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Abstract—In this work, we describe and analyze a joint was developed in [13], and followed by others in [19], [35],
scheduling, routing and congestion control mechanism for we- [15], [1], [31]; see [25] for a survey. In these works, the
less networks, that asymptotically guarantees stability Dthe  \5in contribution was the design of a distributed congestio

buffers and fair allocation of the network resources. The qeue- . . :
lengths serve as common information to different layers of control mechanism to drive the rates elastic flows towards

the network protocol stack. Our main contribution is to prove the system-wide optimum. In [36], [7], the authors use this
the asymptotic optimality of a primal-dual congestion controller, idea to develop congestion control algorithms for wireless
which is known to model different versions of TCP well. environments by reducing the available capacity region and

Keywords: Primal-Dual Algorithm, Congestion Control, Lya- ¢, verting the network into essentially a wireline network
punov Stabilty Theory, Throughput-optimal Scheduling, Wire- o o <o nial characteristics of wireless networks ardutigt
less Networks, Fair Resource Allocation, Nonlinear optingation. y

addressed there.

More recently, the problem of serving elastic traffic over
wireless networks has been investigated in [23], [26], [16]
[8], [10], [21], [17], [6]- Here, the queues and the wireless

Consider a set of flows that share the resources OfcRaracteristics of the network are included in the system
fixed wireless network. Each flow is described by its sourcgjgdel. The main idea in these works has been to combine the
destination node pair, with no a priori established rout#® resylts on scheduling inelastic traffic in wireless netveoakd
limited power resources and interference amongst CONtUIMgjstributed congestion control in wireline networks to iges
transmissions necessitate multihop transmission. Thees0¢hint scheduling-congestion control mechanisivat guarantee
that constitute the network must cooperate by forwardirieagptimal routes, stability and optimal rate allocation. Sée
others’ packets toward their destinations. Thus, each nqggsers prove that a decentralized congestion controlléreat
may need to maintain buffers to hold packets of those flowgnsport layer working in conjunction with a queue-length
other than its own. For such a system, we design a joighsed scheduler at the medium access control (MAC) layer
routing, MAC and congestion control algorithm that st@#&8 il asymptotically achieve buffer stability, optimal rting
the buffers, and drives the mean flow rates to a system-wiggq fair rate allocation. Moreover, these layers are caliple
fair allocation point. through common queue-length information.

The question of designing stable scheduling algorithmsy [16], [10], [21], [26], the authors propose and study rate
for wireless networks was first addressed by Tassiulas aghtrol algorithms that adapt the flow rates instantangous|
Ephremides[29] under the assumption that the incoming flows a function of the entry queue-lengths. The rate control
are inelastic i.e., the flow rates are fixed as for voice Omechanism studied in all of these works can be categorized
video traffic. They showed that scheduling transmissions as theDpual Congestion Controllesince it can be interpreted
a function of the buffer occupancies (queue-lengths) i&si 55 3 gradient algorithm for the dual of an optimization
the queues. Tassiulas[27] extended this technique toaarivproplem. The intrinsic assumption of the dual congestion
joint routing and scheduling algorithm that ensures theiB2  control mechanism is that the flow rates can be changed
of the queues. These results showed that the queue-leng{§tantaneously in response to congestion feedback in the
based resource allocation guarantees stability of thelsiéfs network. However, it is well known that adaptive window
long as the arrival rates lie within the capacity (stab)ii§gion  fiow control mechanisms such as TCP respond to congestion
of the network. Subsequently, there has been a large body@ddhack not instantaneously, but gradually. Such a regpon
work that extended the same idea to different scenarios g8dgesired by practitioners because the rate fluctuatioas ar
more general settings [30], [27], [28], [2], [24], [12], [P2 small. Thus, the study of another algorithm that modifies the
[11]. However, these works do not consider the case of traffigyy rates gradually is important. To this end, we propose
whose rate can be adjusted online. and study the so calleBrimal-Dual Congestion Controller

In the context of wireline networks, the idea of a distrilalitej, this work. Primal-dual algorithms are well known in the

flow control based on a system-wide optimization problegtimization literature and have been studied extensiirely
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somewhat differently than the algorithm in [10], [21], [16]but established by the back-pressure scheduling algorithm
[17], [6]. In [26], the users’ data rates are still deterndneto be described in Section 2. We u$é€f) to denote the
instantaneously as a function of the buffer occupancies abeginning node, and(f) to denote the end node of flow
channel conditions, but aaverage flow ratés maintained for f. Figure 1 illustrates an example network with three flows
each user and used in the algorithm. On the other hand, in paissing through it.

work, we update the data rates to mimic the characterisfics o
widely-used versions of TCP [25]. Further, the proof tecjuei

used in [26] is quite different from ours, and our algorithamc

be directly interpreted as a gradient algorithm for a primal TN
optimization problem that is implemented at the sources and flow g\ -
and a gradient algorithm for a dual optimization problent tha
is implemented at the nodes.

Here, it must be stressed that even though the congestion
control is distributed, the scheduling is still assumed & b
centralized in this work. In [17], [32], [4], [33], [5], theripact
of decentralized implementations of the scheduler is stlidi
We note that the results of this work can be extended to dis-
tributed and asynchronous implementations for a spedalscl
of interference models using the approach in [4]. Finallg, w
note that a related, but different, problem has been coreside
in [34] where a distributed algorithm has been designed &@. 1. An example network model with(f) = 4, e(f) = j, b(g) = 1,
route inelastic flows to minimize delay costs in a wirelesg?) = v andb(h) = w, e(h) = v.

,\‘

network.
The rest of the paper is organized as follows: Section Il Associated with each flowf is a utility functionUy(z),
describes the system model. In Section Ill, we state tlénich is a function of the flow rate ;. The utility function,

objective of the resource allocation as an optimizatioffgm denoted byU;(-) for flow f, is assumed to satisfy the
and characterize the optimum point. Section IV introducdsllowing conditions:

the queue-length-based resource allocation algorithrhitha
implemented at the MAC and network (routing) layers. We
propose and study the primal-dual congestion controliané-
port layer) in Section V. Various modifications and extensio
to the system are described in Section VI. Finally, we give
concluding remarks in Section VII.

o Uy(-) is a twice differentiable, strictly concave, nonde-
creasing function of the mean flow rate;.

« For everym and M satisfying0 < m < M < oo, there
exist constantg and C' satisfying0 < ¢ < C' < oo such
that

1 .
¢ < — < M 1
Il. SYSTEM MODEL ¢ < ok C  Vx&m,M] 1)

We assume that the network is represented by a g@ph,

(W, L), where N is a set of nodes and is a set of directed \we note that these conditions are not especially resteictivd

links. If a link (n,m) is in £, then it is possible to send hold for the following class of utility functions.
packets from node: to nodem subject to the interference

constraints to be described shortly. Wedet {1}, denote pl—ar
the vector of rates at which data can be transferred over each Us(x) = By _(1 —ay) Vay > 0. @)
link [ € £. We assume that there is an upper bouie; oo,

on eacty,, which is a reasonable assumption for any practicghis class of utility functions is known to characterize ey
system. We assume that zero is a feasible link rate for aRy liz|ass of fairness concepts including weighted-propoaiand
independent of the link rates chosen for the other links & thnax-min fairness [20].
network. Also, for ease of presentation we assume that therq‘\lext, we describe the capacity region of the network as in
is no fading in the environment. We will discuss the extensiclzz]' [16].
of the model to include time-variations in Section VI.

We letT' denote a bounded region in thé| dimensional
real space, representing the setiothat can be achieved in _ () %€ o
a given time slot, i.e., it represents the interference ams. there exists a Se{ﬂz }ZGL that satisfies
In general, the set need not be convex. In fact, a typical case
would be a discrete set of rates that can be achieved, ané he (d) (d)
be non-convex. We leF := CH{I'} denote the convex hull W Zﬂl . €T wherey = 2 0 forall L€ £, d € N.
of the setl". It is well known that by time-sharing between(ii) For eachn € A/, andd # n,
different rate vectors i, any point inI" can be attained.

We useF to denote the set of flows that share the network @ 4 S e T mne(f—ay < M(()?t(n)’

f

Definition 1 (Capacity region)The capacity region A, of
the network contains the set of flow rates> 0 for which

e .. Minto(n)
resources. The routes of these flows are not specified a,priori



capacity region\, there exists a unique optimizer of the primal
problem, which we refer to ag*. We call this thefair rate
allocation

One can use duality theory by defining, 4 to be the
Lagrange multiplier associated with the constraint

(d) (d)
Bimto(n) + 2 TFL(b(F)=me(F)=d} < Huy(n)
-

node n to get the following dual function after algebraic manigidas

(see the appendix for the details):
Fig. 2. Each node contains a queue for each destination fidde.figure

zooms into node: of Figure 1. D) = Z max{Uy () — 2 Ny p),e() }
fer ™20
where +rl51€a%<( )ELM(n,m) gle%i()\n,d = Am,d), ()
@ - Y . o
into(n) (k,n) where \; 4 is taken to be zero for alll. We note that we
(k)L use x to denote the link rate vectofi(y,m)}n,m)yec, NOt
() = > W (d)  ydeN
Hout(n) H(n,m)- {M(n,m)}(n,m)eﬁ'
(n,m)eL In the dual function\,, 4 can be interpreted as the price
Observe thapz(’iio(n) (Orﬂ((;i)t(n)) denotes the potential numberOf transferring a unit amount of data from nodeo noded.

Thus, A\y(1).e() is nothing but the price of transferring a unit
amount of data from the source of floyto its destination.
Such an approach was taken in [16] where it was shown that

of packets that are destined for node incoming to (or
outgoing from) node:. The condition (i) captures the interfer-

ence constraints, while condition (ii) is the flow-consédiva . ) . :
’ (i) o for this problem, the duality gap vanishes, and that theigt®x

constraint that must hold at each node. a-nonempty se¥* of optimal Lagrange multipliers that satisfy
It is assumed that each node maintains a separate queue for Pty P grang P

those flows that have the same destination. Wegqsgt| to Z Uf(:c;) = D(\*), for all \* € U™,
denote the number of packets that are destined for nbde feF '

waiting for service at node: at time ¢. Figure 2 illustrates
one such node. We set,,[t] = 0 for all n € A/ and for all

t. For eachn € N/, andd € N'\{n}, the evolution ofg,, 4 is

The definition of the capacity region and the optimality
conditions imply that for each* there is an associated rate

vectorﬁe I" which satisfies:

given by () .
() Pn .y =H(n,m), for each(n,m) € L.
Gnalt +1] = qnalt] + fo[t] Liv(fy=n,e(f)=d} ) *Z(:g) () ") ()
7 @) () Mintot) + Y T T(p)=ne(f)=d} < Hour(ny» TOT all
(d) _ (@D f
+ Sinto(m [t = Sour(m 1) neN andd € N\{n}.
ine 5@ (d) i) /2 PP,
where we define sz(.mo(n) [t] = St ] and iy e arg max > tnm) max(A; g = Any,a)-
(ks o mmer @
(d) — (d) (d) . x (X * o
S ouat(n) [t] := Z S (n.m) [t], and S (n.m) [t] denotes the (i) At (Hinto(m) +fo1{b(f):me(f):d}— Fout(n)) = 0
(n,m)eL f
rate provided tod-destined packets over link:, m) at slot forall n € N andd € AN\{n}.

t. Notice that, this is the actual amount of packets servesking property (iv), and summing over alle A" andd € A,
over the link, not the potential amount denoted;t&)m) [t].  we get

Clearly, we haves(, ,.[t] = >, SEZ),m) [1]. Also, 5@ [

(n,m) = - . . % (d) % (d)
min(ue) 1], gn.alt]) for all (n,m) € £, d # n. DTN men = D D Andlouttn) = Fanto(m))
) f neN deN
[1l. PROBLEM STATEMENT AND CHARACTERIZATION OF N *(d) *(d)
THE OPTIMAL POINT - zj;/;/)‘md l; Fny = ; Fim)
ne S n n
Our goal is to design a congestion control, scheduling () !
mechanism such that the flow rate vectar, solves the = > > N
following optimization problem: neN deN k#n
+(d)
max > Usler) @ =2 3D N
fer neN deN j#n

We refer to (4) as theprimal problem.Due to the strict Next, we change the indices in the sums to make the link
concavity assumption ol/;(-) and the convexity of the rates the same. This yields



linearity of the objective function and the fact that =

DTN e CH{T'}.
f Fact 2: Those flows that have; 4[t] < 0 will get Ml(d) [t] =
«(d) 0, because the objective of the optimization in (8) can only
- Z Z Z A Hn,m) decrease by choosirygfd) [t] > 0, if w;q[t] <O.
neN m#n deEN
* (d)
- Z Z Z Am.d Hnm) V. PRIMAL-DUAL CONGESTIONCONTROLLER
meN n#m deN ’
= Z Z ﬁiz)m) (A=) The function of the congestion control mechanism is to
(nm)eL deN ’ ’ ’ observe the congestion level of the network and respond to it
* . . by increasing/decreasing the data rate of the flows so thgt th
- Z H(nm) mc?x(/\md — And) evolve towards the fair allocation as described in Sectlan |
(n,m)eL In this paper, we propose a primal-dual congestion control
> Z P(n,my Max(Ay, g — A%, ), VYu €T, (6) mechanism that can be implemented in a decentralized fashio
(n,m)eL ¢ for each flow. In particular, the source node of each flow

where the last inequality follows from the property (iii)his usesllts local queue-[ength information as well as thetymh
inequality will later be used in the proof of stability of thefunct!on associated W'.th thaF rovy to gpd@te the ﬂ.OW rate in an
system. iterative manner. Thls_ is S|m|lar, in pr|nC|p_Ie, to wmddya_sed
flow control mechanisms implemented in many versions of

TCP, because for such mechanisms the flow rates are gradually

IV. SCHEDULING ALGORITHM increased or decreased depending on the congestion féedbac
In this paper, we use a queue-length-based scheduler kndvgim the network.

as theback-pressure scheduléntroduced by Tassiulas and  pefinition 3 (Primal-Dual Congestion Controller)at the
Ephremides [29]. This scheduler assigns a weight to eakh ligeginning of time slot, each flow, sayf, has access to the

that equals to the maximum differential backlog between thgeye-length of its first node, i.@4(1).c(p)[t]. The data rate
transmitting and receiving nodes, and then chooses Iirdsraggf[t] of flow f satisfies '

to maximize the sum of the product of link weights and link

rates. The details of the scheduler is provided in the fa M

o P MY e+ 1] = {aslt) + o (KU} (arlt) = i ecn ) b -
Definition 2 (Back-pressure Scheduleqt slot ¢, for each where the notatioiy }° denotes a projection gfto the closest

(n,m) € L, we define the differential backlog for destlnanonIOOint in the interval(a, bj. We assume thatn < min, o

noded as is a fixed positive number that can be arbitrarily small, and
Win,m),dlt] = (qn,alt] — Gm,alt])- M, K > 0. ©
Later, we will see that the paramet&rdetermines how closely
Also, we let . ) )
the flow rates determined by the primal-dual congestion con-
Win,m[t] = mgX{w(n,m),d[t]} (7) troller approximate the optimal rates.
In the following sections, we prove that this congestion
dwmt] = arg Hax {wenm),altl} - control mechanism, when operated in conjunction with the
. o back-pressure scheduler, achieves flow rates arbitraolsec
Choose the rate vectaift] € I' that satisfies to the fair allocation. To that end, we first study a heuriftil

model, and then consider the original discrete-time system
M[t] € argmax Z N(n,m)W(n,m) [t]v (8) . .. .
{net} ((nmec) For purposes of simplicity, we will study the system under
_ _ the following assumption in the main body of the paper.
and then serve the queue holding packets destined for nOdﬁssumption 1There is a flow between every source-
dn,m)[t] Over link (n,m) at rateu, [t]. That is, we set destination(n, d) pair with n € A',d # n. o

(dm,m)[t])[t] _ 1] In Appendix B, we show that our results continue to hold
(n,m) = H(n,m)[*]- . . .
without this assumption.

The rest of the queues at nodeare not served at slat  ©

Such a resource allocation rule has been shown to achieve
thr_oughput—optlmallt){Zg], i.e., any arrival rate that can stq—A' Convergence of the Primal-Dual Controller
bilize the network using any other resource allocationgyoli
can be supported by this policy. Next, we list two other facts In this section, we first introduce a heuristic fluid model
related to the back-pressure policy that will be used later. of the joint scheduler-congestion control mechanism, and

Fact 1: The maximization in (8) can be performed oJer prove its stability and convergence properties, and thewsh
instead of', because the optimal rate vector must alwaythe convergence properties of the discrete-time primal-du
contain at least one element from This follows from the algorithm using the results of the fluid model.



1) Analysis of a continuous-time fluid modeWe first
present LaSalle’s invariance principle, used to deterntiirge
stability of differential equations [14], which will be usg
for subsequent analysis.

Theorem 1 (LaSalle’s Invariance PrinciplefConsider the
differential equationy(t) = f(y(t)). LetY : D — R be
a radially unboundéd continuously differentiable, positive
definite 2 function such thatr'(z) < 0 for all z € D. Let
£ be the set of points i) whereY (z) = 0. Let M be the
largest invariant sétin £. Then, every solution starting i
approachesM ast — oo. o

Now, we present the heuristic fluid model of the primal-dual

algorithm. We assume that time is continuous and the ewoluti
of each queue is governed by the differential equation:&che
n €N, andd € N'\{n},

Qn,d(t) = Ib(f)—n e(f)=d + Nz(nto(n)( )

Z zy(t
9
(d)

_ ¢ ) 7
MOUt(n)( qn,d(t)zo

where (y),>, is equal toy when z > a and is equal to
max(y,0) when z = a. Here, (t) is used instead oft] to

signify that we are working in continuous-time. The backearrange terms to yieltf (x(¢),

Y (x(t),q(t); A*)

= S ) -2 <U} (e (1)) — w) (12)
fer K zf(t)>m
+Z(q"d fo Ty(f)=n.e(f)=d

n,d (13)
+N1('Z)to(n) (t) — uf}i)t(n) (t))qn,d(t)zo

< Y tort - o) (07 Gty - 22200
feF

+Z%L—/\ fo

(d)

into(n)

Ly(fy=n.e(f)=d
(15)

(t) = iy ()

where (14) follows from (12) due to the assumption thak
z’, Vf. Similarly, (15) follows from (13) when we note that
removing the lower bound on, 4(t) can only increase the
sum since\’ , > 0 by definition.

Let us add and subtract; (%) Ab(Fe(f)?

fol{b(f):n,e(f):d} to (14) and (15), respectively, and

(d)

+u 'uout(n)

and

pressure algorithm computes the link schedules and rates at

every instant of time as described in Section 2. Finally, the
congestion controller is assumed to determine the instanta

neous flow rates such that, for dlle F,

Zy(t)

«@ (KU} (.Tf (t)) — db(f),e(f) (t))wf(t)zm (10)

Then, the following global asymptotic stability result ds!

Theorem 2:Starting from any initial  condition
(x(0),q(0)), the state of the systerfx(t),q(t)) converges
to (x*, K\*) ast — oo, where \* := {\} ;} is given by
Areth) = Uj(a}) for eachf.

Proof: The proof is based on LaSalle’s invariance prin-

ciple. As in the case of the primal-dual congestion corgroll

for the Internet [25], we start with the following Lyapunov

function
. px)2
D D
f€.7: , (11)
qn, A*
+= Z Z( a_ ) .

neN deN

It is easy to see that this is a radially unbounded function.

Next, we study time-derivative of this function.

IFunction F'(z) is calledradially unboundedf lim|| ;|| 00 F'(2) = 0.

2y is positive definite ifY’ (z*) = 0 for somez*, andY (z) > 0 for all
z # z*.

3A set M is said to be ainvariant setif z(0) € M implies thatz(t) € M
forall ¢ > 0.

q(t); \*)
< > (@p(t) = ap)(Upas(t) — Up(ap)) (16)
f
. Qo f),eh) ()
+Z (@ () = 23) Ny en = — ) A7)
b e * *
+ Z 2N (j = Nopy,ep)@r(t) — 2%) (18)
+ Z A ( out (n) ) Mz(i?‘,o(n) (t)
(19)
=Y T =ne(H)=d)
7
qn, d
Z Z%I{bu —n,e(f)=d} 0)
+Nz('fgo(n) (t) — ”Ei)t(n) (t)) :

Notice that(17) and (18) cancel each other. The strict cdgtyca

of Uy (-) implies that(16) < 0 for all x(¢) with strict inequality
wheneverx(t) # x*. Next, we study the (19) and (20)
separately to argue that they are both upper-bounded by zero
We start with (19). Notice that we can write

Z )\ ( out(n ) H (n) (t))
PORD BYIHAMICIE

(n,m)eL d#n

DTN e
7

(d)

into

4= Mm.d)

IN



where the equality follows from a change in the order of
summation, and the inequality is due to (6). Therefore, WGZ ngi)m)[t](Qn,d[t] — qm,d[t])

have(19) < 0. (n,m)€EL d#n
Next, we consider the expression (20). Recall the flow-
balar_1ce condition for destinatioh at noden introduced in > Z Zﬂgiﬁm)[t](qn,d[t] — gm.alt]) — B
Section Il (n.m)eL d#n
. *(d) «(d) Proof: We prove this lemma by considering three cases.
' ' Ty = Hout(n) — Finto(n): vn, d. CASE 1: qnq4[t] < gm.q4t] : then, due to Fact 2, we have
fib(f)=ne(f)=d Ngi)m) [t] = 0 and subsequently, we must has{él)m) [t] = 0.
Next, we multiply both sides of this expression by q(t) CASE2: gn.alt] > qm.alt] @andgn 4[t] > 7 : then there can be
and sum over alh,d to get: no unused service sinqeg’i)m) [t] < 7 by assumption. Thus,
(d) _ (@)
Z Z Fignalt) we haves(n_’m)[t] = Hipm) [t]. "
d fb(f)me(f)=d CASE 3: 1) > qn.a[t] > gm,alt] : then we haves(mn) [t] <7
2 (d) () and () [1](qn.alt] — gm.alt]) < 7% Thus, in this case,

< Z('uout(n) - Minto(n))qmd(t)
n,d

| *(d)
= Z Z ‘u(i,m) (Qn,d(t) - QW,d(t))

(st oy 1 = 1) ) (G alt] — G, alt])

d
(n,m)eL d = _Ngn),m) [t](Qn,d[t] - Qm,d[t])
LY Y O@nalt) — amalt). @) > ([l
- 'LL(n,m) 4n,d Am,d ) 5 )
(n,m)eL d > i

where the inequalitya) holds due to (8). This shows that

(20) < 0. Combining the three cases, we have

Note that since (17) + (18 = 0, we have A

PO et e 1) 4 (19) + (20), and we have ()= K )t ald sl = 7L,

just shown that(16) < 0, (19) < 0, and (20) < 0. This ] o ) .

implies thatY (x(t), q(t); \*) < 0, and further it also implies wherg_L3 is the number of indiceér, m, d) which satisfy tr_]e
that conditions of Case 3. Clearly,; < |£||N/|, and thus, choosing

£:={(x,q) : V(x,q\*) =0} B = |L||N]7? gives the desired result. [ ]
. ) . The next proposition establishes the asymptotic bounded-
is contained in the set ness of the queue-lengths, and hence the stability of the
S = {(x,q): (16)=(19) = (20) = 0}. system.

Proposition 1: There exists a constanfw, K, 7) < oo that

Let M be the largest invariant set of the primal-dua&epends om and K and a free parameterc Z.. such that
algorithm contained ir€. By LaSalle’s invariance principle

(x(t),q(t)) converges to the seMt ast — oo. Since M C i 2 < K
£ C S, ast — oo, the pair (x(t),q(t)) must also satisfy 128;?”2;%"1[ | < ele K,m).
(16) = 0. Then, strict concavity of the utility functions imply '
thatlim; oo 5 (t) = v} for each flo"‘*’f' . . . Furtherc(a, K, 7) is such that, whem is chosen to be /K

Further, sinceXj ;) .,y = Up(z}), the set{A} ;} IS andr is chosen to bek, thenc(a, K, 7) is of the order of
uniquely determined. For ank,q) € M, if %"(t) # X K2 ie,c(l/K? K,K)/K? tends to a constant & — oo.
theni(t) # 0, and hencery(¢) will not stay atz}. Thus, a Proof: Let us consider the Lyapunov function
trajectory starting at such @, q) cannot stay irS, and since
M is the largest invariant set ifi C S, such an(x,q) ¢ M. 1 2

o : ' ’ L(q) = =
This implies that if(x, q) € M, thenx = x*, andq = K\*. (a) 2 gd;/q"’d’

[ ]

2) Analysis of the discrete-time modeRecall that the and study its drift:
evolution of the flow rates and queue lengths are given by

Definition 3 and (3), respectively. Throughout, we assuraé thA 7, (q) := L(q[t+ 1]) — L(q[t])
z; >m, Vf, which is a reasonable assumption given that we
are free to choose: as small as necessary to satisfy it. < B
. : : . < + n.dlt T[T b0 ) el e
The following lemma provides a relationship between po- ! nz;q alt zf: T =ne(p=a)

tential service rate, and the actual service rase which will ( d') @

be used in the proof of the subsequent theorem. FSintom t] = Sout(n) [t]) ;
Lemma 1:The following relationship holds for any|t]

and someB < oo : for someB; < oo that is a function ofM/ and the maximum



link rate 7). Thus, we have where inequalitya) follows from the fact that:¢[-] > m and
that U (-) is a concave function. This further implies that,

ALia) < Bi+ 3 ap.en (sl for eachi € {t — 7+ 1,--- ,t}, x¢[i] will keep decreasing
J @ @ by at leastM /7 in each slot until it hits its minimum level
- an,d(sout(n) ] = Sinto(my[t]) of m, and stay at that level until time slot Thus, even if
n,d xs[t — 7] = M, at the end of the subsequenslots, the flow
= B+ qu(f) etz s[t] rate will certainly decrease to;[t] = m, which proves our
T o claim. Building on this claim, we let
(d) M
— t|(gn.alt] — @m.alt — _ 7 N
(7;1) Xd: s(n_’m)[ 1(qn,alt] = qm.alt]) g(a, K, 7) = 1(r+Amaz) = aT—i—(Amaz—i—n)T—i-K m}gx U}(m).
(a) Then, we have
< Bi+B+ Xf: a(f).e(nts (] S av(s),e(n ([t — %)
=33 ) [ @nalt] = g alt) = > B().entl(@plt] = 2)
('n. m) d ’ qv(f),e(f) [t]Zg(OmKﬂ')
*
= Bi+B+ Y aen el — ab) + > ao(s),e00) ) [t] = 27)
f a($).e(p) [ <g(a, K,7)
+> et} = > B f),ep)lt](m — xF)
f W(p),e(h) [t1Z9(e, K,7)
S S gt — amal) +Flg(a, K. 7) (0 = m),
(n,m) d where in the last step, we used the fact thatt] € [m, M],

where the inequalitfa) follows from Lemma 1, and the lastand «} > m, for all f. To bound the remaining sum, note
equality is obtained by adding and subtracting the term witRat we havem — 23 < —¢, for somed > 0, which follows
x*. We have already shown in the derivation of (21) that from our assumption af} > m for all f. Then, we can write

Z v (£),e(f) [t]‘T; < Z Z Mgrdz),m)[t](Qn,d[t] - QW,d[t])- Zf av(f),e(f) [t] (xf[t] - :17;)
f (n,m) d
Hence, we have < =0 anenltl - > o(f).e(!]
ALt(q) < Bi+B+ Z av(f),e(f) [t](xf[t] - x;)(ZZ) f Fianpy.er) [E1<g(a, K,7)
I +|Flg(e, K, 7)(M —m)
To complete the proof, we will show that when the queue < —5qu(f),e(f)[t] + Bo(o, K, 7),
lengths are sufficiently large, the link rates are small mgki 7

the above drift negative. To that end, we first define where we defineBy(a, K,7) = |Flg(a, K, 7)(M — m + 6).

M Using this bound in (22) and noting that, by our assumgtion

ar?’ there exists a flow between all source destination pairs, we

where 7 is an integer to be determined. Note that the tot§RN Write

arrival rate into a queue can be bounded by sotpg. < oo AL(q) < —5an,d[t] + By(a, K, 7) + By + B.

since the arrival rate of each flow is bounded i and the

link rates are bounded by Thus,g,.q[t] < gn,alt—1]+Amaz-
Then, we claim that iz, ) c()[t] > 7(r + Anaz) for any

flow f and anyt > 7, then we must have[t] = m. To

see this, note thaty s .s)[t] > 7(r + Amas) implies that S 9 N ~—rwiny
a(f),e(p)[t — 7] > Tr since in each slot, the queue-length z;q"’d[t] - z;q”vd[t] = v2L{dlf]).
cannot increase by more that,, ., packets. Therefore, for " "

each time slot € {t — 7 +1,--- ¢} in which the ratez¢[i] if L(q[t])) > 3$[(B+ Bi+ Ba(a, K, 7)+ €)/8]*, then,

. K
=1+ - m}me}(m) +

n,d

Thus, if 32, ;qn.alt] > (B + B + Ba(a, K, 7) +¢€)/0, then
AL:(q) < —e. Also note that, since

of Flow-i is larger thanmn, we have AL(q) < —e. Further,AL;(q) < (B + B1 + Ba(a, K, 7)),
xfli] — i — 1] otherwise. These facts imply that, s> oo,
< (KU ayfi — 1)) — apli—1 B+ By + Bs(a, K, 2
: (KUf(xs[i =1]) = ao(py.enli = 1) Lial]) < ( + B+ 5\2/(; T)+6> (B4 By4 Baler K. 1))
< aKU; — -1
< akUp(m) —ar(r —) Defining the right-hand side of the above inequality to be
< aKUj(m)—ar (5 max Uj(m) + %) c(a, K, 7), and observing that it is growing a&? when
' T 7 ar a=1/K%andr = K. |

< M

7 4This assumption is removed in the appendix.



Next, we state the main theorem which shows that the awe claim that(23) < —C||x[t] — x*||?, whereC is a positive
erage rate obtained by each user can be made arbitrariky closnstant that is independent &f. To see this, first note that
to its fair share (as defined by the resource allocation problahe strict concavity assumption of the utility functionsoals
(4)) by letting K become large and choosing= 1/K2. If us to write

i . 2 * *

the step sizey is §elected a3/K* and the free paramethr (U (g [t]) — Up(as) (s [t]) — a%)

of Proposition 1 is selected ds, thenc(a, K, K) = O(K?) U — U (2 P (30)
from Proposition 1, and the sum of the queue lengths in the =~ [Up(aslth = Up@})| |s[t] = 3]

network (also known as backlog) is upper-boundedt§yx'). for eachf € F. Also, by the mean-value theorem, we can
Thus, assuming that the upper bound is a reasonable estinfate somey [t] betweenz|t] andz7} for which U} (x[t]) —

of the backlog, there exists a tradeoff between backlog abig(z%) = (z¢[t] — 23)U¥ (yy[t]). It follows from (1) that
fairness, which can be controlled through the choicéofif qre exists somé > 0 such that‘U}»(If [t]) — Up(a%)| >

K is large, the asymptotic rate allocation is close to the fair . _ ) )

allocation but at the cost of larger backlog. Clz¢[t] — x7%|, which can be substituted into (30) to prove the

Theorem 3:If a = 1/K?, then, for some finite3 ¢ Cclaim
(0,00), we have the following result: for alf € F Observe that the terms (24) and (26) cancel each other. Also,

notice that (27) and (28) are almost the same as (19) and

5 T-1 . .
o B < liminf L Z 21 (20), res_pecuvely, except for the fgct that_ actual servates
F VK = T- T appear in them instead of potential service rates. Firde no
. 0 . that (27) < 0 since it can be written as
B
< 1 — + — d * * * )k
- 1¥1_§Olip Z .I'f :Ej \/K Zzsn,m( n,d m,d) - fo)\b(f),e(f)
Proof: We study the drift of the Lyapunov functiori(-) "’;” d f
iven in (11 * * * * \
g (11): <D Fiamy N = Xina) = D TN gy S O-
AYy(x,q; A7) =Y (x[t + 1], qlt + 1; \") = Y(x[t], q[t|; A7), = d /

which can be upper-bounded by using the same i@ Se€ that (28) is bounded, we argue as follows:
of reasoning we followed in the proof of Theorem 2,

i.e., we handle the boundary constraints of the rates ano( 8)
gueue-lengths, add and subtra[é} Tp) = A (1) e(f) and < B Zq—
- K e K

> @3 Ziy(f)=n.e(s)ay- @Nd rearrange terms to get

f
AY;(x, q; V) ( T = Whomy 1] = Bsny [t])
< Z (Up(as[t]) — Up(a})) (zs[t] — %) (23) 5 fb(f)l;n e(f)=d
Qv e [ ] K K
+Z ( YO DD (24) - .
rlt Nopyecr) ~ K where the first inequality follows from Lemma 1 af@eh) < 0

) as in the proof of Theorem 2.
+Z Ve (KU} (z¢[t]) — ao(s).eplt]) (25) Since the link rates and the flow rates are upper-bounded,
f we can find someB; < oo such that (29 Bs/K. Thus, we

benl] 5 o) "V
+ Z(% = Xy.en) (@] = 25) (26)

. B+ B ~ N
AY(x,q; \) < = — Clx[e] — x|
+ Z)\ (550 ] = 5t 18 Ko 2
out(n into(n) + Z Ve (KU}(xf[t]) — @ prenlt])” -
(27) !
_ * If we write this drift expression fot =0,--- ,7 — 1 and add
DT b=t f)=d) . . >
7 both sides of the inequalities, then we get
Gn,alt] . Y (x[T], a[T]; A*) — Y (x[0], q[0]; A*)
K (Z TiL{b(f)=n.e(f)=d} (28) o
j (a) (a) < 72 J;{Bg =Y Il = x|
+Sint0(n) [t] - Sout(n) [t]) t=0
T—1
L + (KU} (s lt]) = aopy.ecr )
+ﬁ g (; Ij'-,z{b(f):n,e(f):d} (29) ; Z f f (f) (f) )

() @) 2 By rearranging terms, noting that'(-) is a non-negative
*Sinto(n) [t - Sout(n) [t]) : quantity, dividing both sides b¥’, and taking the limit ag"



goes to infinity yields A. Stochastic Channel Models

T

1 To model channel variations, we assume that the network

x[t] — x*|? channel state can be in one of many states belonging to a finite
set, say7. Then, we lef"; denote the set of feasible link rates
when the current state js€ J. Let w7 denote the stationary

T-1
. 1 « 2 ™ LY !
< limsup T E E K (KU a£[t]) = av(s),ent]) probability of the channel state beigg Then, we can define

lim sup
T—o00

¢
T

t

Il
=]

T—00 t=0 feF (31) the average link capacity region d5 = ij CHAT,}.
B+ Bg JET
+ K Recall thatCH{A} denotes the convex hull of the set

Thus, the proof will be complete once we show that, wh

eI\ﬁloreover, we define the average end-to-end capacity region
a=1/K? we have

as in Definition 1. Then, the goal is to find flow rates so
that)_ . Us(xy) is maximized over all the rates iA.

= o ) Assuming that the channel state jisat time ¢, the back-
limsup = >N 0 (KU (xf[t]) = quip).ecplt]) pressure policy performs the following optimization to efet
T—o0 t=0 feF mine the link rates:
< B4 < 00, (32)

. . . . . :u[t] € argmax Z n(n,m)w(n,m) [t]a
for someBj,. To justify this claim, we ignore ther/2 factor (€T3} ((nimyer)

for now, and write

. 1 = ) ) where w, ,)[t] is defined as in (7). We can also allow
11;11 sup T Z Z (KUf(fo [t]) = @v(s).ecr) [t]) randomness in the arrival process to model various
e t=0 feF implementation details. For example, the flow rates can
= be assumed to satisfy
- h;nsup T SN [(KUas[H)? (33)
—0 t=0 feF Elze[t + 1] | qu(py,ecp) (]
/ . 2
2K Uy (Db, 1) + G5y 1] = (s [] + (KU N [H]) — aupyen )}, and
(@) . 1< E[3 1] o), enltl] S A <00, Vaypepnltl  (36)
< K2 Z(U}(m))Q + h;n sup T Z Z QZ?(f),e(f) [t] f (f).e(f) (f).e(f)
feF e t=0 fer Under these modifications, a stochastic version of the lgtabi
(b) and convergence results can be proven.
< K2Y(Ufm)? + el K, 7) (34) vero : Prov
feF

where the inequalitya) is true sincex¢[t] € [m, M], for all B. Dual Congestion Controller
tand f € 7 due to the nature of the primal-dual congestion p qual congestion controller is a gradient algorithm de-

controller, and sincd/(y) > 0, for all y € [m, M]. Also, gjgned to minimize the dual objective of (4) (see [25] for the
|nequa2I|ty(b) follows fro2m Proposition 1. Using the fact thatcase of the Internet). If we allow randomness in the arrival
c(1/K% K, K) = O(K”), (34) implies (32), which, when pocess, the data raig|t] of flow f at time slott is a random
substituted into (31) shows that variable that satisfies (36) and

T-1
. 1 Z . B? N
_x* < —_ . _ b e [t]
II?LSOOUPI — Ix[t] =7l < K’ (35) Eles[t | av).enltl] = mln{U} ' (7”%“ M b

where we havei? := ZotBatBs Thus, forT large enough The heuristic fluid model of this controller is given by
and for anyf € F, we have

Y of f t
p T . = . wp(t) = U (7"’1’”)};”( )) ,  forall feF.
2l —ap| < 7D lagl) - o)
=0 =0 For this model, the global asymptotic stability of the queue
(a) B2 B lengths and the asymptotic optimality of the flow rates can
< K \/77 again be proved using LaSalle’s invariance principle bggtu
where inequality(a) follows from (35). n M the Lyapunov function:
Theorem 3 directly implies that the time-average rate allo- ey L Gn,d . N2
cation to the users can be made arbitrarily close to the @btim Vig; ") = B} Z Z (7 - Ahd)

fair allocation by choosind< sufficiently large. neN deN

As in the case of the primal-dual algorithm, we can then
VI. EXTENSIONS AND VARIATIONS establish the establish the stability and asymptotic oglittgn
In this section, we discuss possible extensions and vanigiti of the stochastic model described above. Our techniques her
to the joint mechanism that we studied up to this point.  serve as an alternate proof of the results in [16], [26], [21]
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C. Relationship to TCP where in the last step we used two facts: for the first max-

The primal-dual algorithm described here is similar ifmization, the separability of the objective function tttyer
spirit to today’s versions of TCP; however, we use queldth the decoupled constraint set> 0 allow us to perform
lengths as the congestion feedback signal instead of phsieet Maximization over each term separately within the sum;ter t
which is the most common form of congestion signal in thgecond maximization, the linearity of the maximization lrep
Internet. Unlike the dual algorithm, the primal-dual aigam that for each(n,m) € £, we will haveu{, , . = fi(n,m) Where
adjusts the flow rates more gradually in response to netwotk:= argmax(An,a — Am,a), anduf, ,=0ford#d*. M
congestion. d

VII. CONCLUSIONS B. Proof of queue stability without using Assumption 1:

In this work, we propose and study a cross-layer reSOUTCE ) the main body of the paper, we have shown two results
allocation mechanism for wireless networks. It is showrt th? y

this algorithm achieves fairness and stability. Architeally, or our primal-dual .C°””°"eF that the average flow rates
converges to the fair allocation; and that the entry queues

we maintain the traditional protocol stack, but couple th{a .
. ) Q(s).e(5)} ¢ Will be stable. These results were proved under
layers through the use of queue-length information. : .
the assumption that there is a flow between every source-
destination pair in the network (Assumption 1). Under As-
sumption 1, the stability of the entry queues trivially irnegl
the stability of all the queues. When this assumption is

APPENDIX
A. The Dual Function (5):

By the definition of a dual function ([3]), we have removed, the results on fairness continues to hold without
D)) = modification provided that the stability result continuesiold
without the Assumption 1.
max Z Up(zys) — Z {Mna To establish stability without using Assumption 1, we
x>0, €A, fer e instead make the following reasonable assumptions:

ME?W) > 0, Vd, Assumption 2:The set of feasible link rates satisfy the
i) = Z Mgi),m) foIIOW|r?g ass-umptlons.
p (@) A is a discrete set.

p p i . L . _
% ('ufﬁnio(n) + g _M((m)t(n))H (b) There .eXIS'[ Umin  Satisfying ~ Hamin :
minge, ming.,, >0 - (Thus, pmin is the smallest
wherex,, ¢ := Zf 2Ly f)=n,e(f)=ay denotes the total mean non-zero rate that can be provided at any link.)
flow rate fromn to d. The terms in the objective of this (c) Consider any link € £. The set of link rateg,; = pmin

formulation can be re-ordered to get andp; = 0, for all j # 1, is feasible. (In other words, it
is always feasible to choose any link’s rate to fbg;,
Z (Ur(@s) = Xos)etp)s) and choose all other rates to be zero.)
&7 @ @ We will first consider the heuristic continuous-time fluid
- Z /\n,d(umm(n) - Mout(n)) model.
n,d Analysis of the Heuristic Continuous-time Model: By
= Z (Uf(xf) - )\b(f)ye(f)xf) LaSalle’s invariance principle, the system converges ttates
ter satisfying (20) = 0. Therefore,

(n,m)el d out(n) 'uinto(n)

(d)
+ Z Z/L(mm)(/\n,d—/\m,d)a ZI}‘Jb(.fLe(f) _ an.’d (u(d) (@) )
f n,d

where the last step follows by manipulating the order of
summations in the second term. Then, the maximization in tie also know that‘“(f)Tve“) Y

)- By rearranging the
dual function can be decomposed into two parts as followstight-hand-side, we get

b(f)velf

D(A) =
K @\ o = D (dnd — dm
max > (Us(zs) = Mo(p).e(n)®s) zf: FoDAn (;)Zd:ﬂwm) (i = )
= feF
max Z Zﬂgi?m)()‘md — Am.d) This shows thqt the optimal value of the objective in t_he. bac_k
e Avuﬁi)m >0, ) (o a ’ pressure algorithm (8) converges to a constant. Th|s implie
() that the total queue-length is bounded (see equations JA.20
Hnm) = 2 Pn,m) (A.23) in [29]). To make the presentation self-containee, w
¢ present the argument in [29] below.
= Z g}}i’é (Up(xs) = Noigy,e) 1) We assume that at least one path exists between any two
S nodes. Let(ng,dy) be such thatg,, 4, = max, q4qmaq. IN
+ max Z [(nym) MAX(An,d — Am.,d), other wordsg,, 4, iS the largest queue in the network. Lef
HEA (n,m) d anddy be connected by a path through the nodes -- ,n.
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Then, we can write Recall from the proof of Proposition 1 that, when
J—1 QW(s).ef) = 9(a, K), thenxy < m. Therefore, we can write
rodo = Z(qm’do ~ niga.do) ALi(q) < mz W f).e() Lavisy ey >g(a ) =0 Z dn,d
o f n,d
S Jmaxmax(Gn,d = dniri.d) +Bs(o, K) + B+ B
/’L n,m
S J —/i '- ) ml?x(qn,d - qm,d)a S mz qh(f),e(f) — 0 Z Qn,d
(nm) T f n,d

Bs(a,K) + Bs(a, K) + By + B,
where the last inequality can be established by contradicti Bl K) + Ba(o, K) + By +

if the inequality were not true, we could have assigngd,, WhereBs(a, K) and Bs(a, K) are bounded terms. Note that
to the link with the maximum differential backlog on the pat_ s gu(f).c(r) May count some ingress queues more than once
from ng to dy and zero to the rest of the links in the networkif there is more than one flow between some source-destinatio
and obtained a larger value of the back-pressure objectip@irs. LetZ denote the maximum number of flows that share
Thus, a source-destination pair. Then, we can write

JIN? ALi(q) < mZZ qn,a — 0 Z Gn.d
- Z H(n,m) ml?x(qn,d - Qm,d) (37) n,d n,d

Z dn,d S ,
n.d Hmin (n m) N . .
: = +Bs(a, K)+ Ba(a, K) + B1 + B
= KY aiNp o <0 = (mZ—=0)> gna+ Bs(a,K)+ Ba(a, K)
f n,d
and our result is proved. m. +B; + B.

] ] ) ] By choosingm sufficiently small, we can assure thatZ —
Analysis of the Discrete-time SystemWhen convenient, §) < —e for somee > 0. As in Proposition 1, the stability of

we will omit the time index] unless there is ambiguity. Con-ina network follows. u
sider the drift of the Lyapunov functioh(q) = 53, 442 4-
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