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Downlink Scheduling over Markovian Fading
Channels

Wenzhuo Ouyang, Atilla Eryilmaz, and Ness B. Shroff

Abstract—We consider the scheduling problem in down-
link wireless networks with heterogeneous, Markov-modulated,
ON/OFF channels. It is well-known that the performance of
scheduling over fading channels relies heavily on the accuracy
of the available Channel State Information (CSI), which is costly
to acquire. Thus, we consider the CSI acquisition via a practical
ARQ-based feedback mechanism whereby channel states are
revealed at the end of only scheduled users’ transmissions. In the
assumed presence of temporally-correlated channel evolutions,
the desired scheduler must optimally balance the exploitation-

exploration trade-off, whereby it schedules transmissions both
to exploit those channels with up-to-date CSI and to explore
the current state of those with outdated CSI.

In earlier works, Whittle’s Index Policy had been suggested
as a low-complexity and high-performance solution to this
problem. However, analyzing its performance in the typical
scenario of statistically heterogeneous channel state processes
has remained elusive and challenging, mainly because of the
highly-coupled and complex dynamics it possesses. In this
work, we overcome these difficulties to rigorously establish the
asymptotic optimality properties of Whittle’s Index Policy in the
limiting regime of many users. More specifically: (1) we prove
the local optimality of Whittle’s Index Policy, provided that the
initial state of the system is within a certain neighborhood of a
carefully selected state; (2) we then establish the global optimality

of Whittle’s Index Policy under a recurrence assumption that
is verified numerically for our problem. These results establish
that Whittle’s Index Policy possesses analytically provable
optimality characteristics for scheduling over heterogeneous and
temporally-correlated channels.

Index Terms—Scheduling algorithm, imperfect CSI, Markov
channel model, Restless Multiarmed Bandit Problem, Whittle’s
Index Policy.

I. INTRODUCTION

Channel fluctuation is an intrinsic characteristic of wireless
communications. Such a variation calls for allocation of the
wireless resources in a dynamic manner, leading to the classic
opportunistic scheduling principle (e.g., [1][2]). Under the
assumption that the instantaneous channel state information
(CSI) is fully available to the scheduler, many efficient
opportunistic scheduling algorithms (e.g., [4]-[6]) have been
proposed and extensively studied.
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More recent works have focused on designing scheduling
algorithms under imperfect CSI, where the channel state is
modeled as independent and identically distributed (i.i.d.)
processes across time (e.g., [9]-[13]). On the other hand,
although the i.i.d. channel model brings ease of analysis, it
fails to capture the time-correlation of the fading channels
[3]. Specifically, it fails to exploit the channel memory,
which is a critical resource for making scheduling decisions.
However, designing efficient scheduling schemes under time-
correlated channels with imperfect CSI is a very challenging
problem. The challenge is mainly because of the difficulty in
making the classic ‘exploitation versus exploration’ trade-
off (e.g., [7], [8]), in which a scheduler needs to strike
a balance between selecting the channels with up-to-date
channel memory that guarantees high immediate gains, or to
explore the channels with outdated CSI for more informed
decisions and associated future throughput gains.

We consider the downlink scheduling problem where a
base station transmits to the users within its transmission
range, subject to scheduling constraints. To model the time
correlations present over fading channels, we assume that
wireless channels evolve as Markov-modulated ON/OFF pro-
cesses. The channel state information is obtained from ARQ-
based feedback, only after each scheduled transmission.
Nevertheless, due to time correlation, the memory of the past
channel state can be used to predict the current channel state
prior to scheduling decision. Hence, channel memory should
be intelligently exploited by the scheduler in order to achieve
high throughput performance.

In a related work [14], a similar problem is considered
under delayed CSI, where it is assumed that perfect CSI is
available within a maximum delay, which is in turn smaller
than the delay experienced by the ARQ feedback used for
collision detection. These assumptions allow the scheduling
decisions to be decoupled from CSI acquisition, which leads
to the development of centralized as well as distributed
schedulers. However, this approach does not use ARQ as
a means of acquiring improved channel quality information.
In contrast, in our setup the nature of ARQ feedback creates
an implicit impact of scheduling decisions on the CSI feed-
back, which completely transforms the nature of the optimal
scheduler design, and therefore requires a different approach.
Under the scenario where all the channels have identical
Markov statistics, round-robin-based algorithms (e.g., [15]-
[18]) have been shown to possess optimality properties
in throughput performance. However, the round-robin-based
algorithms are no longer optimal in asymmetric scenarios,
e.g., when different channels have different Markov transition
statistics, as is naturally the case in typical heterogeneous
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conditions.
Under the asymmetric scenarios, our downlink scheduling

problem is an example of the classic Restless Multiarmed
Bandit Problem (RMBP) [19]. Low-complexity Whittle’s In-
dex Policies [19] for the downlink scheduling problem have
been proposed in [20][21] based on RMBP theory. However,
although Whittle’s Index Policy can bring significant through-
put gains by exploiting the channel memory [21], the ana-
lytical characterization of its performance under asymmetric
scenarios is very challenging and prohibitively technical.
This is because asymmetry leads to a sophisticated interplay
of memory evolution among channels with heterogeneous
characteristics, which brings a significant challenge to the
analysis of Whittle’s Index Policy not present in the perfectly
symmetric scenario.

For RMBP problems under general scenarios, Whittle’s
Index Policy has been proven in [22] to be asymptotically
optimal as the number of users grows, provided a non-trivial
condition, known as Weber’s condition, holds. Nonetheless,
Weber’s condition concerns the global convergence of a non-
linear differential equation, which is extremely difficult to
verify even numerically in our downlink scheduling scenario.
In [23], optimality properties of general RMBP is studied,
where a sub-optimal BALANCED-INDEX policy, as well
as a THRESHOLD-WHITTLE policy, are proved to provide
2�approximation performance, i.e., achieves at least half of
the optimal reward. Our work takes a different approach
than [23] to specifically study the per-user throughput perfor-
mance of the Whittle’s Index Policy for downlink scheduling,
and consider the strict optimality metric in the asymptotic
regime when the number of users scales.

In this paper, we take significant steps in analyzing the op-
timality properties of Whittle’s Index Policy for the downlink
scheduling problem in the presence of channel heterogeneity.
Specifically, our contributions are as follows.

• We apply the Whittle’s index framework to our downlink
scheduling problem and identify the optimal policy for
the problem with a relaxed constraint in Section III. This
policy, with carefully selected randomization, provides
a performance upper bound to Whittle’s Index Policy.

• We establish the local optimality of Whittle’s Index
Policy in the asymptotic regime when the number of
users scales in Section V. Specifically, we show that
the performance of the index policy can get arbitrarily
close to that of the relaxed-constraint optimal policy,
provided that the initial state of the system is within a
certain neighborhood of a carefully selected state.

• Based on the local optimality result, under a numerically
verifiable recurrence assumption, we then establish the
global optimality of Whittle’s Index Policy in the limit-
ing regime of many users in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Downlink Wireless Channel Model

We consider a time-slotted, wireless downlink system with
one base station and N users. The wireless channel Ci[t]
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Fig. 1: Two state Markov chain model for channels in class
k.

between base station and user i remains static within each
time slot t and evolves stochastically across time slots,
independently across users. We adopt the simplest non-trivial
model of time-correlated fading channels by considering two-
state ON/OFF channels, where the state space of channel i
is Si = {0, 1}, with the value of each state representing the
transmission rate a channel can support at the state.

One important component of our model is the inclusion
of channel heterogeneity that the users will typically expe-
rience in real systems. Such asymmetry creates a significant
challenge to the design and analysis of optimal scheduling
schemes compared to perfectly symmetric channels. To avoid
cumbersome notation and unessential technical complica-
tions, in this work we model channel asymmetry by consider-
ing only two classes of channel statistics. Specifically, for all
the channels in class k, k=1, 2, their states evolve according
to the same Markov statistics. However, these characteristics
differ between classes. The state transition of channels in
class k is depicted in Fig. 1, represented by a 2⇥2 probability
transition matrix,

Pk =


pk 1� pk
rk 1� rk

�
,

where
pk := prob

�
Ci[t]=1

�� Ci[t�1]=1

�
,

rk := prob
�
Ci[t]=1

�� Ci[t�1]=0

�
.

for channel i in class k. The number of class k channels is
�kN , k 2 {1, 2} with �k being the proportion of channels in
class k with respective to the total number N of channels.

We study the scenario where all the Markovian channels
are positively correlated, i.e., pk > rk for k=1, 2. This
assumption, which is commonly made in this domain (e.g.,
[17], [18], [24]), means that the channel evolution has a pos-
itive auto-correlation. Hence, roughly speaking, the channel
has a stronger potential to stay in its previous state than
jumping to another, which is typical especially in slow fading
environment. For ease of exposition, we shall exclude the
trivial case when rk=0 or pk=1, k = 1, 2.

B. Scheduling Model – Belief Value Evolution

We assume that the base station can simultaneously trans-
mit to at most ↵N 2Z+ users in a time slot without inter-
ference, where ↵2(0, 1] stands for the maximum fraction of
users that can be activated. For example, in a multi-channel
communication model, ↵ would correspond to the fraction
of all users that can be simultaneously serviced in unit time.
However, the scheduler does not know the exact channel state
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in the current slot when the scheduling decision is made.
Instead, the scheduler maintains a belief value ⇡i[t] for each
channel i, which is defined as the probability of channel i
being in the ON state at the beginning of slot t. The accurate
channel state is revealed via ACK/NACK feedback from the
scheduled users, only at the end of each time slot after the
data is transmitted. This accurate channel state feedback is
in turn used by the scheduler to update the belief values.

For user i in class k, k=1, 2, let ai[t]2{0, 1} indicate
whether the user is selected for transmission in slot t. Then,
from the definition the belief values, ⇡i[t] evolves as follows,

⇡i[t+1]=

8
><

>:

pk, if ai[t]=1, Ci[t]=1,
rk, if ai[t]=1, Ci[t]=0,
⇡i[t]pk+(1�⇡i[t])rk, if ai[t]=0.

(1)

In our setup, belief values are known to be sufficient
statistics to represent the past scheduling decisions and
feedback (e.g., [16], [25]). In the meanwhile, in our ON/OFF
channel model, ⇡i[t] also equals to the expected throughput
contributed by channel i if it is scheduled in time slot t.

For a user in class k, k=1, 2, we use bkc,l to denote its belief
value when the most recent observed channel was c 2 {0, 1},
and is l slots in the past. From the belief update rule (1), bkc,l
can be calculated as a function of l�1 as,

bk0,l=
rk�(pk � rk)lrk

1 + rk � pk
, bk1,l=

rk+(1� pk)(pk � rk)l

1 + rk � pk
.

Fig. 2 illustrates the belief value update when a channel
stays idle (i.e., ai=0). It is clear that if the scheduler is
never updated of the state of channel i (in class k), the belief
value will converge to its stationary probability of being ON,
denoted by the stationary belief value bks :=rk/(1+rk�pk).

The vector ~
⇡[t]=(⇡1[t], · · ·,⇡N [t]) denotes the belief val-

ues of all channels at the beginning of slot t. We use Bk to
represent the set of the belief values for class k channels,
where Bk={bks , bkc,l, c2{0, 1}, l2Z+}. We assume that the
system starts to operate from slot t = 0. At the beginning of
slot 0, for each channel the scheduler has either observed its
channel state before, or has never been updated of its channel
state, i.e., with belief value bks . It is then clear that, based on
the belief update rule (1), ⇡i[t] 2 Bk for all t � 0, i.e., each
belief value ⇡i[t] evolves over countably many states.

In the rest of the paper, we shall use ‘belief value’ and
‘belief state’ interchangeably.

C. Downlink Scheduling Problem – POMDP Formulation

We consider the broad class U of (possibly non-stationary)
scheduling policies that makes a scheduling decision based
on the history of observed channel states and scheduling
actions. The downlink scheduling problem is then to identify
a policy in U that maximizes the infinite horizon, time
average expected throughput, subject to the constraint on the
number of users selected at each time slot. Given the initial
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Fig. 2: Belief values update when staying idle, pk = 0.8,
rk = 0.2, bks = 0.5.

state ~
⇡[0], the problem is formulated as,

max

u2U
lim inf

T!1

1

T
E
h T�1X

t=0

NX

i=1

⇡i[t] · aui [t]
���~⇡[0]

i
(2)

s.t.
NX

i=1

aui [t]  ↵N, 8t. (3)

where the belief value ⇡i[t] evolves according to rule (1)
based on the scheduling decision aui [t] under policy u. Such
an objective is standard in literature for Markov Decision
Processes under the long term average reward criteria (e.g.,
[26]). Noting that since the scheduling decisions are made
based on incomplete knowledge of channel states, this prob-
lem is a Partially Observable Markov Decision Process [25].

This problem is in fact an example of Restless Multiarmed
Bandit Problem (RMBP) [19]. For a general RMBP, finding
an optimal solution is PSPACE-hard [27]. However, for the
downlink scheduling problem at hand, a low-complexity
Whittle’s Index Policy was proposed in [20][21] based on the
RMBP theory that inherently exploits the channel memory
when making scheduling decisions. For detailed descriptions
of general RMBP and Whittle’s Index Policy for downlink
scheduling, please refer to [19]-[21].

For the downlink scheduling problem, we note that there
is only limited analytical characterization of Whittle’s Index
Policy, which is restricted in perfectly symmetric scenarios
where Whittle’s Index Policy takes a special round-robin
form [20]. In asymmetric cases, however, the scheduling
decision no longer takes the form of round-robin, bringing
sophisticated complications in belief value evolutions that
are tightly coupled among channels, which significantly
complicates the analysis. The main focus of this paper is to
analytically characterize the performance of Whittle’s Index
Policy in the asymmetric case with two classes of channels.

III. UPPER BOUND ON ACHIEVABLE THROUGHPUT

We begin our analysis by characterizing an upper bound to
the throughput performance of all feasible downlink schedul-
ing policies that satisfies the constraint (3). The upper bound
is obtained from a fictitious policy which is optimal for the
downlink scheduling problem under a relaxed constraint.

Note here that such relaxation is also a crucial step in
the study of the general RMBP problem. Yet, our analysis,
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being specific to the downlink scheduling problem, has its
novelties, as we shall remark on later.

A. Average-Constrained Relaxed Scheduling Problem

We consider an associated relaxed problem of (2)-(3) that
only requires an average number of users to be activated in
the long run, defined as follows

max

u2U
lim inf

T!1

1

T
E
h T�1X

t=0

NX

i=1

⇡i[t] · aui [t]
���~⇡[0]

i
(4)

s.t. lim sup

T!1

1

T
E
h T�1X

t=0

NX

i=1

aui [t]
i
 ↵N. (5)

Note that, contrary to the stringent constraint (3), the
relaxed constraint (5) allows the activation of more than ↵
fraction of users in each time slot, provided the long term
average fraction does not exceed ↵. Hence the optimal policy
under this relaxed constraint, which we shall identify next,
provides a throughput upper bound to any policy that satisfies
the stringent constraint.

B. Optimal Policy for the Relaxed Problem

We remark that the relaxed problem is also an important
component of Whittle’s analysis of general RMBPs [19], in
which an optimal policy for the relaxed problem is developed
based on the Whittle’s index values. Following the approach
of classic RMBP framework [19], in our downlink scenario,
we identify an optimal policy for the relaxed problem based
on Whittle’s indices.

Specifically, for channels in class k, the Whittle’s index
value Wk(⇡) is assigned to each belief state ⇡ 2 Bk.
These index values intuitively capture the exploitation and
exploration value to be gained from scheduling the associated
channel when its belief value is ⇡. This characteristic of
Wk(⇡) is also illustrated in Section VII-B via numerical
investigations. The index value function is expressed in
closed form as

Wk(⇡)=

8
<

:

(bk0,l�bk0,l+1)(l+1)+bk0,l+1

1�pk+(bk0,l�bk0,l+1)l+bk0,l+1
if rk⇡=bk0,l<bks

rk
(1�pk)(1+rk�pk)+rk

if bks  ⇡  pk
(6)

Note that the above expression is a modified version of the
expression in [20]. Details of the derivation can be found in
[28].

The following two characteristics they possess are primar-
ily significant for our analysis:

• Wk(⇡) monotonically increases with ⇡ 2 Bk.
• Wk(⇡) 2 [0, 1] for all ⇡ 2 Bk.
The next lemma identifies an index-based policy with

appropriate randomization that is optimal for the relaxed
constraint problem. This policy schedules each user based
on its own belief value, independently from other users. The
proof of the Lemma can be found in [20].

Lemma 1. For the problem under relaxed constraint, there
exists an optimal stationary policy �⇤, parameterized by the

threshold !⇤ and a randomization parameter ⇢⇤2(0, 1], such
that

(i) Channel i in class k is scheduled if Wk(⇡i[t])>!⇤,
and stays idle if Wk(⇡i[t])<!⇤. If Wk(⇡i[t])=!⇤, it is
scheduled with probability ⇢⇤.

(ii) The parameters !⇤ and ⇢⇤ are such that, under policy �⇤,
the relaxed constraint (5) is strictly satisfied with equality.

From now on, we shall denote �⇤ as the ‘Optimal Relaxed
Policy’. For technical purposes, we henceforth assume ↵ is
such that ⇢⇤ 6=1. Since each ↵ value maps to a unique (!⇤, ⇢⇤)
pair [29], only countably many ↵ values correspond to ⇢⇤=1,
i.e., achieved by deterministic policies. Therefore, the set of
↵2(0, 1] for which ⇢⇤ 6=1 has Lebesgue measure one.

C. Steady State Distribution of Belief Values

We next present the transition structure of the belief values
under Optimal Relaxed Policy, captured in the following
lemma. The structure will be critical in the development of
our subsequent main results.

Lemma 2. For each channel in class k, under the Optimal
Relaxed Policy, the structure of belief value evolution depends
on the threshold !⇤ of policy.
(i) If !⇤<Wk(bks), then the belief value evolution of each
class k channels is positive recurrent with a finite recurrent
class.
(ii) If !⇤�Wk(bks), the belief value evolution is transient.
With probability 1, ultimately no channel in class k will
transmit.

Proof: The proof of this lemma follows from the monotonic
structure of belief evolution, as shown in Fig. 2. Details are
included in Appendix A. ⌅

Thus, if !⇤� max{W1(b1s),W2(b2s)}, the above analysis
reveals that ultimately no user transits, corresponding to the
trivial case of ↵N=0. Also, if !⇤ is between W1(b1s) and
W2(b2s), the class with the smaller Wk(bks) will eventually
transit into a passive mode, hence reducing the system to
a well-understood scenario with a single class of channels
[15][16]. Thus, here we focus on the heterogeneous case
of !⇤<Wk(bks), k=1, 2, where the steady-state belief value
distribution exists for both classes under the Optimal Relaxed
Policy.

D. Upper bound on achievable throughput

The throughput performance of Optimal Relaxed Policy
provides an throughput upper bound for all policies under the
stringent constraint. The value of such an upper bound clearly
depends on the number of users in each class �kN , k=1, 2,
as well as the fraction ↵ of users allowed for activation.
Denoting �=[�1, �2], we represent the time average expected
throughput of the Optimal Relaxed Policy as �N

(�,↵). The
following lemma states that, as long as � and ↵ are given,
the per-user throughput (i.e., �N

(�,↵)/N ) is independent of
N .
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Lemma 3. Given � and ↵, �N (�,↵)
N is independent of N ,

denoted henceforth as r(�,↵).

Proof: The proof follows from showing that, when the
number of users N grows, as long as the proportion of
each class of channels stays the same and the fraction ↵
of users activated does not change, the form of Optimal
Relaxed Policy does not change. Since each user is scheduled
independently, the throughput �N

(�,↵) is proportional to N ,
establishing the lemma. Details are provided in Appendix B.
⌅

We hence refer to the (�,↵) pair as ‘system parameters’.
Therefore Nr(�,↵) provides a throughput upper bound to
any policy in the same system under the stringent constraint
(3). Equivalently, r(�,↵) provides a per-user throughput
performance upper bound to all policies that satisfies the
stringent constraint.

We next describe Whittle’s Index Policy for the strictly-
constrained problem (2)-(3), and later study the closeness of
its performance to the upper bound established here.

IV. WHITTLE’S INDEX POLICY DESCRIPTION

In this section we formally introduce Whittle’s Index Pol-
icy for solving the stringently-constrained downlink schedul-
ing problem (2)-(3).

A. Whittle’s Index Policy

The Optimal Relaxed Policy, along with the Whittle’s
index values, gives consistent ordering of belief values with
respective to the indices. For instance, under the Optimal
Relaxed Policy, if it is optimal to schedule one channel, it is
then optimal to transmit to other channels with higher index
values. So the Whittle’s index value gives an intuitive order
of how attractive the channel is for scheduling. This intuition
leads to Whittle’s Index Policy [20] under the stringent
constraint on the maximum number of channels that can be
scheduled.
Whittle’s Index Policy: At the beginning of each time
slot, the channel i in class k is scheduled if its Whittle’s
index value Wk(⇡i) is within the top ↵N index values of
all channels in that slot, with arbitrary tie-breaking while
assuring a total ↵N channels being scheduled.

Whittle’s Index Policy is attractive because it has very low
complexity, and it was observed via numerical investigations
to yield significant throughput performance gains over the
scheduling strategies that does not utilize channel memory
[21]. The main focus of our work is to analytically understand
the approximate or asymptotic optimality of Whittle’s Index
Policy in asymmetric scenarios.

B. Whittle’s Index Policy over Truncated State Space

Recall from Section II that the belief values evolve over
a countable state space, also note that if a channel is not
scheduled for a long time, its belief value will get arbitrarily
close to its stationary belief value. This motivates us to
consider a truncated version of the belief value evolution

whereby the belief value is set to its steady state if the
corresponding channel is not scheduled for a large number,
say ⌧ , slots. This mild assumption facilitates more tractable
performance analysis of the policy. Thus, if a class k user
is not scheduled for ⌧ time slots, its channel state history
is entirely forgotten and its belief value will transit to the
stationary belief value bks , where the truncation ⌧ is assumed
to be very large.

Whittle’s Index Policy is then implemented over the trun-
cated belief state, which differs from the non-truncated case
merely in the truncated belief value evolution. We believe
that, the truncated scenario can provide arbitrarily close
approximation to the original system when ⌧ is large. More
importantly, as we shall see in the following two sections,
Whittle’s Index Policy, implemented over the truncated belief
state space, achieve asymptotically optimal performance as
long as the truncation is sufficiently large.

V. LOCAL OPTIMALITY OF WHITTLE’S INDEX POLICY

In this section, we study the optimality properties of
Whittle’s Index Policy for downlink scheduling, over a large
truncated belief space. This result forms the basis for the
subsequent global optimality result in Section VI. We start
by introducing a state space over which the local optimality
will be established.

A. System State Vector

We define the system state Z

N as a vector that represents
the proportion of channels in each belief value, over the
truncated space when the total number of users is N , i.e.,
Z

N
=

⇥
Z

1,N ,Z 2,N
⇤
, with

Z

k,N
=[Zk,N

0,1 , · · ·, Zk,N
0,⌧ , Zk,N

s , Zk,N
1,⌧ , · · ·, Zk,N

1,1 ], k=1, 2.

where Zk,N
c,l and Zk,N

s respectively denote the proportion of
channels in the corresponding belief state bkc,l and bks , with
respect to the total number of users N . Hence, each element
of Z

N is a multiple of 1/N so that Z

N takes values in a
lattice with mesh size 1/N . Noting that the total number of
users in each class does not change over time, for any N the
system state Z

N
[t] 2 Z where

Z : ={ZN � 0 : Zk,N
s +

X

c,l

Zk,N
c,l =�k, k=1, 2}. (7)

The system state vector Z

N
[t] does not distinguish users

with the same belief state, thus its dimension will not scale
with N . Therefore, compared with ~

⇡[t], it provides a more
convenient representation of the system belief state. Further-
more, ZN

[t] fully determines the instantaneous throughput
gain in slot t under both Whittle’s Index Policy and the
Optimal Relaxed Policy (introduced in Lemma 1), because
the instantaneous throughput gains under both policies are
only determined by the distribution of the channels with
different belief values, not their identities.

From Lemma 2 and the subsequent remarks, under the
operation of the Optimal Relaxed Policy, the belief state
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evolution of each channel is positive recurrent with a steady-
state distribution. The following lemma also establishes the
independence of this steady-state distribution from N , and
defines a useful parameter for future use.

Lemma 4. Given the system parameters (�,↵), the system
state vector Z

N
[t] under the Optimal Relaxed Policy con-

verges in distribution to a random vector, denoted as ZN
[1].

The mean of ZN
[1] is independent of N and is denoted as

~
⇣

↵
�

:=E
⇥
Z

N
[1]

⇤
.

Proof: This lemma follows from a similar principle to the
one we established in Lemma 3. For details, please refer
Appendix C. ⌅

It is easy to see that ~
⇣

↵
�

2Z and the form of ~
⇣

↵
�

fully
determines the time average throughput of the Optimal Re-
laxed Policy. Therefore, the vector ~

⇣

↵
�

provides an important
benchmark for our asymptotic analysis. If, in the long run
under Whittle’s Index Policy, the system state Z

N
[t] stays

close to ~
⇣

↵
�

, it indicates that Whittle’s Index Policy will
have throughput performance close to that of the Optimal
Relaxed Policy – the throughput upper bound. To capture
the closeness, we define the � neighborhood of ~

⇣

↵
�

as

⌦�(
~
⇣

↵
�

) = {Z 2 Z : ||Z � ~
⇣

↵
�

||  �}, (8)

for � > 0, where || · || stands for Euclidean distance. We are
now ready to state and prove our first main result regarding
a form of local optimality of Whittle’s Index Policy.

B. Local Optimality of Whittle’s Index Policy

Under the system parameters (�,↵), we let RN
T (�,↵,x)

represent the time average throughput obtained over the time
duration 0t<T under Whittle’s Index Policy, conditioned
on the initial system state Z

N
[0] = x, i.e.,

RN
T (�,↵,x) :=

1

T
E
h T�1X

t=0

NX

i=1

⇡i[t]a
ind
i [t]

���ZN
[0]=x

i
,

where (aindi [t])i denotes the scheduling decision vector made
by Whittle’s Index Policy at time t.

Recall from Lemma 3 that r(�,↵) denotes the per-user
throughput under the Optimal Relaxed Policy, which serves
as an upper bound on Whittle’s Index Policy performance.
The next proposition characterizes the local convergence
property of Whittle’s Index Policy performance to r(�,↵).

Proposition 1. Under the system parameters (�,↵), there
exists a � > 0 neighborhood ⌦�(

~
⇣

↵
�

) of ~
⇣

↵
�

such that, if the
initial system state x is within ⌦�(

~
⇣

↵
�

) , then

lim

T!1
lim

m!1

RNm
T (�,↵,x)

Nm
=r(�,↵).

where {Nm}m is any increasing sequence of positive integers
with ↵Nm, �kNm 2 Z+, for k = 1, 2 and all m.

Proof Outline: Here, we give a high level description of the
proof for an intuitive understanding, and refer the reader to
[36] for the rigorous derivation.

• We start by defining a fluid approximation, whereby the
discrete-time evolution of ZN

[t] under Whittle’s Index Policy
is modeled as a deterministic vector z[t] 2 Z that evolves
in discrete time over Z and is independent of N. Under
this fluid approximation, the users are no longer unsplittable
entities so that the state space of z[t] is no longer restricted
to a lattice as it was for ZN

[t]. Also, the fluid approximation
z[t] evolves in a deterministic manner, in contrast to the
stochastic transition of ZN

[t]. The evolution of z[t] is defined
by a difference equation as a function of the expected state
change of ZN

[t] under Whittle’s Index Policy as follows

z[t+ 1]�z[t]
���
z[t]=z

=E
h
Z

N
[t+ 1]�Z

N
[t]
���ZN

[t]=z

i
, (9)

where N is any integer for which z is a feasible state.
• We then establish local convergence of the fluid ap-

proximation model when z[0] is within a small enough �
neighborhood ⌦�(

~
⇣

↵
�

) of ~
⇣

↵
�

. We show the convergence by
first noting that the differential equation (9) is linear within
a wider convex region than ⌦�(

~
⇣

↵
�

). Within this region, we
obtain a closed form expression of the right hand side of (9),
which enables us to investigate the eigenvalue structure of the
linear differential equation. We show that each eigenvalue �
satisfies |�| < 1 and apply standard linear system theory to
establish the local convergence.

• We then connect the fluid approximation model z[t] to
the discrete-time stochastic system state Z

N
[t] by using a

discrete-time extension of Kurtz’s Theorem, which can be
interpreted as an extension of the strong law of large numbers
to random processes (see [30]). Essentially, it states that, over
any finite time duration [0, T ], the actual system evolution
Z

N
[t] can be made arbitrarily close to the above fluid

approximation z[t] by increasing the number of channels N
sufficiently, with exponential convergence rate.

• The previous convergence result, together with the local
convergence result of the fluid evolution z[t] to ~

⇣

↵
�

, enables
us to establish the local convergence of the system state
Z

N
[t] to ~

⇣

↵
�

as the number of users N grows, provided that
the initial state Z

N
[0] 2 ⌦�(

~
⇣

↵
�

). Hence the system state
under Whittle’s Index Policy will stay close (in a probabilistic
sense) to the expectation ~

⇣

↵
�

of the system state under
the Optimal Relaxed Policy, which, in turn, indicates that
the throughput performance of Whittle’s Index Policy will
approach the throughput upper bound r(�,↵), as expressed
in the proposition.

We again emphasize that the technical details of the
outlined steps are fairly intricate and are moved to [36]. ⌅

Proposition 1 illustrates an interesting local optimality
property of Whittle’s Index Policy as the number of users N
and the time horizon T increases while the system parameters
(�,↵) stay the same. It indicates that, under Whittle’s Index
Policy, as long as the initial state Z

N
[0] is close enough

to ~
⇣

↵
� , the average per-user throughput over any finite time

duration will get arbitrarily close to the Optimal Relaxed
Policy performance as the number of users scales.
Remark: We note that the sequence {Nm}m is used to
guarantee that the number of channels in each class, as well
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as the number of scheduled users, take integer values. In fact,
our result can be generalized to all N by slightly perturbing
� and ↵ as a function of N but assuring their limits are
well-defined.

Note that we have assumed the model of two-classes of
channels. Future research direction includes generalization to
multiple-class scenarios or models where users have arbitrary
transition probabilities. The main challenge in generalizing
to such setup is to analyze the eigenvalue structure of the
system state’s transition matrix (e.g., Lemma 11 in [36]),
since analytically studying the form of the eigenvalues can
be difficult when there are multiple classes of users.

VI. GLOBAL OPTIMALITY OF WHITTLE’S INDEX POLICY

The above local optimality result heavily relies on the
initial state Z

N
[0] being close to ~

⇣

↵
�

, which is difficult to
guarantee. In this section, we study the global optimality
of the infinite horizon throughput performance of Whittle’s
Index Policy starting from any initial state. We begin our
analysis by presenting the recurrence structure of the system
state.

Lemma 5. Under system parameters (�,↵), for any ✏ > 0,
if the number of users N is large enough,
(i) The system state Z

N
[t] evolves as an aperiodic Markov

chain, in a state space that contains only one recurrent class.
(ii) There exists at least one recurrent state within the ✏
neighborhood ⌦✏(

~
⇣

↵
�

) of ~⇣↵
�

.

Proof: We prove this lemma by constructing probability
paths from any state to the neighborhood ⌦✏(

~
⇣

↵
�

). Details
of the proof are included in [36]. ⌅

This lemma states that Z

N
[t] will ultimately enter any

small neighborhood of ~⇣↵
�

when N is large enough. Together
with Proposition 1, this result shows promise for establishing
the global asymptotic optimality of Whittle’s Index Policy.
This is plausible because once Z

N
[t] enters ⌦�(

~
⇣

↵
�

), the
performance of Whittle’s Index Policy afterwards can get
very close to its upper bound as N scales, as established
in Proposition 1. However, since we consider the infinite
horizon time average throughput, this argument would break
down if the time it takes for Z

N
[t] to enter ⌦�(

~
⇣

↵
�

) also
scales up with N . This observation motivates us to intro-
duce a useful assumption, which will later be justified (in
Section VII-A) via numerical studies.

Assumption  : For each ✏>0, let �N
x

(✏) represent the first
time of reaching ⌦✏(

~
⇣

↵
�

) starting from Z

N
[0] = x, i.e.,

�

N
x

(✏) = min{t : ZN
[t] 2 ⌦✏(

~
⇣

↵
�

)

��
Z

N
[0] = x}.

Then we assume that, the expected time of reaching ⌦✏(
~
⇣

↵
�

)

is bounded by a constant M✏<1, i.e.,

E
⇥
�

N
x

(✏)
⇤
M✏,

for all x and large enough N .

Since for each N , ZN
[t] under Whittle’s Index Policy is

recurrent and aperiodic with a finite state space, there exists a

t

(      )α

Ω

T
T 0

[ ]t ∈ZN(      )α

Ω[ ]t ∉
NZ (      )α

Ω[ ]t ∉
NZ (      )α

Ω[ ]t ∈

NZγ γ γ γ

ε

ε

ε ε ε ε
ς ς ςς

Fig. 3: Transition behavior of ZN
[t] in steady state.

steady-state distribution associated with Z

N
[t]. As before, we

use Z

N
[1] to denote the associated limiting random vector.

The next lemma establishes that, under Assumption  , the
distribution of ZN

[1] approaches a point-mass at ~⇣↵
�

as N
scales. Here, again, the sequence {Nm}m is defined in the
same way as in Proposition 1.

Lemma 6. Under Assumption  and system parameters
(�,↵), for any ✏ > 0, the steady state probability of ZN

[t]
under Whittle’s Index Policy satisfies

lim

m!1
P
�
Z

Nm
[1] 2 ⌦✏(

~
⇣

↵
�

)

�
= 1.

Proof: The proof utilizes Theorem 6.89 from [30], which
builds on the following arguments.

Note that ✏ > 0 can be selected to be small enough for
the following argument. As depicted in Fig. 3, we let T✏ be a
random variable denoting, in steady state, the time duration
between consecutive hitting times into the neighborhood
⌦✏(

~
⇣

↵
�

) from outside of the neighborhood. Let T 0
✏ denote the

time duration from the time Z

N
[t] enters the neighborhood

⌦✏(
~
⇣

↵
�

) from outside until the time it leaves. Hence, the
expected proportion of time that Z

N
[t] stays outside this

neighborhood is (E[T✏]� E[T 0
✏ ])/E[T✏].

We know that the numerator E[T✏] � E[T 0
✏ ] is uniformly

bounded for all N due to Assumption  . However, as N
increases, it is more likely for Z

N
[t] to stay within the

neighborhood for a long time before exiting it (based on
the convergence of fluid approximation model and Kurtz’s
Theorem in the proof of Proposition 1). Thus, E[T 0

✏ ], and
hence the denominator E[T✏], grow to infinity as N scales.
Therefore, the expected proportion of time spent outside
⌦✏(

~
⇣

↵
�

) vanishes as N scales up, which leads to the statement
of the lemma. Details of the proof can be found in [36]. ⌅

Under Whittle’s Index Policy with system parameters
(�,↵), we let RN

x

(�,↵) be the achieved infinite horizon,
time average throughput, conditioned on the initial system
state Z

N
[0]=x, i.e.,

RN
x

(�,↵) := lim

T!1

1

T
E
h T�1X

t=0

NX

i=1

⇡i[t]a
ind
i [t]

���ZN
[0] = x

i
.

From Lemma 6 we know that, in steady-state, the system
state Z

Nm
[1] is increasingly concentrated around ~

⇣

↵
�

as m
increases, regardless of the initial state x. We build on this
to establish the global asymptotical optimality of Whittle’s
Index Policy.

Proposition 2. Under Assumption  , for any initial system
state x, we have

lim

m!1

RNm
x

(�,↵)

Nm
= r(�,↵).
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Fig. 4: Average time of hitting ⌦✏(
~
⇣

↵
�

). (a) Z

N
[0] = x; (b)

Z

N
[0] = y.

Since r(�,↵) is an upper bound on the maximum achievable
per-user throughput by any policy, this implies that Whittle’s
Index Policy is optimal in the many user regime.

Proof: We prove this result by decomposing RN
x

(�,↵) as
a summation of the expected throughput conditioned on
whether the system state is within or outside an arbitrarily
small ✏ neighborhood of ~

⇣

↵
�

. Since the latter has diminishing
probability according to Lemma 6, the expected throughput
of Whittle’s Index Policy can get arbitrarily close to that of
Optimal Relaxed Policy. Details of the proof are provided in
[36]. ⌅
Remarks:

1) We would like to emphasize that the global optimality
result is not a straight-forward extension of the local conver-
gence result by contrasting Proposition 1 and Proposition 2.
Note that in Proposition 1, the time limit is outside the limit
of the number of users N , where each convergence (with
N ) is with respective to a fixed time duration. However,
the order of limit is switched in the global optimality result
of Proposition 2, as it states the convergence with N the
infinite horizon average throughput, which is much stronger
and hence is much more challenging to prove.

2) We would like to contrast Assumption  with Weber’s
condition [22]. For general RMBP problem, Weber’s condi-
tion leads to the same global asymptotic optimality result.
While confirming Weber’s condition may be possible in
very low-dimensional problems, in our downlink scheduling
problem, this requires one to rule out the existence of both
closed orbits and chaotic behavior of a high-dimensional
non-linear differential equation, which is extremely difficult
to check - even numerically. Assumption  , on the other
hand, takes a much simpler form, as it is defined over the

actual stochastic system and is amenable to easy numerical
verification, as is performed in Section VII-A.

VII. NUMERICAL RESULTS

A. Verification and Interpretation of Assumption  

We start by numerically verifying Assumption  . We con-
sider the asymmetric scenario with two classes of channels
with system parameters �=[0.45, 0.55], ↵=0.6, with p1=0.9,
r1=0.45, p2=0.8, r2=0.3.

We next examine the change of the average hitting time
�

N
x

(✏), while maintaining ↵ and �.
We let x,y 2 Z be initial values of ZN

[0] that are selected
to be two extreme points in the state space to exhibit the
uniformity of �N

x

(✏) to the initial state. Specifically, state x

corresponds to the case when all the users have just observed
their channels to be in OFF state, i.e., with belief value bk0,1,
k = 1, 2. And y corresponds to the case when all users have
no initial observation of their channels state history, i.e., with
belief value bks , k = 1, 2.

We examine the average value of hitting time �

N
x

(✏)
and �N

y

(✏) with a very small neighborhood ✏=0.005, when
the number of users N grows from 10⇥10

3 to 500⇥10

3.
As indicated in Fig. 4, for both cases, the average time
of hitting the ✏ neighborhood first decreases with N , and
then converges and stays almost the same as N scales
up. This is especially intriguing. The rationale behind this
phenomenon is as follows. Under Whittle’s Index Policy, a
total number of ↵N users are activated at each time slot.
Therefore, for relatively small number of users, the amount
of probabilistic belief state transitions, as well as the amount
of system states in the neighborhood, increases with N ,
leading to a higher chance of hitting the desired neighborhood
⌦✏(

~
⇣

↵
�

) and smaller value of hitting time. However, the belief
update of each user contributes to the 1/N change of the
system state Z

N
[t], which decreases with N . Therefore, as

N further increases, the total amount of transitions of the
system state Z

N
[t] due to channel state feedback is roughly

↵N · 1/N = ↵, which is invariant of N . This result, along
with many other numerical experiments we have conducted
that lead to the same observation [36], verifies Assumption
 .

B. ‘Exploitation versus Exploration’ Trade-off
In this section, we demonstrate how the Whittle’s index

value captures the ‘exploitation versus exploration’ trade-off
for our asymmetric downlink scheduling problem.

Consider two classes of ON/OFF fading channels with
belief value evolutions plotted in Fig. 5(a). Note that both
classes have the same stationary distribution bks = 0.5,
k 2 {1, 2} of being at ON state, but channels in class 1

has a higher degree of time correlation, i.e., fades slower,
than channels in class 2 since p1 > p2 and r1 < r2. The
corresponding Whittle index values of the two classes of
channels are depicted in Fig. 5(b) as functions of the updated
belief value starting from different initial states.

To understand the nature of Whittle’s index value, we
first consider the case when the channels in both classes are
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Fig. 5: The evolution of belief value and Whittle’s index
value. (a) Belief value evolution (b) Whittle’s index
value evolution.

observed to be ON at time 0 and stay passive since then. As
indicated in Fig. 5(a) the class 1 channel has a higher belief
value than the class 2 channel, hence scheduling the class 1

channel gives a higher immediate throughput than scheduling
the class 2 channel. Moreover, once a class 1 channel is
scheduled, it is more likely to stay in ON state again, bringing
high future gains. Accordingly, the index values in Fig. 5(b)
when both state evolutions start from ON states capture that
it is more attractive to schedule the class 1 channel because
of the advantage in both exploitation and exploration.

On the other hand, when the scheduler has observed
channels in both classes to be OFF at time 0, Fig. 5(a)
shows that the class 2 channel has a higher belief value
than the class 1 channel. However, although the Whittle’s
index value in Fig. 5(b) of class 2 channel is initially smaller
than that of class 1 channel, after a certain amount of delay
(around 8 slots in the figure) this order is switched, which
is interpreted as follows: initially, since the class 1 channel
has smaller belief value than that of the class 2 channel, it
is more attractive to exploit the immediate gain brought by
the class 2 channel. However, as the passive time grows, as
indicated in Fig. 5(a), the difference between immediate gain
of both classes diminishes. Then, it becomes more attractive
to explore the class 1 channel because its longer memory can
bring higher future gains if it turns out to be in ON state.

This investigation reveals the intricate nature of Whittle’s
index value in capturing the fundamental ‘exploration versus
exploitation’ trade-off. In our scheduling problem with asym-
metric channel statistics, such a property of Whittle’s Index
Policy turns out to be crucial in achieving asymptotically
optimal performance.

C. Performance Evaluation and Comparison

Note that our results focus on asymptotic regime when the
number of users scales up. We next numerically evaluate the
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Fig. 6: Performance evaluation and comparison of per-user
throughput of Whittle’s Index Policy. (a) ZN

[0] = x;
(b) ZN

[0] = y.

performance of the Whittle’s Index Policy under finite num-
ber of users. We next consider a system where �=[0.6, 0.4],
↵=0.3, (p1, r1)=(0.75, 0.2) and (p2, r2)=(0.8, 0.3), and
evaluate the value RN

x

(�,↵)/N when N increases as mul-
tiples of 5, i.e., N = 5m,m = 1, 2, · · · . Fig. 6(a) and
(b) respectively correspond to the aforementioned extreme
points. As observed in Fig. 6, the per-user throughput value
RN

x

(�,↵)/N of Whittle’s Index Policy quickly converges to
the upper bound value r(�,↵). This result indicates that, in
realistic scenarios with finite N , the global convergence result
in Proposition 2 holds under moderate number of users (under
N = 50 as shown in Fig. 6).

Fig. 6 also plots the per-user throughput performance
of the BALANCEDINDEX policy, which is proposed in
[23] and proved to achieve throughput half of the optimal
throughput, i.e., 2-approximation performance. As observed
in Fig. 6, the asymptotic per-user throughput performance
of BALANCEDINDEX is strictly lower than the Whittle’s
Index Policy. This is because although BALANCEDINDEX
policy guarantees 2-approximation to the optimal throughput
performance, it does not provide strictly optimal per-user
throughput performance in the asymptotic regime of large
number of users, as compared with Whittle’s Index Policy.
Fig. 6 also evaluates the performance of a slight modification
Whittle’s Index Policy, namely the THRESHOLD-WHITTLE
policy, proposed in [23] by slightly adjusting the Whittles
index value at belief values pi, i = 1, 2. It can be observed
from the figure that the per-user throughput performance of
THRESHOLD-WHITTLE policy is very close to that of the
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Whittle’s Index Policy, indicating that the modification of the
Whittle’s indices in THRESHOLD-WHITTLE policy does
not bring significantly change the throughput performance
for the plotted example. It was proven in [23] that the
THRESHOLD-WHITTLE policy achieves at least half of
the optimal throughput. However, analytically proving the
asymptotic optimality of THRESHOLD-WHITTLE policy
remains an open question.

D. Evaluation of Fairness among Users

In this section, we evaluate the fairness performance of
Whittle’s Index Policy. We exam the throughput difference
between the two types of users, under different set of Markov
transition statistics. To facilitate better evaluation, we define
the throughput rN

x

(k, �,↵) to be the per-user throughput
within each class k of users, i.e.,

rN
x

(k, �,↵)

=

limT!1
1
T E

hPT�1
t=0

P
i2Nk

⇡i[t]aindi [t]
���ZN

[0]=x

i

�kN
,

where Nk represents the set of users in class k. We consider
the scenario where (p1, r1) = (0.9, 0.1) and (p2, r2) =

(0.6, 0.4) with � = [0.5, 0.5],↵ = 0.3. Therefore, the
channels in class 1 have a much higher degree of correlation
than the channels in class 2, i.e., it is more likely for the
channels in class 1 to stay in its previous-slot state than
change to a different state compared with channels in class 2.
However, channels in both classes have the same steady state
probability in state ‘1’, i.e., b1s = b2s = 0.5. Fig. 7 plots the
per-user throughput within each class under Whittle’s Index
Policy. It can be observed that users in class 1 achieves higher
throughput than users in class 2. The higher throughput
gain of class 1 is brought by the higher degree of temporal
correlation and also the aforementioned ‘Exploitation versus
Exploration’ trade-off. Since the class-1 channels have higher
degree of time-correlation, if a class-1 channel is previously
observed in state 1, the scheduler tends to continue to serve
it for longer time to obtain high immediate gains. It is also
more attractive to explore a channel in class 1 because, as
previously discussed, higher future gains can be obtained if it
turns out to be in state ‘1’. Therefore, channels in class 1 have
higher overall throughput than channels in class 2, resulting
in the big gap in throughput between the two classes of users
in Fig. 7.

To facilitate better performance in terms of fairness, we
evaluate the performance of the following heuristic policy ⌅
based on the Whittle’s index values. In policy ⌅, instead of
directly using Whittle’s index values, the algorithm schedules
the ↵N users with the largest

Wk(⇡i[t])

Ri[t]
,

at slot t, where Ri[t] is user i’s achieved throughput up
to slot t, i.e., Ri[t] =

Pt�1
⌧=1 ⇡i[⌧ ] · a⌅i [⌧ ]

��~
⇡[0]. Hence a

user’s priority for scheduling is determined by its Whittle’s
index value relative to its own actual achieved throughput.
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Fig. 7: Evaluation of rN
x

(k,�,↵) with N . (a) Whittle’s Index
Policy; (b) Policy ⌅.

Therefore policy ⌅ mimics the proportional fair scheduling
algorithms (e.g., [3]) commonly used in communication net-
works. Fig. 7(b) evaluates the performance of policy ⌅. As we
can see, under the algorithm ⌅, the throughput gap between
the two classes of channels is closer than Whittle’s index
policy, indicating improved fairness performance. Finally, we
believe that combining Whittle’s index and the frame-based
scheduling [18] can lead to low-complexity algorithms that
optimally meet the fairness constraints among different users.

VIII. CONCLUSION

In this paper, we studied the problem of downlink schedul-
ing over ON/OFF Markovian fading channels in the presence
of channel heterogeneity. We consider the scenario where in-
stantaneous channel state information is not perfectly known
at the scheduler, but is acquired via a practical ARQ-styled
feedback after each scheduled transmission. We analytically
characterized the performance of Whittle’s Index Policy for
downlink scheduling, and proved its local and global asymp-
totic optimality properties as the number of users scales.
Specifically, provided that the initial system state is within a
certain region, we established the local optimality of Whit-
tle’s Index Policy by investigating the evolution of the system
belief state with a fluid approximation. We then established
the global asymptotic optimality of Whittle’s Index Policy
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under a recurrence condition, which is suitable for numerical
verification. Our results establish that Whittle’s Index Policy,
which is attractive due to its low-complexity operation,
also processes strong asymptotic optimality properties for
scheduling over heterogeneous Markovian fading channels.
Future research directions includes design of scheduling
algorithms that not only maximizes the sum throughput,
but also provides fairness among heterogeneous users using
Whittle’s index.
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APPENDIX A
PROOF OF LEMMA 2

(i) First consider the scenario where !⇤ < Wk(bks) and
suppose !⇤

= Wk(bk0,h⇤
k
) for the belief state bk0,h⇤

k
. If the

belief value of a channel is above bk0,h⇤
k

at the beginning
of a slot, the channel will be activated. According to the
belief value evolution rule (1), in the next slot its belief
value will either be pk or rk, depending on the underlying
channel state revealed at the end of a slot. Clearly, the
belief evolution in this case is positive recurrent within a
finite state space, i.e., the belief state can only take the
values pk, rk, bk0,2, · · · , bk0,h⇤

k+1. On the other hand, if the
belief value is below bk0,h⇤

k
, the channel remains idle and will

activate once its belief value exceeds bk0,h⇤
k
. Fig. 8 illustrates

the belief evolution in steady state under this scenario.



12

(ii) Consider the scenario where !⇤�Wk(bks). In this case,
a channel is activated if its index value is above !⇤. After
transmission, if the channel is observed to be in OFF state,
its belief value will transit to rk and stays idle until its index
value crosses !⇤. Since !⇤�Wk(bks), it is clear from the
belief value evolution (see Fig. 2) that, starting from rk,
the belief value will always be smaller than bks . Hence the
channel will stay idle at all times. On the other hand, if the
channel is observed to be in ON state after transmission,
the belief value will transit to pk and the channel will keep
on transmitting until the underlying channel turns out to be
in OFF state. Since we assumed pk < 1, the channel will
ultimately be in OFF state and its belief value will transit to
rk and stays in idle mode ever since. Therefore eventually no
channel in class k will be scheduled and the belief values will
keep transit toward, but never reach, the steady state belief
value bks .

APPENDIX B
PROOF OF LEMMA 3

Consider two systems with different total number of users
but identical ↵ and �. Suppose the first system has N1 total
number of users while the second system has N2 number of
users. For the first system with N1 total number of users,
suppose the policy �⇤, specified in Lemma 1, is optimal for
the relaxed-constraint problem. For each channel i in class k,
we let Ak

�⇤ denote the expected fraction of time of activation,
i.e.,

Ak
�⇤ = lim sup

T!1

1

T
E
h T�1X

t=0

a�
⇤

i [t]
i
.

Then, according to Lemma 1(ii), the expected number of
activated users satisfies

�1N1 ·A1
�⇤ + �2N1 ·A2

�⇤ = ↵N1.

Now apply the same policy �⇤ when the total number of
users is N2. Since �⇤ schedules each channel independently,
A1

�⇤ and A2
�⇤ does not change in this scenario. Therefore,

the expected number of activated users is expressed as

�1N2 ·A1
�⇤ + �2N2 ·A2

�⇤

=

N2

N1

⇥
�1N1 ·A1

�⇤ + �2N1 ·A2
�⇤
⇤
= ↵N2,

hence the complementary slackness condition (i.e.,
Lemma 1(ii)) for the relaxed-constraint problem is also
satisfied under �⇤, when the total number of users is N2.
Hence the policy �⇤ satisfies both Lemma 1(i) and (ii) under
the total number of users N2, and is an optimal policy for
that scenario.

Therefore, fixing system parameters (�,↵), for different
number N of users, the policy �⇤ is always optimal. Since
the policy �⇤ schedules each channel independently, we let
�k(�,↵) denote the expected reward contributed by each
channel in class k. Hence we have

�N
(�,↵) = N�1�1(�,↵) +N�2�2(�,↵).

Therefore the per-user throughput is

�N
(�,↵)

N
= �1�1(�,↵) + �2�2(�,↵),

which is independent of N . Hence the lemma is proven.

APPENDIX C
PROOF OF LEMMA 4

Given system parameters (�,↵), we know from the proof
of Lemma 3 that the form of the Optimal Relaxed Policy,
denoted by �⇤, does not change with the number N of
users. Since �⇤ schedules each channel independently, we
let vector "

k
= ["k0,1, · · · , "k0,⌧ , "ks , "k1,⌧ , · · · , "k1,1] denote the

steady state distribution of the belief value of a user in class
k under �⇤, with "ks +

P
c,h "

k
c,h = 1. Therefore,

E[Z

N
(1)] =

1

N
[�1N"

1, �2N"

2
] = [�1"

1, �2"
2
].

Since �⇤ is independent of N , "k is independent of N for
k = 1, 2. Therefore E[Z

N
(1)] is independent of the user

number N , which proves the lemma.
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