K, τ) := τ(r+Amax) =
M

ατ
+(Amax+η̂)τ+K max

f
U ′

f(m).

Then, we have
∑

f qb(f),e(f)[t](xf [t] − x⋆
f )

=
∑

qb(f),e(f) [t]≥g(α,K,τ)

qb(f),e(f)[t](xf [t] − x⋆
f )

+
∑

qb(f),e(f) [t]<g(α,K,τ)

qb(f),e(f)[t](xf [t] − x⋆
f )

≤
∑

qb(f),e(f) [t]≥g(α,K,τ)

qb(f),e(f)[t](m − x⋆
f )

+|F|g(α, K, τ)(M − m),

where in the last step, we used the fact thatxf [t] ∈ [m, M ],
and x⋆

f ≥ m, for all f. To bound the remaining sum, note
that we havem − x⋆

f ≤ −δ, for someδ > 0, which follows
from our assumption ofx⋆

f > m for all f. Then, we can write

∑

f qb(f),e(f)[t](xf [t] − x⋆
f )

≤ −δ





∑

f

qb(f),e(f)[t] −
∑

f :qb(f),e(f) [t]<g(α,K,τ)

qb(f),e(f)[t]





+|F|g(α, K, τ)(M − m)

≤ −δ
∑

f

qb(f),e(f)[t] + B2(α, K, τ),

where we defineB2(α, K, τ) = |F|g(α, K, τ)(M − m + δ).
Using this bound in (22) and noting that, by our assumption4,
there exists a flow between all source destination pairs, we
can write

∆Lt(q) ≤ −δ
∑

n,d

qn,d[t] + B2(α, K, τ) + B1 + B.

Thus, if
∑

n,d qn,d[t] ≥ (B + B1 + B2(α, K, τ) + ǫ)/δ, then
∆Lt(q) ≤ −ǫ. Also note that, since

∑

n,d

qn,d[t] ≥
√

∑

n,d

q2
n,d[t] =

√

2L(q[t]),

if L(q[t]) ≥ 1
2 [(B + B1 + B2(α, K, τ) + ǫ)/δ]

2
, then,

∆Lt(q) ≤ −ǫ. Further,∆Lt(q) ≤ (B + B1 + B2(α, K, τ)),
otherwise. These facts imply that, ast → ∞,

L(q[t]) ≤
(

B + B1 + B2(α, K, τ) + ǫ

δ
√

2

)2

+(B+B1+B2(α, K, τ)).

Defining the right-hand side of the above inequality to be
c(α, K, τ), and observing that it is growing asK2 when
α = 1/K2 andτ = K.

4This assumption is removed in the appendix.
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Next, we state the main theorem which shows that the av-
erage rate obtained by each user can be made arbitrarily close
to its fair share (as defined by the resource allocation problem
(4)) by letting K become large and choosingα = 1/K2. If
the step-sizeα is selected as1/K2 and the free parameterτ
of Proposition 1 is selected asK, thenc(α, K, K) = O(K2)
from Proposition 1, and the sum of the queue lengths in the
network (also known as backlog) is upper-bounded byO(K).
Thus, assuming that the upper bound is a reasonable estimate
of the backlog, there exists a tradeoff between backlog and
fairness, which can be controlled through the choice ofK. If
K is large, the asymptotic rate allocation is close to the fair
allocation but at the cost of larger backlog.

Theorem 3:If α = 1/K2, then, for some finiteB̃ ∈
(0,∞), we have the following result: for allf ∈ F ,

x⋆
f − B̃√

K
≤ lim inf

T→∞

1

T

T−1
∑

t=0

xf [t]

≤ lim sup
T→∞

1

T

T−1
∑

t=0

xf [t] ≤ x⋆
f +

B̃√
K

.

Proof: We study the drift of the Lyapunov functionY (·)
given in (11):

∆Yt(x,q; λ⋆) := Y (x[t + 1],q[t + 1]; λ⋆)− Y (x[t],q[t]; λ⋆),

which can be upper-bounded by using the same line
of reasoning we followed in the proof of Theorem 2,
i.e., we handle the boundary constraints of the rates and
queue-lengths, add and subtractU ′

f (x⋆
f ) = λ⋆

b(f),e(f), and
∑

f

x⋆
fI{b(f)=n,e(f)=d}, and rearrange terms to get

∆Yt(x,q; λ⋆)

≤
∑

f

(U ′
f (xf [t]) − U ′

f (x⋆
f ))(xf [t] − x⋆

f ) (23)

+
∑

f

(xf [t] − x⋆
f )(λ⋆

b(f),e(f) −
qb(f),e(f)[t]

K
) (24)

+
∑

f

α

2K

(

KU ′
f(xf [t]) − qb(f),e(f)[t]

)2
(25)

+
∑

f

(
qb(f),e(f)[t]

K
− λ⋆

b(f),e(f))(xf [t] − x⋆
f ) (26)

+
∑

n,d

λ⋆
n,d

(

s
(d)
out(n)[t] − s

(d)
into(n)[t]

−
∑

f

x⋆
fI{b(f)=n,e(f)=d}





(27)

+
∑

n,d

qn,d[t]

K





∑

f

x⋆
fI{b(f)=n,e(f)=d}

+s
(d)
into(n)[t] − s

(d)
out(n)[t]

)

(28)

+
1

2K

∑

n,d





∑

f

xfI{b(f)=n,e(f)=d}

+s
(d)
into(n)[t] − s

(d)
out(n)[t]

)2

.

(29)

We claim that(23) ≤ −C̃‖x[t]−x⋆‖2, whereC̃ is a positive
constant that is independent ofK. To see this, first note that
the strict concavity assumption of the utility functions allows
us to write

(U ′
f (xf [t]) − U ′

f (x⋆
f ))(xf [t] − x⋆

f )

= −
∣

∣U ′
f(xf [t]) − U ′

f (x⋆
f )

∣

∣

∣

∣xf [t] − x⋆
f

∣

∣ ,
(30)

for eachf ∈ F . Also, by the mean-value theorem, we can
find someyf [t] betweenxf [t] andx⋆

f for which U ′
f (xf [t]) −

U ′
f (x⋆

f ) = (xf [t] − x⋆
f )U ′′

f (yf [t]). It follows from (1) that

there exists somẽC > 0 such that
∣

∣

∣U ′
f (xf [t]) − U ′

f(x⋆
f )

∣

∣

∣ ≥
C̃|xf [t]−x⋆

f |, which can be substituted into (30) to prove the
claim.

Observe that the terms (24) and (26) cancel each other. Also,
notice that (27) and (28) are almost the same as (19) and
(20), respectively, except for the fact that actual servicerates
appear in them instead of potential service rates. First, note
that (27) ≤ 0 since it can be written as

∑

n,m

∑

d

sd
n,m(λ∗

n,d − λ∗
m,d) −

∑

f

x∗
fλ∗

b(f),e(f)

≤
∑

n,m

∑

d

⋆
µ

d

(n,m) (λ∗
n,d − λ∗

m,d) −
∑

f

x∗
fλ∗

b(f),e(f) ≤ 0.

To see that (28) is bounded, we argue as follows:

(28)

≤ B

K
+

∑

n,d

qn,d

K

×





∑

f :b(f)=n,e(f)=d

x⋆
f − µ

(d)
into(n)[t] − µ

(d)
out(n)[t]





=
B

K
+ (20) ≤ B

K
,

where the first inequality follows from Lemma 1 and(20) ≤ 0
as in the proof of Theorem 2.

Since the link rates and the flow rates are upper-bounded,
we can find someB3 < ∞ such that (29)< B3/K. Thus, we
have

∆Yt(x,q; λ⋆) ≤ B + B3

K
− C̃‖x[t] − x⋆‖2

+
∑

f

α

2K

(

KU ′
f(xf [t]) − qb(f),e(f)[t]

)2
.

If we write this drift expression fort = 0, · · · , T − 1 and add
both sides of the inequalities, then we get

Y (x[T ],q[T ]; λ⋆) − Y (x[0],q[0]; λ⋆)

≤ T
B + B3

K
− C̃

T−1
∑

t=0

‖x[t] − x⋆‖2

+

T−1
∑

t=0

∑

f

α

2K

(

KU ′
f (xf [t]) − qb(f),e(f)[t]

)2
.

By rearranging terms, noting thatY (·) is a non-negative
quantity, dividing both sides byT, and taking the limit asT



9

goes to infinity yields

lim sup
T→∞

C̃

T

T−1
∑

t=0

‖x[t] − x⋆‖2

≤ lim sup
T→∞

1

T

T−1
∑

t=0

∑

f∈F

α

2K

(

KU ′
f(xf [t]) − qb(f),e(f)[t]

)2

+
B + B3

K
.

(31)

Thus, the proof will be complete once we show that, when
α = 1/K2, we have

lim sup
T→∞

1

T

T−1
∑

t=0

∑

f∈F

α

2

(

KU ′
f(xf [t]) − qb(f),e(f)[t]

)2

≤ B4 < ∞, (32)

for someB4. To justify this claim, we ignore theα/2 factor
for now, and write

lim sup
T→∞

1

T

T−1
∑

t=0

∑

f∈F

(

KU ′
f(xf [t]) − qb(f),e(f)[t]

)2

= lim sup
T→∞

1

T

T−1
∑

t=0

∑

f∈F

[

(KU ′
f(xf [t]))2 (33)

−2KU ′
f(xf [t])qb(f),e(f)[t] + q2

b(f),e(f)[t]
]

(a)

≤ K2
∑

f∈F

(U ′
f (m))2 + lim sup

T→∞

1

T

T−1
∑

t=0

∑

f∈F

q2
b(f),e(f)[t]

(b)

≤ K2
∑

f∈F

(U ′
f (m))2 + c(α, K, τ) (34)

where the inequality(a) is true sincexf [t] ∈ [m, M ], for all
t andf ∈ F due to the nature of the primal-dual congestion
controller, and sinceU ′

f (y) ≥ 0, for all y ∈ [m, M ]. Also,
inequality(b) follows from Proposition 1. Using the fact that
c(1/K2, K, K) = O(K2), (34) implies (32), which, when
substituted into (31) shows that

lim sup
T→∞

1

T

T−1
∑

t=0

‖x[t] − x⋆‖2 ≤ B̃2

K
, (35)

where we haveB̃2 := B0+B3+B4

C̃
. Thus, forT large enough

and for anyf ∈ F , we have
∣

∣

∣

∣

∣

1

T

T−1
∑

t=0

(xf [t] − x⋆
f )

∣

∣

∣

∣

∣

≤ 1

T

T−1
∑

t=0

|xf [t] − x⋆
f |

(a)

≤

√

B̃2

K
=

B̃√
K

,

where inequality(a) follows from (35).
Theorem 3 directly implies that the time-average rate allo-

cation to the users can be made arbitrarily close to the optimal
fair allocation by choosingK sufficiently large.

VI. EXTENSIONS AND VARIATIONS

In this section, we discuss possible extensions and variations
to the joint mechanism that we studied up to this point.

A. Stochastic Channel Models

To model channel variations, we assume that the network
channel state can be in one of many states belonging to a finite
set, sayJ . Then, we letΓj denote the set of feasible link rates
when the current state isj ∈ J . Let πs

j denote the stationary
probability of the channel state beingj. Then, we can define
the average link capacity region asΓ =

∑

j∈J

πs
j CH{Γj}.

Recall thatCH{A} denotes the convex hull of the setA.
Moreover, we define the average end-to-end capacity region
Λ as in Definition 1. Then, the goal is to find flow rates so
that

∑

f Uf (xf ) is maximized over all the rates inΛ.

Assuming that the channel state isj at time t, the back-
pressure policy performs the following optimization to deter-
mine the link rates:

µ[t] ∈ arg max
{η∈Γj}

∑

{(n,m)∈L}

η(n,m)w(n,m)[t],

where w(n,m)[t] is defined as in (7). We can also allow
randomness in the arrival process to model various
implementation details. For example, the flow rates can
be assumed to satisfy

E[xf [t + 1] | qb(f),e(f)[t]]

= {xf [t] + α(KU ′
f (xf [t]) − qb(f),e(f)[t])}M

m , and

E[x2
f [t] | qb(f),e(f)[t]] ≤ A < ∞, ∀qb(f),e(f)[t]. (36)

Under these modifications, a stochastic version of the stability
and convergence results can be proven.

B. Dual Congestion Controller

A dual congestion controller is a gradient algorithm de-
signed to minimize the dual objective of (4) (see [25] for the
case of the Internet). If we allow randomness in the arrival
process, the data ratexf [t] of flow f at time slott is a random
variable that satisfies (36) and

E[xf [t] | qb(f),e(f)[t]] = min

{

U ′−1
f

(

qb(f),e(f)[t]

K

)

, M

}

.

The heuristic fluid model of this controller is given by

xf (t) = U ′−1
f

(

qb(f),e(f)(t)

K

)

, for all f ∈ F .

For this model, the global asymptotic stability of the queue
lengths and the asymptotic optimality of the flow rates can
again be proved using LaSalle’s invariance principle by study-
ing the Lyapunov function:

V (q; λ⋆) =
1

2

∑

n∈N

∑

d∈N

(
qn,d

K
− λ⋆

n,d)
2.

As in the case of the primal-dual algorithm, we can then
establish the establish the stability and asymptotic optimality
of the stochastic model described above. Our techniques here
serve as an alternate proof of the results in [16], [26], [21].
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C. Relationship to TCP

The primal-dual algorithm described here is similar in
spirit to today’s versions of TCP; however, we use queue
lengths as the congestion feedback signal instead of packetloss
which is the most common form of congestion signal in the
Internet. Unlike the dual algorithm, the primal-dual algorithm
adjusts the flow rates more gradually in response to network
congestion.

VII. C ONCLUSIONS

In this work, we propose and study a cross-layer resource
allocation mechanism for wireless networks. It is shown that
this algorithm achieves fairness and stability. Architecturally,
we maintain the traditional protocol stack, but couple the
layers through the use of queue-length information.

APPENDIX

A. The Dual Function (5):

By the definition of a dual function ([3]), we have
D(λ) =

max


























x ≥ 0, µ ∈ Λ,

µ
(d)
(n,m) ≥ 0, ∀d,

µ(n,m) =
∑

d

µ
(d)
(n,m)































∑

f∈F

Uf (xf ) −
∑

n,d

{λn,d

×
(

µ
(d)
into(n) + xn,d − µ

(d)
out(n)

)}]

.

wherexn,d :=
∑

f xfI{b(f)=n,e(f)=d} denotes the total mean
flow rate from n to d. The terms in the objective of this
formulation can be re-ordered to get

∑

f∈F

(

Uf (xf ) − λb(f),e(f)xf

)

−
∑

n,d

λn,d(µ
(d)
into(n) − µ

(d)
out(n))

=
∑

f∈F

(

Uf (xf ) − λb(f),e(f)xf

)

+
∑

(n,m)∈L

∑

d

µ
(d)
(n,m)(λn,d − λm,d),

where the last step follows by manipulating the order of
summations in the second term. Then, the maximization in the
dual function can be decomposed into two parts as follows:
D(λ) =

max
x≥0

∑

f∈F

(

Uf(xf ) − λb(f),e(f)xf

)

+ max


















µ ∈ Λ, µ
(d)
(n,m) ≥ 0,

µ(n,m) =
∑

d

µ
(d)
(n,m)



















∑

(n,m)

∑

d

µ
(d)
(n,m)(λn,d − λm,d)

=
∑

f∈F

max
xf≥0

(

Uf(xf ) − λb(f),e(f)xf

)

+ max
µ∈Λ

∑

(n,m)

µ(n,m) max
d

(λn,d − λm,d),

where in the last step we used two facts: for the first max-
imization, the separability of the objective function together
with the decoupled constraint setx ≥ 0 allow us to perform
maximization over each term separately within the sum; for the
second maximization, the linearity of the maximization implies
that for each(n, m) ∈ L, we will haveµd∗

(n,m) = µ(n,m) where
d∗ := argmax

d

(λn,d − λm,d), andµd
(n,m) = 0 for d 6= d∗. �

B. Proof of queue stability without using Assumption 1:

In the main body of the paper, we have shown two results
for our primal-dual controller: that the average flow rates
converges to the fair allocation; and that the entry queues
{qb(f),e(f)}f will be stable. These results were proved under
the assumption that there is a flow between every source-
destination pair in the network (Assumption 1). Under As-
sumption 1, the stability of the entry queues trivially implies
the stability of all the queues. When this assumption is
removed, the results on fairness continues to hold without
modification provided that the stability result continues to hold
without the Assumption 1.

To establish stability without using Assumption 1, we
instead make the following reasonable assumptions:

Assumption 2:The set of feasible link rates satisfy the
following assumptions:

(a) Λ is a discrete set.
(b) There exist µmin satisfying µmin :=

minl∈L minµ:µl>0 µl. (Thus, µmin is the smallest
non-zero rate that can be provided at any link.)

(c) Consider any linkl ∈ L. The set of link ratesµl = µmin

andµj = 0, for all j 6= l, is feasible. (In other words, it
is always feasible to choose any link’s rate to beµmin

and choose all other rates to be zero.)
We will first consider the heuristic continuous-time fluid
model.
Analysis of the Heuristic Continuous-time Model: By
LaSalle’s invariance principle, the system converges to a state
satisfying(20) = 0. Therefore,

∑

f

x⋆
fqb(f),e(f) =

∑

n,d

qn,d

(

µ
(d)
out(n) − µ

(d)
into(n)

)

.

We also know that
qb(f),e(f)

K
= λ⋆

b(f),e(f). By rearranging the
right-hand-side, we get

K
∑

f

x⋆
fλ⋆

b(f),e(f) =
∑

(n,m)

∑

d

µ
(d)
(n,m)(qn,d − qm,d)

This shows that the optimal value of the objective in the back-
pressure algorithm (8) converges to a constant. This implies
that the total queue-length is bounded (see equations (A.20)-
(A.23) in [29]). To make the presentation self-contained, we
present the argument in [29] below.

We assume that at least one path exists between any two
nodes. Let(n0, d0) be such thatqn0,d0 = maxn,d qn,d. In
other words,qn0,d0 is the largest queue in the network. Letn0

andd0 be connected by a path through the nodesn1, · · · , nJ .
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Then, we can write

qn0,d0 =

J−1
∑

i=0

(qni,d0 − qni+1,d0)

≤ J max
i

max
d

(qni,d − qni+1,d)

≤ J
∑

(n,m)

µ(n,m)

µmin

max
d

(qn,d − qm,d),

where the last inequality can be established by contradiction:
if the inequality were not true, we could have assignedµmin

to the link with the maximum differential backlog on the path
from n0 to d0 and zero to the rest of the links in the network,
and obtained a larger value of the back-pressure objective.
Thus,

∑

n,d

qn,d ≤ J |N |2
µmin

∑

(n,m)

µ(n,m) max
d

(qn,d − qm,d) (37)

= K
∑

f

x⋆
fλ⋆

b(f),e(f) < ∞

and our result is proved. �.

Analysis of the Discrete-time System:When convenient,
we will omit the time index[t] unless there is ambiguity. Con-
sider the drift of the Lyapunov functionL(q) = 1

2

∑

n,d q2
n,d.

∆Lt(q) =
1

2

∑

n,d

q2
n,d[t + 1] − 1

2

∑

n,d

q2
n,d[t]

=
1

2

∑

n,d

(

qn,d + xn,d + s
(d)
into(n) − s

(d)
out(n)

)2

−1

2

∑

n,d

q2
n,d,

wherexn,d :=
∑

f :b(f)=n,e(f)=d xf . Since the link rates and
external arrival rates are bounded, we can upper-bound the
previous expression as

∆Lt(q) ≤
∑

n,d

qn,d

(

xn,d + s
(d)
into(n) − s

(d)
out(n)

)

+ B̂1,

for some bounded̂B1. Then, using Lemma 1, we can further
write

∆Lt(q) ≤
∑

n,d

qn,d

(

xn,d + µ
(d)
into(n) − µ

(d)
out(n)

)

+ B̂1 + B

≤
∑

f

qb(f),e(f)xf −
∑

(n,m)

µ(n,m) max
d

(qn,d − qm,d)

+B̂1 + B

Next, we use the bound (37) to write

∆Lt(q) ≤
∑

f

qb(f),e(f)xf − θ
∑

n,d

qn,d + B̂1 + B,

for someθ > 0.

Recall from the proof of Proposition 1 that, when
qb(f),e(f) ≥ g(α, K), thenxf ≤ m. Therefore, we can write

∆Lt(q) ≤ m
∑

f

qb(f),e(f)Iqb(f),e(f)≥g(α,K) − θ
∑

n,d

qn,d

+B̂2(α, K) + B̂1 + B

≤ m
∑

f

qb(f),e(f) − θ
∑

n,d

qn,d

+B̂3(α, K) + B̂2(α, K) + B̂1 + B,

whereB̂2(α, K) andB̂3(α, K) are bounded terms. Note that
∑

f qb(f),e(f) may count some ingress queues more than once
if there is more than one flow between some source-destination
pairs. LetZ denote the maximum number of flows that share
a source-destination pair. Then, we can write

∆Lt(q) ≤ mZ
∑

n,d

qn,d − θ
∑

n,d

qn,d

+B̂3(α, K) + B̂2(α, K) + B̂1 + B

= (mZ − θ)
∑

n,d

qn,d + B̂3(α, K) + B̂2(α, K)

+B̂1 + B.

By choosingm sufficiently small, we can assure that(mZ −
θ) ≤ −ǫ for someǫ > 0. As in Proposition 1, the stability of
the network follows. �
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Bo ḡaziçi University, Istanbul, in 1999, and the M.S.
and Ph.D. degrees in Electrical and Computer En-
gineering from the University of Illinois at Urbana-
Champaign in 2001 and 2005, respectively. He is
currently working as a Postdoctoral Associate at the
Laboratory for Information and Decision Systems at
the Massachusetts Institute of Technology.

His research interests include communication net-
works, optimal control of stochastic networks, opti-

mization theory, stochastic processes and network coding.

R. Srikant (S ’90-M ’91-SM ’01-F ’06) received
his B.Tech. from the Indian Institute of Technology,
Madras in 1985, his M.S. and Ph.D. from the Univer-
sity of Illinois in 1988 and 1991, respectively, all in
Electrical Engineering. He was a Member of Tech-
nical Staff at AT&T Bell Laboratories from 1991 to
1995. He is currently with the University of Illinois
at Urbana-Champaign, where he is a Professor in the
Department of Electrical and Computer Engineering,
and a Research Professor in the Coordinated Science
Laboratory.

He was an associate editor of Automatica and the IEEE Transactions on
Automatic Control, and is currently an associate editor of the IEEE/ACM
Transactions on Networking. He has also served on the editorial boards of
special issues of the IEEE Journal on Selected Areas in Communications
and IEEE Transactions on Information Theory. He was the chair of the 2002
IEEE Computer Communications Workshop in Santa Fe, NM and will be a
program co-chair of IEEE INFOCOM, 2007. His research interests include
communication networks, stochastic processes, queueing theory, information
theory, and game theory.


