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~ Abstract—We consider the problem of serving multicast flows Prabhakaret al. [9] studied the tradeoff between throughput
in a crossbar switch. We show that linear network coding across and complexity of two heuristic algorithms, under a fairness
packets of a flow can sustain traffic pattems that cannot be ,ngiraint. The hardness of the multicast scheduling problem

served if network coding were not allowed. Thus, network coding
leads to a larger rate region in a multicast crossbar switch. We was proved by Andrewst al. [10]. They also showed the

demonstrate a traffic pattern which requires a switch speedup hardness of the problem of integrating unicasts along with the
if Co_ding is “not a_IIowed, whereas, with c_qding the speedup multicasts.

requirement is eliminated completely. In addition to throughput Marsanet al. [11] gave a characterization of the rate region
benefits, coding simplifies the characterization of the rate region. achievable in a multicast switch with fanout splitt?’ngand

We give a graph-theoretic characterization of the rate region . . . . . .
with fanout spliting and intra-flow coding, in terms of the also defined the optimal scheduling policy. Interestingly, this

stable set polytope of the “enhanced conflict graph” of the Work proved that unlike in the unicast cad@(% throughput
traffic pattern. Such a formulation is not known in the case cannot be achieved for multicast flows in an input-queued
of fanout splitting without coding. We show that computing switch. In fact, the minimum speedup needed to achi®gs;

the offline schedule {.e. using prior knowledge of the flow ., ahnut grows unboundedly with the switch size.
arrival rates) can be reduced to certain graph coloring problems.

Finally, we propose online algorithms ¢.e. using only the current Our paper _S_tUd_ieS the same problem as [11], Wit_h the
queue occupancy information) for multicast scheduling based on following modification. The inputs are allowed to send linear
our graph-theoretic formulation. In particular, we show that a combinations of cells waiting in the queuese., they are

maximum weighted stable set algorithm stabilizes the queues for 5j|owed to perform linear network coding. We show that this
all rates within the rate region. modification enables a number of interesting and non-trivial

benefits as well as insight. The main contributions of this paper
I. INTRODUCTION are:

The input-queued crossbar switch has been studied We”,l) We prove that linear network Coding increases the
especially in the context of unicast traffic. It is known that achievable rate region of the switch.
100% throughput can be achieved [1], in the sense that asp) we provide a simple graph-theoretic characterization of
long as no input or output is over-subscribed, traffic can be  the rate region with coding, which in turn leads to more
supported without causing the queues to grow unboundedly. insight on the problem.
This is accomplished by the maximum weighted bipartite 3) Wwe provide offline and online algorithms to achieve this
matching algorithm, with queue lengths as weights. Several ate region while stabilizing the queues.

simplifications of this algorithm have also been investigated .
(2], [3]. [4]). If the arrival rates are known in advance (or Reference [12] gave one example to show the benefit of

. : . . network coding in a multicast switch, which we will revisit
if they are estimated in real time), we can use the cap

v d i h of the Birkhoff N 46" section 1I. The paper also gave an outer bound on the
'ty decomposition approach of the Birknoli-von Neumanp,. region with fanout splitting and intra-flow coding. In this

switch [5], [6]. Reference [7] contains a good summary Qf, o “we prove that this bound is indeed achievable.

the unicast switching literature. In the special case when fanout splitting is not allowed
The extension of the problem to multicast flows is intrinsi; P pitting

callv more difficult. Earlv aporoaches used the co stratelfor any flow, [13] showed that the rate region is the stable
y ) y app by o polytope of a suitably defined “conflict graph”. A similar

— make copies of the cellsn a separate stage before the ; " .
L . : ; raph-theoretic formulation was used by Caramastisal.
switching fabric, and then treat them like unicast flows [8[ . . .
. . ; [14] in the context of unicast traffic in Banyan networks.
However, this approach reduced the bandwidth available 1o .
_ X L eferences [13] and [15] showed that, if the flow rates are
other traffic in the switch. It became clear that tinrinsic . .
. - oo ) - known in advance, then a rate decomposition based approach
multicast capability of the switching fabric must be utilized. . g
can be used to compute the schedule, in a manner similar

Ipackets arriving at the switch are split into fixed-size units caflels
which are reassembled into packets at the output. SFanout splitting is the ability to serve partially, a multicast cell to only a
2The ability to transfer simultaneously, a cell to multiple outputs usingubset of its destined outputs, and complete the service in subsequent time-
simultaneous switching paths slots.



to the Birkhoff-von Neumann unicast switch [5]. They alsc

showed that such rate decomposition reduces to fractior L+ 2/3 5
weighted coloring of the conflict graph. In this paper, we |~ Al w13
extend these graph-theoretic connections and insights to 1 \\ /’ 1/3
case when fanout splitting and coding are both allowed. RN
Note that, for the case of fanout splitting without cod- N vs /
ing, [11] gave a characterization of the rate region as tt| - PN
convex hull of certain modified departure vectors. Howeve =~ \\ 1//3 1\/3
a graph-theoretic formulation of the same is not known. O B Y ‘2///3/ \2/3\,

the other hand, for the case with coding, our graph-theore!
formulation helps us understand the effect of the traffic pattern _ _ _ _
on the throughput. We transform any given traffic pattern ing g. 1. The example traffic pattern showing the benefit of network coding,

. . 3 ong with its enhanced conflict graph
a conflict graph, and the properties of this graph can be used

to derive insight on what kind of traffic patterns are “hard” in Time-Slot | Code | Outputs
terms of computing the schedule, and in terms of achieving 1 Py 12
100% throughput. z Plfgpg 23

The rest of the paper is organized as follows. Section Il
gives an example of a traffic pattern that cannot be achieved
with fanout splitting alone, but can be achieved when network
coding is allowed. Section Il introduces the concept of “en-
hanced conflict graph” and gives a graph-theoretic formulation

of the problem. It also states our main theorems on the raigq js sufficient. The network code involves coding at input
region and the computation of an offline schedule using a rate 5yer packets only from the multicast flow. Input 1 codes
decomposition based approach. Section IV uses these theorg(Rg piocks of 2 packets, and sends them over 3 time-slots.
to quant!fy the benefits due tc_) cod|r!g, in two_ situations — tr@onsider a block of two packefs”;, P} from the multicast
2x3 svy|tch, and the x N SWItCh,' with a traffic pattern that o,y Taple | gives the code and also specifies to which outputs
generalizes the example of Section Il. In the latter case, W&, coded packet is sent. Thesign indicates that the packets
prove that a speedup of around 1.5 is needed without codinge xORed bitwise and sent. It can be verified that this code

as opposed to no speedup if coding is allowed. Section dfaples each of the three destinations to decode both packets
addresses the problem of finding online algorithms for optimg the block. at the end of 3 time-slots.

scheduling of a multicast switch, when fanout splitting and g for the unicast flows, they are also served in these time-

coding are allowed. We propose a maximum weighted staligyis in parallel. Note that, input 1 talks to only 2 outputs at

set algorlthm and show thf_;lt it is 0pt|mal._F|naIIy, in Sectlo_n V'any given time (column 3 of the table). Thus, input 2 can send

we summarize the contributions of this paper, and disCugs)nicast packet to the third unoccupied output and a rate of

potential avenues for future work. is achieved for each of the unicasts. In other words, the given
code satisfies all the rate requirements of the example.

TABLE |
THE NETWORK CODE USED BY INPUTL

II. NETWORK CODING IMPROVESTHROUGHPUT— AN
EXAMPLE

Consider the traffic patterfi’ shown in Fig. 1. This is a
2 x 3 switch, with 4 flow$ — one multicast flow from input 1

IlIl. THE RATE REGION

In this section, we present our main theorem which uses a
: . raph-theoretic formulation to characterize the rate region with
to all 3 outputs, and 3 unicast flows from input 2 to outputs

. anout splitting and coding. We begin with some definitions
% and 3 respectively. The rates of the 4 flows are sc%t% :ilnd a note on the queuing assumptions in the switch.

1 1 i i i i
3 and 3 respectively (normalized with respect to the arriva Definition 1 Flow): A flow is a stream of packets that have
a common source and destination set. It is represented by a 2-

rates).
This traffic pattern cannot be achieved with fanout splittinqU le (4,.7) consisting of the input and a subsef of outputs
Y
rresponding to the destination set of the multicast stream.

To show this, we note that at all times in the schedule, o
oftthretuglci:r?stst'fro?] mgn:t I2inr1zlaivt? tie s_rer:v;adf, rsm(?ﬁ |tn|s ADefinition 2 Sub-flow): A sub-flow is a 3-tuple(i, J, 5)
saturated inpu ile. € lota ow is 1). nerefore, in a yconsisting of an input, a subset of outputg and one output
time-slot, one output is blocked and a multicast packet can, a{rom that seti.c. ic J
best, be sent to the other 2 outputs. This means, it will take’a #e I .
. A sub-flow (4, J, j) is said to belong to the flowi, J). A
least 2 slots to complete the service of each packet, and hence,.. .
. . : : mtlticast flow can be thought to consist of several sub-flows,
a rate of more thaé is not achievable. Since the required ratg
is 2, fanout splitting cannot achieve this traffic pattern. ; . .
3 ; o . gueumg assumptionsThe inputs are assumed to have a
However, it can be served if intra-flow network coding an buffer f fl he buff icted
fanout splitting are allowed. In fact, a code over the binarS eparate buffer for every flow. The bu ers are_not restn_ctg
' ' % be FIFO. In fact, we assume that, in any time-slot, it is
4The formal definition of a flow, and the switch assumptions are given ﬂOSSIbIe to compute a linear combination of all packets within

Section IIl. a buffer and send it out. However, there is no coding across

ach going to a different output.



contents of different buffers. The usual switch constraints areTheorem 1: The rate region with fanout splitting and intra-
assumed to hold — an input may not send different packetsfimw linear network coding, denotdd, is given by the set of
different outputs simultaneously, and an output may receie#l rate vectorsr such that, the enhanced rate vectdr) is
a packet from only one input at a time. For the case whémthe stable set polytope of the enhanced conflict graph.
coding is not allowed, we assume the multicast virtual output  Proof:
queue architecture with re-enqueuing, as described in [11]Achievability: Supposee(r) is in the stable set polytope
Since fanout splitting is allowed, sub-flows belonging to thef the enhanced conflict graph, then we can exprgas
same flow do not conflict with each other, in the sense that aag a convex combination of the incidence vectors of stable
subset of them may be served simultaneously. Owing to teets of the graph. Assuming the coefficients of the convex
switch constraints, an input cannot send different informati@mombination to be rational numbers, we can construct a
to different outputs at the same time. Moreover, we do nframe-based schedule by appropriate time-sharing among the
allow coding across packets of different flows. Hence, at aalfferent switch configurations represented by the stable sets.
point of time, sub-flows belonging to different flows may notn each time-slot, the stable set specifies which sub-flows are
be served together. Therefore, any sub-flow conflicts with suio- be served. Let the length of such a frameHe
flows of other flows at the same input. It also conflicts with This schedule has the property that every input is connected
sub-flows from other inputs, that are destined to its output every output for enough fraction of time, so as to satisfy
These conflicts are captured by the enhanced conflict graphthe demand of each sub-flow between them. More specifically,
Definition 3 Enhanced Conflict Grapl: Given a traffic consider one particular flow of ratery. Assumer is rational

pattern, the enhanced conflict gragh = (V,E) is an andF is large enough so that £ is integer and-F' packets
undirected graph defined as follows: are served in one frame. Then, the schedule guarantees that

Vertices The graph contains one vertex for every sub-flowuring the course of the frame, each output in the fanout of
of every flow. flow f receivesryF' transmissions from the input.

Edges Each sub-flo® is connected to all sub-flows belong- Thus, to prove achievability, we only need to ensure that
ing to other flows at the same input. In addition, each sub-flowpne of the transmission opportunities is wasted. In every
is also connected to all sub-flows that have the same outptitne-slot, each transmitted packet must be innovative to all

The above definition implies that the set of sub-flows th#ie outputs it reaches. It is possible that there is no single
are served simultaneously in any valid configuration of thgacket that will be innovative to all the connected outputs.
switch, must be a stable set in the enhanced conflict grapH-or instance, each of the outputs may have all but one packet

Definition 4 Enhanced Rate Vectdr Let r € Rf be the from a common set, and the missing packet may be different
rate vector of a traffic pattern that hgsflows. Suppose the for each output. This is where network coding is required. A
total number of sub-flows in the patterie| the sum of all coded packet can simultaneously satisfy all the outputs in such
the fanout sizes) is. The enhanced rate vectefr) ¢ R® a situation.

corresponding tar is defined as: We use a maximum distance separable (MDS) code [16] to
e 7.5 (r) =713 5, forall je prove the achievability. Lef” be the total number of slots in

We use the enhanced rate vector as weights for vertices of @i frame, in which flowf is served to any of its outputs.

enhanced conflict graph. Owing to fanout splitting,I" is in general more thanyF'. In

For example, Fig. 1 also shows the enhanced conflict graph 8¢ coding scheme we propose, the input usgs a, ) MDS

the traffic pattern on the left. Note that, the weight associaté@de and computes the codeword treating the' packets

with the sub-flows of a particular multicast flow are all equa¥s symbols of the information word. Then, at each of The

to the rate of that flow. transmission opportunities for floy, the input transmits a
Definition 5 (nnovative Packet A packet transmitted N€W symbol from the MDS codeword that it computed.

from an input to an output is said to benovativeif it conveys ~ The key property of an MDS code that we use here is that

previously unknown information to an output. For linea@n (7, k) MDS code can correct uptt — k) erasures, each

network coding, this means that the vector of coefficien® Which may occur in any position of the codeword. Hence,

used in the linear combination while computing the packeisSing any set of; codeword symbols one can retrieve all the

is linearly independent of coefficient vectors of all packet§formation. In our case, since each output in the fanouyt isf
received previously by the output. guaranteed to receive ' codeword symbols, it can retrieve
the entire transmitted information. (Note: The schedule and
) ) o ] ~ the code are computed offline, and are known to all inputs
A. The rate region with fanout splitting and intra-flow codingy,q outputs.)

By the term rate region, we mean the set of average arrivabnverse: The proof of the converse was given in [12], and
rate vectors for which there exists a schedule that serves theummarized here for completeness. L&k any achievable
flows without causing the queues to build up indefinitely withate vector. Lete(r) be the corresponding enhanced rate
time. vector. Sincer is achievable, there is a schedule of switch

configurations and associated codes for each time-slot in the
°The term "enhanced conflict graph” is used to distinguish it from the ter@oheqyle such that, every sub-flow receives innovative packets
“conflict graph” that was used in [13], for the case of no-fanout-splitting. . . . .

5In the rest of this definition, by sub-flow, we mean the vertex representirﬁBr enough fraction of time so as to meet its rate requirement.

this sub-flow. Based on this achieving schedule, form a 0-1 indicator vector



in each time-slot, with one entry for each sub-flow such tha&everal families of necessary conditions are known. One
this vector has a 1 for those sub-flows for which an innovativexample is the clique inequalities, which say that the total
packet is conveyed by the code in that time-slot. TRémis weight on the vertices of a maximal cliquenust not exceed
the time average of such indicator vectors over all the timé: In terms of the switch, we can show that the maximal
slots. But then, each indicator vector has to be the incidend@ues of the enhanced conflict graph correspond to flows
vector of some stable set of the enhanced conflict graph ceither from the same input or to the same output. Thus, the
to the switch constraints. Thus, any achievable enhanced reltque inequalities imply that no input nor any output may
vector can be expressed as a convex combination of stable bet®verloaded. This is also called thémissibility conditions
of the enhanced conflict graph, and this proves the conver$be polytope described by these conditions along with non-
B negativity constraints is called tr@missible region
Since we view the packets as elements of a finite field whilelt is known that the non-negativity and clique inequalities
computing the code, the field size required for the code issaffice in describing the polytope, if and only if, the graph is
parameter of interest. If the field is too large, then we mayerfect [19]. This leads to the following corollary.
need more than one packet to represent a single field elemenCorollary 1: For a given traffic pattern, the entire admis-
which makes the implementation more difficult. On the othesible region is achievable with fanout splitting and intra-flow
hand, in order to ensure that every transmission leads to larear network coding, if and only if the enhanced conflict
innovative packet being conveyed to all the recipients, we mugtph is perfect.
operate over a large enough field. The following discussionin a more general case, the admissible region is a strict
indicates that for reasonable assumptions on the switch s&erset of the rate region. This implies that it is not possible
and the packet size, the field size required will be such thata achieve 100% throughput even with fanout splitting and
field element will indeed fit within one packet. coding. The formulation presented here gives us insight on
The proof above uses an MDS code to show achievabilityhat kind of traffic patterns will lead to a reduced throughput.
In general, for ar(n, k) MDS code to exist, we need to work Note that, for the case with fanout splitting, but no network
over a large field size, comparablesto This means the field coding, Marsaret al. showed in [11] that 100% throughput
size could depend on the length of the schedule, which is rannot be achieved. However, in that case, the rate region is
desirable. However, using the results of [17] and [18], orie terms of the convex hull of all possible departure vectors,
can show that there exist other codes which are defined owdrich do not have a neat graph-theoretic characterization
a field as big as only the fanout size of the flows, while stilh general. Thus, allowing network coding leads to a more
ensuring that every transmission is useful to all recipients. insightful description of the rate region, and enables the use
Proposition 3.1: A field size equal to the fanout size isf graph-theoretic tools.
sufficient to ensure that every transmission is innovative to

all outputs, in the proof of Theorem 1. C. Rate decomposition approach to compute the schedule

c P.'(SOOf: we tuse l:he fr?nt]ﬁ not?tlon as |fn thz earl$rr] pr?of. In this subsection, we address the problem of the Birkhoff-
onsider-a network wi ree layers of nodes. The TITgh, Neumann like rate decomposition approach for offline

layer has a single node — the source. The second layer no &%putation of the schedule, given the rates of the flows, in a

Ece)g:,esggrr:,deéo;Eistlr?h(:f;o;b?ugengzzse IIQ tvr\llglfr?irggﬁlgser manner similar to [5] and [6]. The following corollary gives
therg is one r;ode C(;rresponding to each 6utput in the fazou'ta O%raph_—Fheoretic in_terpretati_o n of this ap_proach.

! . efinition 6 Eractional Weighted Coloring Problem
flow f. The source node is connected to all nodes in the sec en a graphG and a weightw, € R+ for each vertex,

layer. A _node in the.second layer is connected to thqse noges imize 2@21 A\ (\; € R*, Vi) such that there
of the third layer which are served in the corresponding tlm%‘:;(ist stable se€$54} of G with Zk S — w. wherew is
slot. All links have unit capacity. Consider the single sour ! i=1 X = W, W

C ; : S N
multicast problem with network coding, from the source nooIEIe given weight vector, ang™ denotes the incidence vector

to all nodes of the third layer. Since the schedule guaranteoécsthe stable sebi. The optimum value of the minimization

. L . roblem is called thdractional weighted chromatic numher
that every output receiveg F' transmissions, this means th . .
. . ; . We interpret the weights to correspond to the flow rates, and
min-cut of this network isrgF'. Therefore, using the results

of [17] and [18], F’ packets can be transmitted to each Outpg{ coefficients\; to be the fractions of time in the schedule.
0

. . ) : . : sentially, if the fractional weighted chromatic number is less
using network coding, and the field size required is equal : . :
n 1, then the optimal solution expresses the weight vector

the number of destinations, which in our case is the size . L

. . . S a convex combination of stable sets, which in turn leads to
the fanout. The network coding solution to this new networ . : )

a switch schedule. This leads to the following corollary.

naturally leads to the code for the switch, namely that, In i . ) .
the i*" time-slot, the switch input should use the same linear Corollary 2: The problem of computing the offline switch

combination that the source transmitted to tHfenode of the sche_dule for a multicast traffic pattern when far_wout s_pllttlng
. and intra-flow linear network coding are allowed, is equivalent
second layer in the network. ]

to the problem of fractional weighted coloring of the enhanced

B. Admissible region vs. rate region conflict graph, with the enhanced rate vector used as vertex
' ' weights.

For a general graph, a complete characterization of the
stable set polytope in terms of linear inequalities is unknown.”A clique is a set of vertices all of which are connected to each other.



Given the set of rates of the various flows in a multicast | "OY©°Pe |  Volume \N/;Lnag'zed asfﬁiegg to
switch, the switch schedule can be obtained as above. This| 7, 1021 x10°9 | 1 1 adm
ensures that each input gets to talk to each output for enough| Pintra | 4.686 x 1079 | 0.952 1.25
fraction time about each flow. To make sure that every | Ffs 4613 1079 | 0.937 1.25
transmission opportunity is used to convey a new degree of Prote 2260 x 10 TABOL':;GI(I) 167

freedom, we need to use an appropriate code. One way to do
this is the MDS code idea described in the proof of Theorem 1.
Alternatively, to obtain a code using a smaller field size, one
can use the ideas in Proposition 3.1, where a multicast network

code construction is used on a new network that represents gf&he enhanced conflict graph corresponding to this traffic

transmission schedule. The switch schedule and the netwggtern. Then, we used this to obtain and study the rate region
code which ensures that every transmission conveys an #ithe 2 x 3 switch.

novative packet, together give a complete specification of aTh hodol q first i Il stabl
frame-based scheme that achieves the entire rate region. e methodology We used was to first list out all stable Se.ts
of the enhanced conflict graph. These are the extreme points

of the rate region. We used a package for MATLAB known
D. The effect of speedup as the multi-parametric toolbox [20] to convert the extreme
Definition 7 (Speedup)A switch is said to have a speedugpoint representation to a representation using linear inequali-
s if the switching fabric can transfer packets at a ratémes ties, which was then used for the speedup computations. To
the incoming and outgoing line rate of the switch. compute the volume of the polytopes, we also used a software
If we define a time-slot to be the reciprocal of the linknown as Vinci [21]. The rate region of the case with fanout
rate, then this means the switching fabric can go throsghsplitting but no coding was obtained using the characterization
configurations within one time-slot. Note that this requiregiven in [11].

output queuing. _ _ The two rate regions were compared in terms of the volume
So far we have considered the case where 1. It is asy of the polytope and the minimum speedup needed to achieve
to see that a rate vectar is achievable with speedup if  the entire admissible region. The results are summarized in
and only |f.|t is admissible an(%r is within the rate region Tgple [V-A. Here,P, 4., refers to the admissible regioR;, s«
corresponding to a speedup of 1. _ _ refers to the rate region with linear intra-flow network coding
Now, if the fractional weighted chromatic numbefdefined  and fanout splitting?;, is the case with only fanout splitting,
above) for a given rate vector exceeds 1, then such a rgjgy P,.zs is the rate region when fanout splitting is not
vector cannot be achieved, since it is not within the stablfiowed. The corresponding values for the case with no fanout
set polytope. However, if we allow a speedup equalcfo g litting, are also shown. These results were obtained using the

then the rate can be achieved. This is because the spe h-theoretic formulation that was obtained in [13] and [15].
essentially scales down the rate vector by a factoe, cind

this in turn scales down the optimum value of the minimization 1N results indicate that there is a marginal improvement in
by the same factor. Hence, the new rate vector is inside thiCughput due to coding. There is another way to compare the
rate region. This gives an interesting physical interpretatid§© Scheémes. We know that network coding enlarges the rate

for the fractional weighted chromatic number correspondif§9ion- The same region can also be achieved without coding,
to a given rate vector, which is summarized in the followin we allowed a speedup. The amount of speedup needed for

theorem.

is to happen is a measure of the gain due to coding. This
Theorem 2: The minimum speedup needed to achieveralue is 1.1667 for th& x 3 case. Thus, for certain traffic
given rate vector with fanout splitting and coding,

is thé)atterns, coding can do away with the need for speedup, even
fractional weighted chromatic number of the enhanced confli

na2x3 switch.
graph, with the enhanced rate vector used as vertex weights.

A COMPARISON OF THE FOUR SCHEMES

IV. EXAMPLES AND SIMULATION

Network coding gives a benefit in the rate region, even if _ _
we use only linear intra-flow coding. In this section, we appl§f: EX@mple in & x N switch
the formulation described in the previous section, to quantify

the benefits in & x 3 switch with arbitrary traffic, and in a  \y\e now study a special traffic pattern in2ax N switch

2 x N switch, for a special traffic pattern. where the benefit of network coding is pronounced. Consider
a2 x N switch, with the following traffic pattern: at input 1,
A. 2 x 3 switch there is one broadcast flow going to all outputs, having a rate

In a2 x 3 switch, there are 14 possible flows - thredo; at input 2, there aréV unicasts, one to each output — the

unicasts, three two-casts, and one broadcast from each of {\?'?1[5E of the unicast going to outpyiis rj, for j = 1,2,..., N.

inputs. Thus, the rate region is a 14-dimensional polytop\?.ee Fig. 2.

We numerically computed the facets of the stable set polytopeThe rate region of this pattern with fanout splitting but no



Algorithm: Max Weighted Stable Set (MWSS)

1. Usingz;;;(t) as the weight for the vertex corresponding to the

A B sub-flow (¢, J, j), compute the maximum weighted stable set in
2 the enhanced conflict graph. This specifies the set of sub-flows

that will be served in the current time-slot. 4f; ;; is O for any

ra sub-flow, it is dropped from the stable set.

2. For every flow in the chosen set, compute a linear combination of
all packets received for that flow until time such that, the linear
combination is an innovative packet for all the chosen outputs of
that flow.

'y 3. Transfer the computed linear combination to the outputs of the
sub-flows chosen in the stable set in step 1, and update(t)
accordingly. Go back to step 1.

3

M

Fig. 2. A special traffic pattern which demonstrates the benefit of coding

cover the entire admissible region. However, for some other

coding, can be shown to be: traffic patterns, coding needs no speedup, while fanout splitting

rg, > 0 fori=1,2,...N (1) may need a non-trivial speedup.
N We expect that the gains observed will be more pronounced
Z” < 1 (2) in larger switches, as the number of traffic patterns where
i=1 coding gives a benefit will be more. However, there will still
ro+r < 1 fori=1,2...N (3) be patterns for which there is no gain due to coding. The more
N important gain of coding is the simpler characterization of the
2rg +Zm < 2 (4) rate region and the insight gained from the graph-theoretic
i=1 formulation.

It is easy to verify that these are necessary conditions. It

turns out that they are sufficient as well, but we skip the proof¥/, MaxiMum WEIGHTED STABLE SET ALGORITHM FOR
of this fact for want of space. ONLINE SCHEDULING

Now, consider the enhanced conflict graph for this pattern.Suppose the rates of the various flows are unknown, and

Theor_em 3: The enhanced conflict graph for the Spec@:heduling has to be done online, using only the queue
pattern Is a perfect_ graph. occupancy information. Analogous to the maximum weighted

_ Proof: It consists of a set ofV sub-flows one for €ach \aching “algorithm for unicast, we show that a maximum
unicast, and another set df sub-flows for the broadcast., eighted stable set algorithm on the enhanced conflict graph
The unicast sub-flows form a clique, while the br(_)adcast SUbzhieves the entire rate region for multicast when fanout split-
flows form a stable set. Thus, the set of vertices can Pﬂﬁg is allowed along with network coding. In this section, we

partitioned into two parts, which induce a clique and a stableig e that the arrivals to each flow are. and independent
set respectively. This means the graph is a “split graph”, Whi%{%ross flows.

is known to be perfect [19]. _ _ Lemma 1: LefV be a vector space with dimensianover
The next corollary follows immediately from Section IlI-B. 4 fia|q of sizeg, and letV,, Vs, ... Vi, be subspaces df, of

Corollary 3: For the special traffic pattern, the entire ad'dimensionsm,ng, ..., ny respectively. Suppose that> n,
missible region is achievable if fanout splitting and lineag,. o117 — 1.9 % Then. there exists a vector that is¥h

intra-flow coding are allowed. but is not in any of the;'s, if ¢ > k.
This means that the following rate vector is achievahje= Proof: The total number of vectors iV is ¢". The

(1—%); rj = forallotherj. . number of vectors irV; is ¢"i. Hence, the number of vectors
_ This fact (_:an_be verified by obserylng _that the_z traffic patterp Uk, Vi is at mostz’.“_l ¢". Now,
is a generalization of the example given in Section Il, and that, !
the same single parity check code can be generalizédhds, LI .
and used here, to achieve the traffic pattern. Y oq" < kgt < kg < g
But, this rate vector does not lie within the rate region =1
for fanout splitting without coding because it violates th&here,n, . is max; n;, which is at mostn — 1).
inequality given in Egn. 4. The left hand side evaluates to Thus, there are more vectors ¥nthan in the union of all
(3— %), while the right hand side is only 2. Hence, the¢heV;’s. This completes the proof. [
smallest scaling factor such that the scaled rate vector liesiVe introduce variables of the form ;;(t), for every sub-
inside the rate region i§1.5 — ). In other words, we have flow (i, J, j) in every time-slot, such thatz; ;(t) represents
demonstrated a traffic pattern which can be served with tiee difference between the total number of packets of flow
speedup if network coding is allowed, but needs a speedup(6fJ/) that have arrived until timet, and the number of
(1‘5 — %) if coding is not allowed. innovative packets transmitted from inpito outputj, for
The two examples show that the throughput benefit dflew (¢, J) until time ¢t. Thus, z;;;(t) is a measure of the
to coding depends on the traffic pattern in the switch. Fbiacklog for sub-flow (i, J,j) in terms of the degrees of
instance, in th@ x 3 case, for some traffic patterns, both fanoutreedom.
splitting and coding are equally far away from the admissibility Theorem 4: The maximum weighted stable set (MWSS)
limit, which is why both need the same speedup of 1.25 tdgorithm given above stabilizes the vectorin the mean,



provided the rate vector is inside (the rate region given in ARRIVALS

Theorem 1). | Batch1 | Bach2 | Bach3 | Batch4 | Batchs
Proof: First we need to show that the second step in th i i i i

maximum weight stable set algorithm is feasible. Nawy;; : ‘ ‘ I \ \

gives the difference in the number of dimensions that the inp o 2 - o o
knows and the number of dimensions that outputnows. SERVICE

Hence, ifz;;; is positive for a set of outputs, then Lemma 1, . Baohi | Bach2 | Bawh3 i Batohd
guarantees that there exists a linear combination of the pack D i
of flow (4, J) that is innovative to all those outputs, for a field |, o T8 Tos TLoa T
size that is larger than the number of outputs involved. Suc | wwss Backog ‘ P i

Clearance

a combination is chosen in step 2. The network code thi, ‘ ‘ | T
ensures that every transmission opportunity is used to conv?,
anew degree of freedom.' . L Fig. 3. A typical instance of the batching process in the finite horizon MWSS
The rest of the proof is essentially an application of thggorithm
results of [22] and [23] for the case of parallel queues. The
sub-flows can be viewed agrtual queuesAtrrivals to a sub-
flow “queue” are defined to occur whenever an arrival occuranning for only a fraction of the time. However, by choosing
to the corresponding flow in the switch. A departure from the large enough batch length, this throughput loss can be made
gueue is defined to occur when a new degree of freedomaibitrarily small. The algorithm is described in more detalil
conveyed for the sub-flow. Eligible activation vectors of thbelow.
queues therefore correspond to conflict-free sets of sub-flowsThe batch length is denotefy, and all arrivals from time
or in other words, stable sets in the enhanced conflict graph, + 1 to (k + 1)A, are said to belong to batdh for k =
Under these definitions, the only difference between this1,2,... The processing of a batch begins only after it has
situation and the situation assumed in [22] is that the arrivdlgdly arrived. Each batch is processed as follows. For a frame
to different queues are assumed to be independent of eath\(< Ag) time-slots, the MWSS algorithm is allowed to
other in [22], whereas in our case, arrivals to sub-flows ofin on packets of the current batch. In order to exactly mimic
the same flow always occur simultaneously. However, thise MWSS algorithm, we impose the constraint that, at the
lack of independence across arrival processes does not afféétslot of the MWSS frame, the weights and coded packets
the results of [22], essentially because of the linearity @éffe computed using only those arrivals that occurred before
expectation of dependent random variables. Stability in tiséot number%k in the batch, even though the entire batch
mean still holds, as long as other assumptions such as theavailable. This is because the original MWSS algorithm
ergodicity of the arrival processes and the finiteness of the¢ims in an online manner, without using future arrivals. This
second moment hold. Thus, the maximum weighted stable sestriction allows us to use the stability result of Theorem 4
algorithm stabilizes the occupancy of the virtual queues, & the finite horizon case. It is expected that using the entire
long as their arrival rates are inside the convex hull of tHeatch at every step will only improve the performance.
eligible activation vectors,e. the stable set polytope. At the end of the frame, the switch clears out the existing
But then, the above definitions of arrival and departufgacklog in the degrees of freedom of the current batch, by
from the virtual queues imply that the occupancy of quewending enough number of innovative packets to each of the
(i, J,j) at any time-slot is precisely; ;;(¢). Thus, this proves sub-flows one by one. The duration of this backlog clearance
that thex vector is stabilized in the mean, as long as theeriod depends on the amount of backlog that the MWSS
arrival rate vector is withii". Thus, for all choices ofi, J, j), algorithm leaves behind. We denote this durationTqyfor
lim¢ o0 Elxigi(t)] < oo. m thek'™ batch. Thus, whatever arrives in a tine is cleared
within a time of (A + T}).
. i ) Once the backlog of thé!” batch is cleared, all packets
Finite Horizon MWSS Algorithm of that batch are flushed out and a new frame begins, during
The above theorem shows, that in terms of the number which the next batch is processed. Before starting the new
degrees of freedom, the MWSS algorithm ensures stabilifyame, the algorithm waits for thék + 1)** batch to arrive
However, the algorithm has no provision for packets to depawmpletely at the switch. If there is no fully arrived batch
from the buffer, since all packets that have arrived until timewaiting at the switch, and all previous batches have been
can potentially be used for coding at timeTo show that the served, the system is said to be in @ite state All other
buffers can also be stabilized, we modify the algorithm intthmes are calledusy stateA typical instance of the batching
a batching scheme, which we call tfiaite horizon MWSS process is shown in Fig. 3.
algorithm Packets are grouped into batches according to theirTheorem 5: If the arrival rate vector is strictly inside,
arrival times. The basic idea is to run MWSS on one batcthen there exist choices ak and Ay for which, the finite
then take a break to clear the backlog for that batch. Afteorizon MWSS algorithm guarantees stability of the buffers in
that, the batch is flushed out of the buffers, and the algorithiime switch, in the sense that the system reaches an idle state
begins afresh with the next batch. Note that these breaks virlfinitely often, w.p. 1.
cause a loss in throughput, since the MWSS algorithm is now Proof: We use the stability of the MWSS algorithm in




terms of degrees of freedom, to show that for each batdbr all rate vectors within the capacity region. The network
the expected backlog clearance time can be made as smakk@sstraints are captured in terms of capacities on each link,
needed, compared to the size of the fratne which could be inter-dependent in the wireless setting. The

For any rate point that is strictly inside the rate region,crossbar switch, studied in our paper, is similar to the wireless
Je > 0,s.t.(1 + ¢)r is also inside the rate region. Chooseetting in the sense that, an input may not send a different
Ay = (1+ €)A. Consider a single MWSS frame. As far apacket to different outputs simultaneously. Besides, there is a
the algorithm is concerned, the arrival process appears légecial kind of inter-dependence among the links in that, of all
the original arrival process, except that, the time-axis is corirks going to the same output, at most one may be active at
pressed by a factor o‘%‘). As a result, the MWSS algorithm a time. However, [24] gives an indirect characterization of the
sees an effective arrival rate %r. Since this effective rate rate region in terms of certain flow variables, unlike the more
is inside the rate region, it follows from Theorem 4 that thexplicit graph-theoretic characterization we have provided.
backlogsz;;(t) are stable in the mean.

Now, the backlog cl_earance duratidn, is essentially the A  simulation of the Online Algorithm
sum of the backlogs in terms of degrees of freedom over
all sub-flows at the end of the MWSS framieg., Ti(A) =
Z(i_’Jyj)x“j(A). Thus, T}, is also stable in the meang.,

In this section, we study the effect of coding in an online
setting, through MATLAB simulations in & x 3 switch. The
setup we use is similar to the finite horizon MWSS algorithm,

) . E[T.(t)] _
limy o0 E[Tk(t)] < oco. It follows th‘?Tt]; (hAIﬂt—‘oo i =0 except, instead of the max weighted stable set which is known
ChooseA large enough such thaE k=) < . to be N P-hard [25], we use a simpler randomized algorithm

To prove the stability of the buffers, we use the notions Qfsing the idea proposed in [23]. In each slot, we choose the
idle state and busy state. The time for which the system is ithast of a constant number of randomly generated maximal
busy state, is called lusy period We prove that the duration staple sets, and the stable set that was used in the previous
of a single contiguous busy period is finite with probability 1sjot. The values ofA ande were chosen to be 1000 slots and
This implies that the system is stable in the sense that it wijlggs respectively.
become empty infinitely often with probability 1. We compare the performance with the case of fanout split-

Consider a single busy period. We denote the waiting tim@q without coding. For this case, we use a similar randomized
of the n'* batch in the busy period, byV,. This is the modification of the algorithm given in [11] — instead of stable
difference between the time when the batch arrives completgys, we work with the modified departure vectors defined in
at the switch and the time when the batch is flushed out afigg; paper.
service. In a busy period}V, is always more tham\o. The  The traffic pattern is chosen to be a combination of the
momentIV,, falls below Ao, the busy period ends, since anyaxample pattern used in Section Il weighted by a factor of
batch arrives only at the end d, slots after the previous %a and a pattern with uniform unicasts, each having a rate
one. Hence, we need to show thaf, will fall below Ao of 0.01a, wherea represents the load factor. Thus, the traffic
eventually. pattern consists of one broadcast from input 1, with a rate of

Now, n 2a. There are 3 unicasts, one to each output, from inputs 1,

W, = nA + ZTi — (n—1)A,. 3 and 4, each having a rate 6f01c. From input 2, there
= is a unicast of ratg2 + 0.01)c. The arrivals are generated

Thus, W, < A iff ", T; < neA. Since theT}'s arei.id., ?I\g:vordmg to an.i.d. Bernoulli process independently for each

;;f(\i\lllgw]s, from the strong law of large numbers that for large Fig. 4 shows the plot of delay vs. load for the randomized
R n algorithm with and without coding. At light loads, the algo-
Zﬂ = nE[T;] + o(n). rithm due to coding is seen to have a larger delay. However,
i=1 for the uncoded scheme, the delay shoots up at a lower value
(Here, a functionf(n) is said to beo(n), if lim,,_. f(n) _ of load, as opposed to the cod_ed scheme. Thus, in_terms of
0) ' ' nTee throughput, the coded scheme is clearly better. Equivalently,

Now, sinceE[T}] < €A, ™", T can be made smaller thanWVe can say that at high loads, network coding leads to benefits
) ) ) i=1 "1 .

ne/\, for large enough. This completes the proof. in terms of delay.

[ |

Remark 1:The algorithm used in this proof can be im- VI. CONCLUSIONS
proved using an online streaming policy for buffer clearance, This paper addresses the problem of serving multicast flows
in place of a frame based policy. For instance, packets in timean input-queued crossbar switch. We study the effect of
buffer can be replaced with innovative linear combinations mlowing linear intra-flow network coding at the inputs. We
every time-slot. The analysis of this approach is part of futushow that network coding leads to a larger rate region in
work. general, and demonstrate examples of traffic patterns where

Remark 2:The results in [24] are related to our approacltoding eliminates the need for speedup, to serve the traffic in
In that paper, the authors analyze the performance of a baakstable manner. We use a graph-theoretic formulation to derive
pressure based policy for wired and wireless networks withe rate region of the switch with network coding, and propose
intra-flow coding, and show that it stabilizes the systemiffline and online algorithms to achieve this rate region. We
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Fig. 4. Delay vs. load plots with and without network coding

also use the graph-theoretic formulation to understand tﬁg]
effect of the structure of the traffic pattern on the throughput
and on the complexity of computing the schedule. Possifé!
future work could be to use this formulation to come up witfy
approximation schemes and heuristics that simplify the online
scheduling algorithm and make it practical. (21]
In summary, by allowing intra-flow linear network codingy>2;
we get not only a gain in throughput, but also a more insightful
characterization of the rate region, with potential to use graph-
theoretic results and algorithms. 23]
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