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Abstract—In an unreliable packet network setting, we study
the performance gains of optimal transmission strategies in the
presence and absence of coding capability at the transmitter,
where performance is measured in delay and throughput. Al-
though our results apply to a large class of coding strategies
including Maximum Distance Separable (MDS) and Digital
Fountain codes, we use random network codes in our discussions
because these codes have a greater applicability for complex
network topologies. To that end, after introducing a key setting
in which performance analysis and comparison can be carried
out, we provide closed form as well as asymptotic expressions
for the delay performance with and without network coding. We
show that the network coding capability can lead to arbitrarily
better delay performance as the system parameters scale when
compared to traditional transmission strategies without coding.
We further develop a joint scheduling and random access scheme
to extend our results to general wireless network topologies.

Index Terms— Broadcast, Delay Analysis, Erasure Channel,
MDS codes, Network Coding.

I. INTRODUCTION

There has been a growing interest in developing new
transmission strategies for efficient use of scarce resources
in wireless networks. This is mainly motivated by emerging
bandwidth intensive applications such as downloading video
or music files, which involves transmission of files to multiple
(potentially heterogeneous) receivers. While the standard ap-
proach to data transmission builds on the scheduling approach,
where information is transmitted to one of multiple receivers as
a function of their channel conditions, it has been recognized
that broadcasting to multiple receivers using network coding
may improve performance in such settings. A fundamental
question is to understand and quantify the performance gains
obtained from network coding in wireless networks.

There has been considerable effort in revealing various gains
of network coding. For example, in recent works [3, 20], it has
been shown that network coding provides significant buffer
savings over traditional methods. Most of the existing research
to date has focused on throughput gains obtained from network
coding (c.f. [1, 12, 11, 13]). Although these throughput gains
may appear to imply gains in delay through Little’s law,
this is not clearly the case since coding is performed over
large blocks and each packet in the block must await the
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completion of the whole block before it can be decoded. To
capture these effects, one must study the system at the packet
level instead of using the flow-level formulation of delay (see
e.g. [24]). Despite considerable practical interest in the use of
network coding in wireless communication systems, gains in
delay performance resulting from network coding relative to
traditional scheduling have not been analyzed or quantified.

In this paper, we develop a model to study delay perfor-
mance of network coding and traditional scheduling strategies
in unreliable networks. To that end, we consider a scenario
where a sequence of incoming files to a transmitter are to
be communicated over the time-varying wireless medium to
a set of neighboring receivers. This model not only captures
the cellular and satellite downlink communications, but also
serves as a building block for the operation and analysis of
multi-hop wireless networks, as will be discussed in this paper.

We assume that files are broadcast to the receivers in a
rateless fashion, i.e., the subsequent transmissions do not start
before the whole of the current file is received by all the
interested receivers. Our goal is threefold. First, we identify
the optimal strategies under two transmission modes, namely
scheduling and network coding, and quantify and compare the
delay performance. Second, we use this model to investigate
the sensitivity of the delay gains of network coding to key
system parameters such as the number of receivers in the
system and the file size. Third, we show how these results
can be extended to more general network settings.

Our model involves transmission of (multiple) files from a
single transmitter to multiple receivers with varying channel
conditions. The varying channel conditions are modeled as
stochastic changes in ON/OFF state of the channel. We an-
alyze the model both when Channel Side Information (CSI)
about the state of receiver channels is available to the base
station and when transmission must be carried without such
information.

The first part of our analysis focuses on the key scenario of
transmitting a single flow, where a flow is a sequence of files
generated according to a random process, and destined to the
same set of receivers. We consider a dynamic traffic model, in
which the files associated with the flow arrive according to a
Poisson process. As a measure of performance, we first focus
on the mean value of the completion time, which is defined as
the time required to transmit all packets of the head-of-line file
to all the receivers. For this metric we establish the following
results: For the network coding mode, we show that the
random linear coding introduced by Ho et al.[8] is optimal, in
the sense of minimizing the mean completion time, both with



and without CSI. This is interesting because it provides simple
transmission strategy with no requirement of feedback, but still
achieve optimal performance. For the scheduling mode, the
presence of CSI affects the optimal strategy. While without
the CSI, the optimal scheduling policy is the Round Robin
(RR), the characterization of the optimal policy in the presence
of CSI necessitates a dynamic programming formulation,
which we provide in the paper. Since the computation of the
optimal policy using this formulation becomes intractable as
the size of the problem increases, we also present an efficient
heuristic policy which we use for numerical comparisons.
Our numerical analysis shows that network coding leads to a
significant improvement in mean completion time with respect
to scheduling both with and without CSI.

As a complementary measure of performance of the system,
we consider the mean value of the waiting time of an incoming
packet, which is defined as the average time between a typical
file’s arrival and the completion of its service. It known from
queueing literature that the mean waiting time is a function
of the first and second moments of the completion time. For
random linear coding, we provide closed-form expressions for
the first and second moments of the completion time. However
since these expressions are in terms of infinite-sums, they do
not enable us to do sensitivity analysis with respect to system
parameters. We therefore provide asymptotic approximations
to the first and second moments which highlight the explicit
dependence on key parameters. These asymptotic expressions
for the moments of mean service time with network coding
are new and should be of independent interest in the analysis
of coded-networks.

For the RR scheduler, we present bounds on the first and
second moments of the waiting time. These results allow us
to study asymptotic gains of network coding compared to
scheduling and establish a number of sensitivity results. In
particular, our analysis shows the delay and throughput gains
of network coding compared to scheduling as a function of
file size and the number of receivers. Our analysis proves that
in the dense network setting where the number of receivers
is large, achievable throughput of network coding relative to
scheduling scales linearly with the file size, while the mean
waiting time of scheduling relative to network coding for the
same load scales quadratically with the file size.

In the second part of our analysis, we focus on another
canonical scenario where multiple streams are downloaded
to a different set of receivers. For this scenario, we present
the optimal transmission strategies under both scheduling and
coding modes. We establish the following results: we show
that a variant of the Longest Connected Queue (LCQ) policy
introduced in [21] is the optimal network coding strategy;
we prove that coding across sessions (intersession network
coding) is not favorable for our system; we characterize the
optimal scheduling strategies both with and without CSI, and
observe significant gains from network coding when CSI is
not available. These findings are important in identifying the
optimal methods to be employed when multiple flows are to
be served by the transmitter.

Our paper differs from the existing work in this area by
explicitly modeling delay performance in file downloads and
allowing for transmission without CSI. Previous research has
instead focused on either optimal scheduling with time-varying
channel conditions (see [21, 22]), or on the capacity gains
from network coding (see [15, 9, 10, 18, 14, 23]) under
various different scenarios. This work builds on the findings
of [5], which provided the first quantification of delay gains of
network coding by using mean service time as the performance
metric. In a more recent independent work [6], Ghaderi et
al. provided an asymptotic formulation of the mean delay
gains by building on the work of Grabner et al. ([7]). In this
work, we extend these results by considering dynamic arrivals
and studying the mean waiting time to provide exact as well
as asymptotic expressions for the gains of network coding
and scheduling. In another independent work [16], Nguyen
et al. study the network coding performance in a single-hop
broadcast setting in the presence of acknowledgements from
the receivers.

The first part of our work is most closely related to [19],
where the authors study a multicast scenario with stochasti-
cally arriving packets and provide a transform-based analysis
of delay for arbitrary coding window sizes. This approach,
while providing explicit characterizations of the distributions
of the arrival and service processes, does not reveal the rela-
tionship between the delay performance and the critical system
parameters such as the number of users and the coding window
size. Yet, characterization of such a relationship is important
in understanding the impact of essential system parameters
on performance, and hence in providing valuable insights
for the design of efficient systems. In this paper, we exert
considerable effort and utilize completely different machinery
such as Mellin transforms to obtain an asymptotically accurate
formulation of delay with respect to the number of users,
channel statistics, and the coding window size. Also, different
from [19], we study the scenario of multiple unicast sessions
and discuss ways of extending the analysis to the multi-hop
network setting.

The rest of the paper is organized as follows: In Section II,
the system model is introduced along with the transmission
modes of interest and our goals. In Section 111, the key scenario
of a single flow destined to all the receivers is analyzed
in detail, where we characterize the optimal transmission
strategies, provide explicit as well as asymptotic expressions
for their performance, and show the significant gains of coding
with respect to scheduling. Section IV considers the case of
multiple unicast flows. A method to extend the results to more
general network settings is suggested in Section V. Finally, we
provide a summary and our concluding remarks in Section VI.

II. SYSTEM MODEL AND GOALS

In this section, we describe the single-hop setting of one
transmitter broadcasting to multiple receivers over indepen-
dently time-varying channels. This setting not only models the
characteristics of cellular or satellite systems, but also serves
as the fundamental building block for more general networks.



The connection to general topologies will be made explicit in
Section V.

a) Single-hop Setting: Consider a single transmitting
node and a set A of receiving nodes that are connected to it
over time-varying channels. We assume a time-slotted system
to which all the nodes are assumed to be synchronized. The
duration of each time slot is selected with respect to the
coherence time of the associated system so that channels stay
constant within each slot, and vary across time-slots.

A set F of flows generates a sequence of files to be multi-
cast to a subset of the receivers. Specifically, flow f € F is
demanded by the set Ny C A of receivers!. Files associated
with each flow arrive at (or are generated by) the transmitter
according to a stochastic process. Each file associated with
a flow f is composed of Ky packets, each of which is a
vector of length m over a finite field F;. We assume that the
duration of a time-slot can accommodate a single packet. The
files of each flow are accumulated in a separate queue’ to be
transmitted in a First-In-First-Out (FIFO) manner. We assume
that transmission of a file starts only after the transmission of
the file prior to it in the queue is complete.

The channel between the transmitter and the i*" receiver is
a randomly varying ON/OFF channel. We let C;[t] € {0,1}
denote the state of user 7’s channel in slot t. We assume that
Receiver-i successfully receives the packet transmitted at slot
t if C;[t] = 1, and it cannot receive anything if C;[t] = 0.
We will take each C;[t] to be a Bernoulli random variable
with mean p; € (0,1) that are independent across time and
across receivers. The channels of different receivers can in
general be asymmetric, i.e., p; may be different for different
i €{1,---, N}. However, in parts of the subsequent analysis
we will restrict our attention to the symmetric case of p; = p
for all 7 in order to have tractable formulations. The system
model is depicted in Figure 1.
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Fig. 1. System model

b) Availability of Channel Side Information (CSI): We
distinguish between two cases regarding the availability of
CSI at the transmitter. We say that CSI is available when
the vector® of channel states C[t] = (Cy[t],---,Cn[t]) is
known by the transmitter at the beginning of slot ¢ so that

IWe will use F, N and N ¢ to denote the cardinalities of the sets F N
and Ny, respectively.

>This queue need not be a physically separate buffer, but a virtual one
where files of different flows are accounted for separately.

3We will consistently use boldface letters to denote vectors.

transmissions can be decided with the perfect knowledge of
which receivers will get them. Such an assumption requires
extra overhead for estimation and feedback operations, and
may be impractical especially when the number of receivers is
large or the channel variations are too fast to accommodate the
feedback delay. We study this scenario under the assumptions
of perfect and instantaneous feedback with negligible overhead
as a limiting idealistic case. The outcome of this study will
allow us to identify the strengths of weaknesses of different
strategies even when CSI is available.

The scenario of NO-CSI refers to the case when no channel
quality information is available to the transmitter at the outset
of transmission. Thus, the decision as to what to transmit must
be made blindly. In this extreme, we assume that feedback
is very costly, and hence must be minimized. This is a
reasonable assumption when the number of receivers is large.
Thus, instead of intermediate scenarios such as ARQ-type
schemes, we focus on the case where the receivers send
acknowledgement (ACK) packets only when they receive the
whole file. Thus, we assume a file-based ACK scheme, rather
than the significantly more costly packet-based ACK scheme.

c) Transmission Strategies: The strategy employed by
the transmitter to broadcast the head-of-the-line file to the
receivers has a critical effect on the service time distribution
of the file completion. We focus on two modes of transmission
in this paper, namely scheduling and coding. Before we define
these two modes, we introduce some notation. Since the files
are transmitted in a FIFO order, we can focus on the head-of-
line (HOL) file of flow f, which is composed of K¢ packets.
Then, Packet-k of the HOL file of flow f is referred to as
Py, which is a vector of length m over a finite field Fg.
Finally, let P[¢] denote the packet chosen for transmission in
slot t.

Definition 1 (Scheduling). Scheduling refers to the mode of
transmission where in any given slot, the transmitter must pick
a single packet from the HOL file to transmit. Specifically, we
have Pt] € {Psi|f € F, k=1,---  Ks}.

Definition 2 ((Network) Coding). (Network) Coding refers
to the mode of transmission where in every slot, say t, any linear
combination of the packets belonging to the HOL file can be
transmitted. Specifically, we have

Pl = 33 asulPrs. (1

fEF k=1

where af [t] € Fq foreach f € Fandk € {1,--- ,Ky}. The
transmitter chooses the coefficients {a ;,[t]} for eacht.
d) Goals: For the above model, we are interested in
o identifying the optimal transmission strategies under
scheduling and coding transmission modes, and under
the assumption of CSI and NO-CSI, where the optimal
strategy is the one which minimizes the mean service
time;
o providing an analytical expression of the mean waiting
time (including queueing delay and service time) for



the incoming packets under the optimal transmission
schemes;

o understanding the asymptotic effect of the number of
users and the file sizes on the mean waiting time;

« providing methods for extending the single-hop setting to
multiple-hop networks with general topologies.

We will address each of these goals in the subsequent analysis.

III. BROADCASTING A SINGLE FLOW

In this section, we focus on the key scenario of the transmit-
ter broadcasting the incoming files of a single flow to all the
receivers, i.e., we set F' = 1, and Ny = N in our model. This
scenario allows us to isolate the delay analysis from issues of
scheduling transmissions across flows, and allows for tractable
analysis. Since there is only one flow in the system, we will
drop the subscript f in our notation throughout this section,
and denote Packet-k of the HOL file of the flow as Py, and
the size of the file as K.

We assume that files of the flow arrive according to a
Poisson process* of rate A. The Poisson assumption allows
us to view the whole system as an M/G/1 queue, where
the service time distribution is a function of the transmission
strategy being employed at the transmitter. Let Z(N, K)
denote the time required to transmit all the packets of the HOL
file to all the receivers under a given transmission strategy, and
(N, K) parameters. We refer to Z(N, K) as the completion
(or service) time of a file download. The mean waiting time
W(X\ N, K) of an incoming file is given by the Pollaczek-
Khinchin formula ([2]):

AE[Z(N, K)?]
2(1— AE[Z(N,K)])’

It is seen from (2) that the mean waiting time is a function
of the first and second moments of the HOL file completion
time. In Section III-A, we identify the optimal transmission
strategies under the scheduling and coding modes of opera-
tion, where optimality is in terms of minimizing the mean
completion time. Then, in Section III-B, we provide closed
form as well as asymptotic expressions for the first and second
moments of the completion time under the identified optimal
strategies. Numerical as well as asymptotic performance com-
parison of the two transmission strategies will be provided in
Section III-C. This investigation will reveal the delay gains of
network coding with respect to traditional scheduling strategies
in unreliable wireless systems.

W N,K) =

2

A. Optimal Transmission Strategies

The aim of this section is to identify those coding and
scheduling strategies that lead to minimum mean completion
time of the HOL file, both in the presence and lack of CSI.
It can be seen by looking at (2) that the mean service time of
a policy is the key factor in determining the maximum arrival
rate A that the policy can support with a finite delay. This is
our motivation for focusing on minimizing this performance

“4For other arrival processes, various bounds such as Kingman’s bound can
be used to characterize the system delay.

criterion. Next, we focus on the coding and scheduling cases
separately.

1) Optimal Coding Strategy with and without CSI: There
are various coding strategies that can be used in our setting.
These include Maximum Distance Separable (MDS) Codes,
Fountain Codes, Random Network Coding, etc. MDS codes
are carefully designed codes with the property that the recep-
tion of a certain number of its transmitted packets (also called
symbols) is sufficient for decoding the file (also called the
message). Also, Fountain Codes encode each file into packets
(according to various randomized rules) such that the reception
of any fixed fraction suffices (with high probability) for decod-
ing the message. In a similar spirit, Random Network Coding
is a strategy where packets for transmission are generated from
the original file by randomly selecting the coefficients in (1).
Although we focus on the case of random network coding in
our subsequent discussions, our results in this section apply
to MDS and Fountain codes since they possess approximately
the same service time distribution characteristics (with higher
precision as the field size increases).

It has been shown in the literature that linear coding is
sufficient to achieve the maximum achievable rate for a single
multicast session in wireline networks with general topolo-
gies [12]. Noticing that the broadcast scenario is a special
instance of a multicast transmission, we focus on linear coding

strategies where the transmitted packet in slot ¢ is given by
K

Plt] = Z ay[t|Pk, with ay[t] € Fq foreach k € {1,--- , K}.
k=1

Proposition 1. Assume the transmission of a file with K pack-
ets to N receivers over Bernoulli distributed channels. Then,
the following randomized strategy is asymptotically optimal
as the field size d tends to infinity in the sense that the mean
completion time of the file is minimized over all other policies.
The transmitter performs the following operation for the HOL
file

RANDOMIZED BROADCAST CODING (RBC):
While (File is incomplete)
Pick ay[t] uniformly at random from F for each k;
Transmit P[t] = Y"1, ax[t]Py;
t—t+1;

Each receiver keeps the incoming packets that it could receive
and then decodes all the packets {P}.} (r—1,... x} as soon as K
linearly independent combinations of the packets are collected
(c.f. [8] and references therein). Finally, each receiver that
successfully recovers the HOL file sends an acknowledgement
to the transmitter.

Proof: The expected number of slots before K linearly
independent combinations can be collected with Randomized
Broadcast Coding (RBC) is given by Zszl[l — (1/d)*)~L.
Here, [1 — (1/d)¥]~1 gives the expected number of random
coefficients (ay)r to be selected by the RBC policy before
a vector (i.e. a packet) that is linearly independent from
previously transmitted (k£ — 1) linearly independent vectors
can be generated. This expression can be upper-bounded by
Kd/(d—1), which in turn can be made close to K even with



reasonably low values of d. Thus, for a large enough field size
d, it is sufficient for each receiver to be active approximately
K slots before it can decode the whole file. Notice that it
is impossible to send the file with less than K transmissions
since at most one packet can be successfully transmitted in
one transmission, and so RBC asymptotically (in d) achieves
the best possible performance over all strategies. |

Another important issue is the overhead related with this
mode of transmission. Coding requires [K log,d| bits of
overhead to contain the coefficients of the associated linear
combination, whereas the packet size is [m log, d] bits. Thus,
for m >> K, the overhead is negligible. Henceforth, we will
consider this scenario, and ignore the overhead.

Notice that RBC is not only easy to implement, but also
requires no knowledge of the channel state vector, and asymp-
totically achieves the minimum mean completion time over
all policies. We will see in Section III-A.2 that the optimal
scheduling policy is much more difficult to characterize, even
for symmetric channel conditions.

2) Scheduling Mode: In this mode, unlike in the coding
mode, the presence or lack of CSI affects the performance.
Hence, these two cases will be studied separately.

a) Scheduling with CSI: Before we characterize the
optimal scheduling rule with CSI, we demonstrate the subop-
timality of scheduling compared to coding with the following
key example.

Example 1: Consider the case of K = 3 and N = 3,
i.e. three packets are to be broadcast to three receivers.
Consider the channel realizations C[1] = (0,1,1),C[2] =
(1,0,1),CJ[3] = (1,1,0), and C[4] = (1,1,1). Thus, in the
first four slots, each receiver can hear the transmission three
times. The optimal scheduling rule would transmit P, Po, P3
in the first three slots, leaving Receiver-i in demand for Packet-
7 in the fourth slot. Clearly, no scheduling rule can ever com-
plete the file download at all three receivers in the fourth slot.
With coding, on the other hand, the following transmissions
will complete the transmissions: (P; +Ps), (P2+P3), (P1+
P3), (P + Ps + P3) (see Table I). It is not difficult to see
that coding will never require more slots than is necessary for
scheduling for all other realizations. Hence, we achieve strictly

better completion times with coding. o
| t=1 | t=2 | t=3 | t=4
Ry - P3|(P2+P3) | P3[(P1+P3) | ?|(P1+P2+P3)

Ro Pq|(P1+P3) — P3|(P1+P3) | ?[(P1+P2+P3)

about the history of receptions of each receiver. For this
purpose, we define M, ;[t] to be the memory bit associated
with Packet-k and Receiver-i. In particular, M; x[t] = 1 (or
0) implies that Receiver-i has not received (or has received)

Packet-k in the slots 1,--- ,t — 1. Moreover, we will use M][t]
to denote the matrix of memory bits [Mlk[t]]f;l ]f,{ . The

details of the dynamic programming formulation to find the
optimal scheduling rule is moved to Appendix A.

Although DP yields a formulation to find the optimal policy,
for large values of N and K the necessary number of opera-
tions required to find the optimal strategy gets exponentially
large and quickly becomes impossible to handle. Thus, we
propose an efficient heuristic policy below and simulate its
performance for comparison.

HEURISTIC POLICY: We have observed in the above dis-
cussions that the optimal scheduling rule has a complicated
structure. Yet, it is possible to find practical scheduling algo-
rithms that performs close to the optimal. Here, we describe a
heuristic policy that achieves near optimal performance based
on numerical comparisons.

At any given time slot ¢, let us denote the set of nodes with
an ON channel (also called the set of active receivers) by
Alt] £ {i € {1,--- | N} : C;[t] = 1}. Under the symmetric
conditions that we assumed, the packet that would provide the
most benefit should intuitively be transmitted over the channel.
We propose that the benefit of a packet be measured in the
number of nodes in A[¢] that has not yet received that packet.
The underlying idea is to transfer the maximum number of
useful packets over the channel at any given time. These
remarks point to the heuristic algorithm given next.

HEURISTIC BROADCAST SCHEDULING (HBS):

I (t=1)
M, [t] — 1forall k€ {1,--- ,K},ie{l,--- ,N};
K N
While (Z > Mikt] > 0>
k=1 i=1
K[t 2 {ke{l, -, K}:3ie Alt] with My [t] = 1};
It (KC[t] # 0)
T[t] £ argmax M, i [t];
kEXT] e A
Pick a k* € argmin Z M; [t];
RETI 44y

Mi,k* [t] «— 0 forall 7 € .A[t],
Transmit Packet-k* over the channel at slot ¢;
t—t+1;

R3 P1|(P1+P2) | P2|(P2+P3) - ?|(P1+P2+P3)

TABLE |. Demonstration of Example 1: R; corresponds to Receiver-i,
‘—" denotes OFF channel states, and the entry a|b gives the optimal
transmissions with scheduling|coding, respectively. With scheduling, no
choice of {P;} in slot 4 can complete the file at all the receivers for the
given channel realization.

OPTIMAL SCHEDULING RULE WITH CSI: We use Dy-
namic Programming (DP) to find the characterization of the
optimal scheduling policy. Given CJt], the scheduler can
choose any one of the packets {P1, -+ , Py} for transmission.
A little thought reveals the need for memory at the transmitter

In the algorithm, each packet in KC[¢] has at least one receiver
with an ON channel in slot ¢ which demands that packet.
Clearly, those packets that are not in XC[¢] should not be chosen
for transmission. If XC[t] # 0, then we define 7 [t] to be the set
of packets in /C[¢] that yield the most benefit, i.e. those packet
that are requested by the most number of ON receivers, in slot
t. Then, we have a second-level selection from 7 [t] whereby
a packet within 7 [¢] that is previously received by the most
number of OFF receivers is picked for transmission in slot ¢.
This second-level selection is included to reduce the chances of
retransmitting the packet later on for a receiver that is currently




disconnected.

We note that our HBS policy is optimal for N = 2 under
general channel conditions. This follows from the fact that in
this case every time a receiver is ON, it will receive a useful
packet under our HBS policy until all its packets are complete.
However, this is not necessarily true for larger V. Alternatively
to the second-level selection strategy in HBS, the packet may
be selected randomly or according to some other rule from
T[t]. Tt is true that under symmetric channel conditions the
second-level selection strategy used in our HBS policy will
yield a mean service time that is minimal within the class of
all selection strategies that serves a packet from 7 [¢], but this
is not necessarily true under asymmetric channel conditions.
The identification of the optimal selection strategy for general
K, N under asymmetric channel conditions is complicated and
requires increasing memory to operate. On the other hand, the
complexity of HBS at each iteration of the loop is O(K N)
and requires no extra memory, and hence it is relatively easy
to implement.

b) Scheduling without CSI: In view of the assumptions
that the transmitter receives feedback from each receiver only
at the completion of the whole file and that the channels are
symmetric, we can see that all packets in the HOL file have
equal priorities. Therefore, we have the following result.

Proposition 2. Assuming NO-CSI and independent and iden-
tically distributed (i.i.d.) channels across time-slots and users,
the optimal scheduling policy is Round Robin (RR), where
Packet-k is transmitted in time-slots (mK + k) for m =
0,1, until all the receivers get the file.

Proof: This follows from the perfectly symmetric con-
ditions assumed under this scenario. |

B. Service Time Distributions

The goal of this section is to provide analytical and asymp-
totic performance expressions for mean waiting time under the
optimal coding and scheduling transmission strategies identi-
fied in Section III-A. The exact analytical expressions provided
here are in terms of infinite sums, and therefore do not yield
much insight about the impact of system parameters on the
performance. Here, we also derive asymptotic expressions
to provide a sensitivity analysis with respect to key system
parameters. We focus on the more realistic scenario of NO-CSI
throughout this section. Our arguments are based on deriving
expressions for the first and second moments of the completion
time under coding and scheduling, and then using them in (2)
to get the mean waiting time performances.

1) Performance Analysis of RBC: Let us define the random
variable Y;FBC as the number of slots before Receiver-
i’s channel is ON K times, for ¢ = 1,---, N. Then, the
completion time under RBC for a given N and K, denoted
by ZR#BC(N, K), satisfies

ZBBC(N K) = max YRPC (3)

ie{1, N}

which is the maximum of N Pascal variables of order K.
We will use mPBC and mLBC denote the first and second

moments of Z7BC(N, K), respectively. Through algebraic
manipulations, we can derive closed-form expressions for
these moments. As an example, the first moment is given by

T—1 (r—-K) K

where ( ) gives the number of size m combinations of n
m

e K4 Y
t=K

(s

i=1 \7=K

elements, and g; £ (1—p;). Similarly, a combinatorial expres-

sion can be given for the second moment. For simplicity of
exposition, we provide the second moment for the symmetric

channel conditions:
N
> q(T— K)pK>
=K

_ (2 ( ) q(r—mpK) i

Although the exact expressions provided above can be used
for numerical comparison, the expressions can be simplified
by focusing on the asymptotic regime for the symmetric case.
Such an asymptotic study has the added advantage of revealing
the gains of coding versus scheduling as a function of relevant
system parameters. The asymptotic formulations are especially
useful to understand the gains in dense networks, where an
increasing number of transceivers are used within a fixed
geographic area.

RBC
My K—1

- ol

The next proposition, proved in [7], will be used in our
subsequent analysis. It provides an expression for an infinite
sum that is directly related to m*2¢ as will be noted in
Proposition 4.

Proposition 3 ([7]). Let g(r) = [r® and let 1q(-) be a short-
hand for logi (-), then

> (1= =g(reHN)

r>0

1
— IqN +alqlqN +1g8+ = — —1
2 loggq

+h(lgN +alqlg N +1q3) + o(1),

where 7y is the Euler-Mascheroni constant (approximately equal
to 0.5772), and h(-) is a periodic C'*°-function of period 1
and mean value 0, whose Fourier coefficients are h(k) =

1 2ikm
logqF(logq),fork€Z+. |
The next proposition provides asymptotic expressions for

miBC and mEBY under symmetric conditions as a function
of N and K.

Proposition 4. Assume symmetric channel conditions, i.e.,
p; = p foralli € {1,---,N}, and let 1q(-) be a shorthand



for logi(-). Then, we have

1 v
RBC
= IlqT+4+ - — — 4+ h(lqT 1
my af+3 logq+ (aT) +o(1),
2
mé%BC _ 1q2T+1qT(1+2fy+291(1qT))+§

_17 _(72+(;T2/6))+O((K—1)lqqu)
0gq log™q
+h(1qT) + g2(1qT) + o(1),

K—1
where T = N % %, and h(-) is the periodic
function of Proposition 3, and g1 (-), and g2(-) are two periodic
C®°-functions of period 1 and mean 0.
Proof: The proof is moved to Appendix B. |
Proposition 4 yields asymptotic formulations for the first
and second moments of the maximum statistics of N Pascal
distributed random variables of order K, and may, therefore,
be of independent interest. Noting that we are primarily
interested in understanding their effect on the mean waiting
time, we next remark on the dominant terms. To that end, we
study the dense network setting by fixing the file size K to a
constant value and focusing on the asymptotic behavior as NV
increases. In this case, T behaves as lq N(1 + o(1/1g N)) =~
lq N for large N. When this value is substituted in m{'#< of
Proposition 4, we can see that

mPPC ~1qgN, and  miBC¢ x1q® N.

This is an interesting result when we note that mitP¢ >

(m{%BC)2, due to Jensen’s inequality. Thus, RBC asymptot-
ically achieves the minimum possible second moment for the
given first moment. Since we already know that m*5¢ is the
minimum achievable mean service time (cf. Proposition 1),
this allows us to make the following statement about the mean
waiting times.

Corollary 1. For symmetric channel conditions and fixed K,
RBC policy is asymptotically optimal in N for minimizing the
mean waiting time (cf. (2)).

2) Performance Analysis of RR: To compute the moments
of the RR scheduler, we define X}i to be the number of
transmissions of Py, before it is received by Receiver-i. Then,

Y& max {K(X,-1)+k}

kefl,--,
gives the time slot when Receiver-i receives the whole file.

Finally, ZFE(N, K) £ {qnaxN}Yi gives the completion

time of the RR scheduler. Similar to the RBC case, we use
mi and mE* to denote the first and second moments of
ZRE(N, K), respectively. The next proposition provides tight
bounds on Mm%,

Proposition 5. Under symmetric channel conditions (i.e. p; =
p € [0,1] for all i), we have

o0
mith

Ty 3 - (=),

t=0

for some v € (—1/2,0]. In the computation, we employ the
convention that 0° = 1, which may arise whenp = 1.

Moreover, the asymptotic performance of the moments of the
RR scheduler with respect to N for fixed K satisfies

K

5+ Klq(KN) < mi® < K4 Klq(KN),
mif > (K/2+ Klq(KN))%

Proof: The proof is moved Appendix C. |

C. Performance Comparison

In this section, we aim to demonstrate the coding gains on
the mean waiting time for moderate and asymptotic values of
N. To that end, we first provide numerical computations and
simulations to compare the performance of various schemes
we have discussed so far for moderate values of N and K.
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Fig. 2. Mean service time performance for K = 30, and p = 1/2.

A comparison of the first moments of RBC, RR and HBS
is illustrated in Figure 2 as a function of N, with K = 30,
and each channel is ON or OFF equiprobably at every time
slot. The figure demonstrates the strength of the coding policy
to the scheduling policy with and without CSI. We further
observe that as /V increases the advantage of using coding
improves.

Figure 3 demonstrates the mean service time behavior of
each scheme as the file size increases for a fixed number
of receivers, N = 40. It can be seen that the mean service
time increases approximately linearly in each scheme, and the
gains of coding with respect to other schemes increases as K
increases.

Figure 4 illustrates the waiting time performance of RBC
versus RR for K = 30. It can be observed that the mean
completion time gains are carried over to the mean waiting
time performances. Notice that these huge gains are especially
important to serve real-time traffic such as voice in unreliable
networks.
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Next, we provide the asymptotic gains of network coding
compared to scheduling. We start by noting that for a fixed
K, mFBC = 1qN(1 + o(1/1qN)) and m&B¢ =1q> N(1 +
0(1/1q* N)), whereas m?? = K1qN(1 + o(1/1qN)) and
mit > K? 1q® N. Substituting these in (2) yields

RBC M2 N 1
W 21— MqN)’ AN
RR AK212 N 1
W) SA—AKqN) S KN

We see that the maximum supportable arrival rate A\ of RBC is
K times that of RR. Moreover, when the system load is fixed
to p € (0,1) fraction of the available capacity, i.e., A\?BC =

p/lqN and \* = p/(K 1q N), then we have’

—RR
—RBC W (ARR
W (Al%B(j) }§2 ).

In this section, we have seen that either with or without
CSI, coding provides a considerable gain in the mean delay to
download a given file to multiple receivers over a time-varying
medium. Moreover, its operation is significantly easier than the
scheduling policy. However, it requires an additional decoding
operation at the receivers, which may or may not be critical
depending on the file sizes and the computational capacity of
the receivers.

IV. SERVING MULTIPLE UNICAST SESSIONS

In this section, we consider the scenario where N receivers
with symmetric channel conditions demand unique flows, i.e.
F = N, and Ny = 1 for all f € F. In this case, it is
not clear whether coding will have the dominating behavior
as it did in the broadcast scenario. Again, the availability of
CSI is important. In Section IV-A, we will study some of
the properties of the optimal scheduling and coding strategies.
Then, in Section IV-B, we will demonstrate the performance
comparison through numerical computations.

A. Optimal Transmission Strategies

We will first study the scheduling case and then move on
to the coding case.

1) Scheduling for Multiple Unicasts: We again consider the
case of CSI and no CSIL.

a) Scheduling without CSI:: Without CSI, the obvious
optimal scheduling is again Round Robin, except that it must
be performed across files and across packets in each file. In
particular, in the first round the first packet of each file is
transmitted one after another, and in the next round the second
packets are transmitted consecutively. When the end of a file
is reached, we move to the first packet and continue until all
the packets of a file is received by its receiver. Only then we
remove that file from the RR scheduler and continue with the
remaining ones.

In this scenario, we define the completion time as the
amount of time required for all the HOL files to be completed
at the interested receivers. As before, we assume that only
after all the HOL files are transmitted, are the transmission
of the next batch of HOL files are starts. This model can be
extended to give different weights to different flows, and hence
achieve different fairness distributions. The mean completion
time performance of the above RR scheduling rule is easy
to compute using recursive arguments, which is omitted here
since it does not add any significant insights to our analysis.

SWe note that the waiting time is measured per file, which consists of K
packets.



b) Scheduling with CSI:: Here, the constraint is to serve
at most one receiver at every time slot. This problem is a
special case of a problem studied by Tassiulas and Ephremides
in [21] with no arrivals to the system. The following policy is
introduced in [21].

LONGEST CONNECTED QUEUE (LCQ):

t«— 0;
Q; — K, forallie {1,--- ,N};
Do

t—t+1;

i*[t] — argmax{C;[t]Q:};

1<i<N
if(Cis [t] # 0)
Transmit P+ . ;
Qi+ — maz(0,Qix — 1);

N
While { Y Q. >0|;
=1
Return t;

/I Completion time

In the policy, @; is used both as a pointer to the index of
the next packet to be transmitted to Receiver-i, and also as
the number of packets yet to be transmitted to Receiver-i.
Thus, LCQ is a myopic policy that favors the receiver with
the maximum number of packets to be received among all
connected receivers. We repeat the result of [21] for future
reference.

Proposition 6 ([21]). Under symmetric channel conditions
(i.e. p; = p for all 1), LCQ is minimizes the completion time
over all scheduling policies. In other words,

ZLCQ jst Zﬂ?

where TFC? denotes the completion time under the LCQ
policy and 7 is any other feasible scheduling policy®.

This result is very strong and implies that E[Z1CQ] <
E[Z™] for any feasible scheduling policy .

2) Coding for Multiple Unicasts: A deep understanding of
achievable rates for multiple unicast sessions in a network
is still an open problem. In general, it is not clear whether
network coding should be performed, and if it should what the
strategy must be. We will tackle this problem for the downlink
model at hand.

We define the set of coding classes that partitions F (or
equivalently \) into .J subsets. We use C; to denote the files
(or equivalently receivers) in Class-j. We set the restriction that
only those files within the same class will be linearly coded
with random coefficients as in RBC, while files of different
classes will not be mixed. Notice that for each class, say
Cj, this strategy effectively results in a single file of length
Kl 2 > ec, Ky that is demanded by b; £ |C;| distinct
receivers. Hence, the multiple unicasts problem is converted
into a special case of multiple multicasts with each multicast
having a disjoint set of receivers. Notice that the description
of the strategy is yet incomplete, because we must describe
how to “schedule” the transmissions of different classes. We
will investigate this question with and without CSIL

Gj st 18 a stochastic ordering as described in [21].

a) Coding without CSI: In this case, as in Section III-
A.1, we assume that each receiver informs the transmitter
when it can decode its own file, which in turn implies that it
can decode all the files within its class. The optimal policy is
again going to be of the form of Round Robin over the coding
classes. We will consider the case of b; = band K7 = K equal
for all j. If J denotes the total number of coding classes, then
only a combination from C; will be transmitted in slot (m.J+5)
for m = 0,1,--- until all the receivers get their files.

Notice that the analysis of the RR scheduler of Section III-
A.1 does not directly apply to this case, because here once all
the receivers of a class, say C;, decode their file, then that class
can be extracted from the round robin cycle. Nevertheless,
similar analysis based on recursive formulations can be used
for this setting. This analysis is omitted here due to space
constraints. We remark that without CSI the gain in grouping
subsets of users as described above is only due to the decreas-
ing size of the cycles as groups complete their receptions. If
the period of each cycle were kept constant at its starting value
of J throughout the operation, then grouping would have no
effect on the average delay performance, because in such a
scenario we would be comparing the expected number of slots
before K ON channels are observed to 1/b times the expected
number of slots before b/ ON channels are observed.

b) Coding with CSI: In the presence of CSI, we must
determine the optimal partitioning of the files {C;}, and also
find the optimal scheduling policy across these classes. The
following proposition finds the optimal policy using stochastic
coupling arguments.

Proposition 7. Under the symmetric channel conditions (i.e.
p; = p for alli € N), the mean delay minimizing partitioning
is obtained when b; = 1 for all j, and the optimal policy is to
implement LCQ.

Proof: Consider any given partitioning of the files, say
P = {C, }'j]:l, and let mp denote the optimal policy for this
partitioning, which is not known in general. Also, let T™7
be the random variable that denotes the completion time of
all the files under the policy mp. In other words, 777 is the
first slot when each receiver in Class-j received K7 linear
combinations of the packets from within their class, for all j.
We use w = (C[1], C[2],---) to denote a sample path of the
channel state process. Notice that the policy and w determines
T (w).

Next, we will define a new policy 7 and show that it satisfies
T™(w) < T™ (w) for all feasible w. For a given w, if mp
serves Class-j in slot ¢, then 7 will send only the head-of-
line packet of one of the connected receivers in the same
class which received the minimum service so far. In other
words, amongst the connected receivers in Class-j, only the
receiver that has the maximum number of remaining packets
is served. Notice that this policy does not do any coding, and
hence requires Receiver-f in Class-j to successfully receive
K packets of its file instead of K7 packets as in 7p.

To see that T™ (w) < T™ (w), observe that whenever Class-
7 is served under mp, at most one packet (or one degree of



freedom) can be received by each receiver in that class. Thus,
before all of its receivers can decode their own packet, Class-j
must be served at least K7 times. But, with # we can send a
single degree of freedom to one of the connected receivers in
Class-j whenever that class is served under mp. Since for each
f € Cj, only K¢ degrees of freedom are required for Receiver-
f with 7, all the receivers complete their reception when
Class-j is served K/ = > rec, Iy times. These arguments
prove that for any feasible sample paths the completion of the
new policy is not larger than that of 7p for any partition P.

To complete the proof, we need to show that 7X¢% < 77,
To that end, we note that 7 is actually a scheduling policy,
where at each slot a single packet is transmitted over the
channel. Thus, an application of Proposition 6 completes the
proof. |

B. Performance Comparison

In this section, we compare the typical performance of
various policies for reasonable parameters. We take b; = b for
all j and Ky = K forall f € F. Moreover, we let K = 30 and
N = F = 12 and study the mean completion time behavior
of the scheduling and coding strategies with and without CSI.
Regarding the channel connectivity statistics, we assume that
p; = 1/2 for all the channels. Figure 5 depicts the simulation
results of the policies discussed above for varying number
of classes. In the figure, we observe that the performance

Performance of different Schemes for K=30, N=12
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Fig. 5. Mean completion time of various strategies for p = 1/2.

of the LCQ scheduler serves as a lower bound as we have
proved in Proposition 7. Since the optimal coding policy is
not specified for an arbitrary b, in the simulation we use the
following heuristic policy: at each time slot among the classes
with the maximum number of connected receivers, the policy
serves the class with the maximum degrees of freedom yet to
be transmitted. This policy, when b = 1 is the same as the LCQ
policy. For this policy, we observe that the mean delay value
achieved decreases to half its value when b is decreased from

12 to 1. We also observe that in agreement with our arguments,
the performance of the coding without CSI improves as b
decreases, but this decrease is rather insignificant.

Without CSI, the performance of scheduling is significantly
worse than the coding solution. In this particular case, we
observe almost a threefold delay with scheduling as opposed
to coding. Given that the single-hop multiple unicasts scenario
does not improve the capacity of the channel, the presence of
such a considerable delay gain is particularly striking.

The fact that both with and without CSI the performance of
the coding strategy improves as b goes to one implies that for
unicast transmissions, it is best to code within files, but not
across them.

V. EXTENSION TO GENERAL TOPOLOGIES

So far we have considered single-hop wireless networks
in which packets are transmitted from the transmitter to
each receiver over a single hop without any intermediate
relaying mechanism. We next present a simple model to study
delay gains from coding in multi-hop wireless networks. We
achieve this by rearranging the general topology into a layered
topology, and then analyzing the layered topology as a chain
of single-hop networks. The following example demonstrates
our layering approach.

Example 2 (Decomposition of a Network into Layers):
Consider the multicast setting shown in Figure 6 consisting of
two sink nodes, a single source node and some intermediate
nodes. We decompose the network in layers such that a node

Source

Sink 1

Fig. 6. A multicast setting in a general network topology

belongs to Layer-: if the shortest path from the source to
it is ¢ hops. We can identify the layer in which each node
is to be placed by simply flooding the network or by using
sophisticated shortest path algorithms. The files generated at
the source are transmitted from one layer to the next subject
to interference constraints that will be discussed next. o

We assume that nodes belonging to the same layer are
scheduled to transmit at the same time, while nodes in different
layers transmit in orthogonal channels (e.g., disjoint frequency
bands or time slots). Therefore, only the transmission of nodes
belonging to the same layer interfere. The interference model
is assumed to be a collision channel for each receiver, i.e., a
receiver successfully receives a packet in a time slot if only
if it receives exactly one packet in that time slot. We assume



that there is no communication among nodes within the same
layer, i.e., we drop all links among nodes within the same
layer. Therefore, both node A and node B are placed in Layer
1 in Figure 6, and the link between A and B is dropped.

The next step is to analyze the layered network as a series of
single-hop networks. The source transmits the file to the first
layer, the first layer transmits the file to the second layer, and
so on, until the file reaches all the sink nodes. Sinks can be in
different layers, in which case the layer-to-layer transmission
will end when the file is received by the sink node in the
last layer. Note that packet transmission between two adjacent
layers is identical to the single-hop case described previously,
with two important differences; first, both the transmitting
layer and receiving layer may have more than one node (i.e.,
there can be multiple transmitters and multiple receivers), and
second, the presence of multiple transmitting nodes may lead
to collisions at the receivers. Therefore, before using results
from the single-hop case, we must extend the single-hop case
to to model multiples transmitters and multiple receivers. This
extension is described next.

A. Multiple-transmitter Multiple-receiver Systems

Consider a single layer with N, transmitters and N, re-
ceivers. Transmissions take place in regularly arranged time
slots with one packet per time slot. Assume for simplicity that
each receiver is linked to a randomly chosen subset of the
transmitters, and that the cardinality of the subset, denoted by
L, is the same for each receiver, i.e., all receivers are connected
to an equal number of transmitters. This is the symmetric
case. In the asymmetric case, each receiver is allowed to be
connected to a different number of transmitters. The channel
conditions on each link are identical to the channel conditions,
i.e., each channel is ON with probability p in each time slot
or OFF otherwise. Figure 7 illustrates the system topology for
Ny =3 and N,. = 4. Here, each receiver is connected to two
transmitters.

Receivers
(Nodes in Layer i+1)

Transmitters
(Nodes in Layer i)

Fig. 7. A multiple-transmitter multiple-receiver system with three trans-
mitters and four receivers

Initially, all transmitters have the same file consisting of
K packets. Our goal is to minimize the time taken for the
file to be transmitted to all the receivers, and to compare the
mean file transfer completion times for network coding and
scheduling in the presence of multiple transmitting nodes.

Since transmission is successful only if a receiver receives
one packet in a time slot, it does not make sense for each
transmitter to transmit in every time slot. In the absence of

communication among transmitters, a better strategy is for
transmitter .S; to attempt transmission with probability ¢; in
every time slot. For simplicity, we restrict our attention to the
symmetric case in which ¢; = ¢ for all transmitters. Since
the channel between S; and, say, receiver R; is ON with
probability p, the probability that R; successfully receives
a packet from S; is pc. Recalling that L transmitters are
connected each receiver, the number of packets a receiver
receives in one time-slot, X, is given by a binomial distribution
with parameters (L, pc). Hence, the probability that a given
receiver successfully receives a packet in a time slot is P(X =
1) = Lpc(l — pe)E~1. This expression is identical to the
probability of a successful capture in the Aloha system. It
is well-known that the optimal reception probability pC must
be 1/L, yielding a success probability of approximately 1/e.
Therefore, the number of packets a receiver receives in one
time slot is Bernoulli distributed with a success probability of
1/e. Thus, the results of Section III directly applies to find the
mean completion times for network coding and scheduling by
replacing p = 1/e and N = N,..

VI. CONCLUSIONS

In this work, we introduced a key setting where delay per-
formance of network coding can be investigated and compared
to the traditional method of scheduling. Under various scenar-
ios, we identified the optimal policies and derived analytical
expressions for the delay expressions. We provided explicit
characterization of the delay performance achieved by coding
and scheduling both for moderate and asymptotic values of
system parameters. Our findings reveal the significant delay
gains of coding in unreliable networks. Moreover, we pointed
to ways of extending our results to cover more general network
settings.

These fundamental findings have interesting implications on
the performance of the applications at the higher layer of the
network hierarchy. There are numerous problems of interest
based on the findings of this work. For example, how does the
delay gains revealed in this work reflect to a scenario where
users have delay constraints? Also, are there more efficient
ways of implementation in the general network scenario? What
is the tradeoff between delay performance and overhead? We
aim to address some of these problems in our future research.
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APPENDIX

A. Dynamic Programming Formulation of the Optimal
Scheduling Rule with CSI:

We let II denote the set of feasible stationary policies that
can be implemented by the transmitter. Each policy m &
IT defines a mapping from the pair (M[t], C[t]) to the set
{1,---, K} describing the packet to be sent at time ¢. Note
that the policy is stationary in the sense that it is only a
function of the matrix and channel conditions at the time. The



ii.d. nature of the arrivals and departures imply that this is
the optimal policy among all policies, including those that are
time dependent.

To characterize the optimal policy we let J™(M,C) =
[ [# slots to reach 6 with policy 7w | M[0] = M, C[0] = C]
where 6 denotes the zero matrix. Then, J*(M, C)

miﬂ JT(M,C) is the minimum completion time of the
TE

optimal algorithm if it starts from M and the first channel is
C. Also, 7 (M, C) £ argmin J™ (M, C) gives the optimal

mell

[I>=

policy.

Observe that once we solve J*(M, C) for all C, we can
compute J*(M) £ Ec[J*(M, C)], where the expectation
is over the channel realizations. Thus, J*(M) denotes the
mean completion time of the optimal algorithm starting from
M. Hence, we are interested in J*([1]yxx) Where [a]nxx
denotes the all @ matrix of dimensions NV X K.

Before we write the recursion for J*(M, C), let us define
the function f(-) where M = f(M, C, k) implies that

My = My — M, ,C; Vie{l,---,N},
Mi,j V’LG{I,,N},];Ak

Mi; =
This function describes the next state of the memory matrix
given that Packet-k is served and the channel matrix is C in
the current slot. Then, we can write the following recursion:

J*(M,C) = argmin {J*(f(M,C,k)) + Lze) }
ke{l, K}

where 174, is the indicator function of the event A.

The monotone nature of the f(-) function enables us to
compute J*(M, C) and 7*(M, C) recursively starting from
the base state J*(#) = 0 (c.f. [4]). This DP formulation
characterizes the optimal policy and its performance, and can
be computed starting from a 1 x 1 matrix and increasing N
and K successively.

B. Proof of Proposition 4:

We outline the proof of m{‘BC which is due to [7]. In the
sequel, let us use Z and Y; as shorthands for Z*2¢ (N, K) and
YEBC (N, C) for convenience. Also, we use F,(-) generically
to denote the cumulative distribution of the random variable
* in the subscript.

Since {Y;} are i.i.d. Pascal random variables of order K,
we have

K—-1
Fpm) =1 Fr(m) = 3 ()0t =g,
k=0
where
K—-1 m D k
oo = 2 (%) ()
k=0 q
mi-1 D K-1 .
woml) @
K-1
with § = (2)" ey, and @ = (K = 1). The last

approximation 1s accurate for m > K since the last term

of the sum dominates, and ( Z ) ~ ’}C—? for n > k. Then,

we can write

m{%BC = Z (1 - FmaziYi (m))
m>0
= > (- —gmgm").
m>0

Notice that the final expression is in the form of Proposition 3.
The proof is complete when we apply the result of Proposi-
tion 3 with g(m) = Sm® as defined above.

Next, we prove the expression for m&P¢. Note that

= E[2?
— Y- Fuk)

RBC
ma

>
vV
=)

I
™M

(1 - FmaxiYi(L\/%J))
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where |z] is the largest integer that is less than or equal to .
Note that following the arguments in (5), we can approximate
(4) by replacing g(m) with Sm® as argued above. In order to
simplify the |y/*] in (5), we make a change of variable, and
write

miPC = N (@r+1)(1-1-g(r)g)N). (©)
r>0
We split the sum in (6) into two as
miPC = B + 2E,, (7)
where

BEr 2 Y (1-(1—-g(r)g)Y),

r>0

> or(d=(1—gr)g")N)

r>0

Es

Notice that £y = mPBC, which is already studied above.

Next, we derive a similar expression for 5. To that end, we
define

Ey = > r(l—exp(-Nproq"))
r>0

E, = Y r(l—exp(-Tq"),
r>0

K—1 _
where T := NG1lq®* N =N (%) g U N Then, we can

(K=
write
E, = (Ey— Ez) + (Ez - Ez) +E2~ ()
h\f_/ h\r_/
A A



We first derive an asymptotic expression for E as a function
of T. We then show that A and A lead to negligible terms
(asymptotically in terms of N and K'), and E, dominates. Our
derivation for Eg is based on taking its Mellin Transform, and
then using Mellin inversion to find an explicit expression for its
asymptotic form (see for example [17]). The Mellin transform,
E3(s) of Ey(T) is given by

Ei(s) = / Eo(T)T*~1dT = T(s)— L,

0 (¢° —1)?

for R(s) € (—1,0), which uses the fact that
(o)
/ (1 —exp(=T))T* 1dT = —T(s), for R(s) € (—1,0).
0

Mellin inversion yields

1.,
2+1oo s

- 1

Ey(T) = —T(s)—L—T"1ds,

(¢®—1)°
Shifting the line of integration to the right gives the asymptotic
behavior of Ey(T) for T — oo:

A~ 10g2 q+ 610g2 T — 12y log(T) — 2 _ 6’)’2
B = 121log? ¢

+ D Res g (-D(8) =y

og q s 2
1eZ\{0} 1 (q 1)

1 M+i00 qs
— —T'(s)—L T34
tort [, TG T

for any M > 0. The remaining integral is O(7~™) for any
M > 0, and the sum of residues gives g1 (1q7T) lqT+g2(1qT)
with two periodic C'*°-functions of period 1 and mean value
0. Using these results together with our lq(-) notation, we can
re-write the expression for Fo(T') as
R 1T 1
E5(T) = qT +(+aaT))aT + 15
62 + w2
*% +92(1qT) + o(1). 9
12log” q
Next, we study A introduced in (8). We start by dividing the
sum into two parts, while replacing g(r) by its approximation
Gre, as follows:

2mi

1_ .
-3 200

A = Z 7 [exp(—NBreq") — (1 — Brog")™] (10)
r<lq N
+ Z r [exp(—NﬁraqT) -(1- 5r“qr)N](ll)
r>lq N

In the range when r < 1q N, we have ¢" > 1 /N . Therefore,
we get

(10)< > T[exp(—ﬁro‘)_( _ﬁ]:‘:)zv]

= §le :;(—ﬁr") [1 —exp (—57"“ (2} " °(le))>} ’

which follows from the fact that (1 — &)Y = exp(—z(1 +
7% +0(+))). Next, using the approximation (1 —e~¥) ~ y

for small y, which holds for large N, we can further simplify
the previous sum to

> o o) (5 +olyp)

r<lqN

. 1 1
< Bl H)N(M‘FO(N)),

which proves that as N tends to infinity, (10) tends to zero.

To find a bound on (11) we use the Taylor expansions for
e and (1 —z)" to obtain

e — (1 —2)N = O(Nz?).

Substituting x = Sr® in (11) yields

(11) = 0 Nﬂ2 Z T2a+1q2r
r>lq N
_ (IqN)™
_ o( .,

for some positive integer m that can be computed using the
poly-logarithmic function based on «. This shows that A is
negligible asymptotically as N — oo.

Next, we focus on A that was introduced in (8). We begin
by splitting the sum as

A = 3T eV (n NG ) (12
r<lqg N
+ Z re~ T4 (l—e_(NBTa_T)qT)7 (13)
r>lq N

where T = N31q% N. We study these sums separately. Note
that (12) < 0, since in this range r < lq N. Next, we focus
on (13): Calculus shows that the summand of (13) is positive
and increasing in the range where r € (1q N,lq N +alqlq V],
and is upper-bounded by «lqlq N/1q* N. Therefore we have
the summation in this region which we further split into two
as follows: for r € (I N,lq N 4+ alqlq N], we have

re—NBla” Nq’ (1 _ e NB(r—1g® N)qT)

2
<0 ((alqin) ) 7
- I N

lg N<r<lq N+alqlqg N

which tends to 0 as N tends to infinity. Next we focus on the
range when r > lq N + alqlq N. For notational convenience,



we let z := r — Iq N, and rewrite the sum in this range as

>

rz>alqlq N

(& +1q N)e 71" N

X (1 —_ e B((z+la N)*—lq” N)q‘”)}

< Y (@+laN) (1- e eanT e
z>alqlqg N
W > (x+1gN) 1an<(1+1mN)a—1>
z>alqlqg N q
b o = ™
28 Y @M Ny ( ;i)lqu
z>alqlq N m=1 q

g™ N >

z>alqlq N
lqlg N(1 +1g N)
Iq® N

2 ()
m=1

0] (alq(a_l)N

O(alqlgN)

where the approximation (a) is due to the fact that (1—e™Y) =~
y for small y; (b) follows from Binomial expansion; and (c)
S oamg=0 ( mlqqu)
lg* N )’
z>alqlq N
and the fact that the dominant term occurs when m = 1.
Combining this result with (9) and the finding that A is
negligible, and then substituting these into (6) yields the
expression for m{BC stated in the the proposition. ]

follows from the equality

C. Proof of Proposition 5:

The upper bound of 0 for v is due to the fact that k£ —
K <0 forall k € {1,---,K}. The lower bound of —1/2
follows from stochastic coupling arguments and heavily relies
on the symmetry of the channel distributions. In particular,
consider a sample path of the channel state process, w =
(C[1],CJ[2],- ). We use i(w) to denote the receiver that was
the last to complete the file, and k(w) to denote the index
number of the last packet that Receiver-i(w) received. With
our earlier notation, Y (w) gives the completion time of the
file at Receiver-i(w) under the given sample path. Also, notice
that we have Y (w) = (X;((Z)) (w) — 1)K + k, for some integer

X ,1((‘:)) that depends on w.
Next, for each sample path w that leads to k(w) €
{1,---,|K/2]}, we will construct another sample path &

that has the same probability of occurrence as w, but leads
to Y/(@) = (X,(*) (w) = 1)K + (K — k(w)). This implies that

Gy + K (E[max X};] — 1)

E[Y} 2 i,k

— KE[max X (14)

The -) follows the

(xm—&-l + lq Nxm>qx

following rule:

CilrK + (K = 1)], it r = X, (w),
Ci[rK +1) = J=iw),
i+ L€ (M), K — hw)),
Ci[rK +1], otherwise.

It can be seen that under symmetric conditions this sample
path has the properties listed above.

Next, we would like to find the second term in (14).
Due to i.i.d. assumptions, X,i are also 1.1.d. with distribution
P(X] =m)=q™ 'p, m =1,2,--- . Since this distribution
is independent of ¢ and k, we can compute

oo
Z P(max X, > t)
o ik

oo

ST (- -P(XE <tFY)

t=0
o0

S l-(-a)"].

t=0

E[max X;]

Z’

15)

The first part of the proof is complete once (15) is substituted
into (14).

To prove the asymptotic expressions, we note that X} is a
Pascal distributed random variable of order 1. Therefore the
derivation of mf*B¢ in Proposition 4 applies for computing
]E[m%x X}] with N replaced with KN, and K replaced with
iy RR BR >

1. To obtain m.
(mftm)*.

we simply use Jensen’s inequality: m.
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