
1

Dynamic Rate Allocation in Fading Multiple Access

Channels
Ali ParandehGheibi, Atilla Eryilmaz, Asuman Ozdaglar, and Muriel Médard

Abstract— We consider the problem of rate allocation in a
fading Gaussian multiple-access channel (MAC) with fixed trans-
mission powers. Our goal is to maximize a general concave
utility function of transmission rates over the throughput capacity
region. In contrast to earlier works in this context that propose
solutions where a potentially complex optimization problem must
be solved in every decision instant, we propose a low-complexity
approximate rate allocation policy and analyze the effect of
temporal channel variations on its utility performance. To the best
of our knowledge, this is the first work that studies the tracking
capabilities of an approximate rate allocation scheme under fading
channel conditions.

We build on an earlier work to present a new rate allocation
policy for a fading MAC that implements a low-complexity
approximate gradient projection iteration for each channel mea-
surement, and explicitly characterize the effect of the speed of
temporal channel variations on the tracking neighborhood of
our policy. We further improve our results by proposing an
alternative rate allocation policy for which tighter bounds on the
size of the tracking neighborhood are derived. These proposed rate
allocation policies are computationally efficient in our setting since
they implement a single gradient projection iteration per channel
measurement and each such iteration relies on approximate
projections which has polynomial-complexity in the number of
users.

I. INTRODUCTION

Dynamic allocation of communication resources such as

bandwidth or transmission power is a central issue in multiple
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access channels in view of the time-varying nature of the

channel and interference effects. Most of the existing literature

on resource allocation in multiple access channels focuses on

specific communication schemes such as TDMA (time-division

multiple access) [1] and CDMA (code-division multiple access)

[2], [3] systems. An exception is the work by Tse et al. [4],

who introduced the notion of throughput capacity for the fading

channel with Channel State Information (CSI) and studied

dynamic rate allocation policies with the goal of maximizing

a linear utility function of rates over the throughput capacity

region.

An important literature relevant to our work appears in the

context of cross-layer design, where joint scheduling-routing-

flow control algorithms have been proposed and shown to

achieve utility maximization for concave utility functions while

guaranteeing network stability (e.g. [5], [6], [7], [8]). The com-

mon idea behind these schemes is to use properly maintained

queues to make dynamic decisions about new packet generation

as well as rate allocation.

Some of these works ([6], [7]) explicitly address the fading

channel conditions, and show that their policies can achieve

rates arbitrarily close to the optimal based on a design pa-

rameter choice. However, the rate allocation imposed by these

schemes requires that a large optimization problem requiring

global information be solved over a complex feasible set in

every time slot. Clearly, this may not always be possible due

to the limitations of the available information, or the processing

power, or the complexity intrinsic to the feasible set. In fact,

even in the absence of fading, the interference constraints

between nearby nodes’ transmissions may make the feasible set

so complex that the optimal rate allocation problem becomes

NP-hard (see [9]).

In the absence of fading, several works have proposed

and analyzed approximate randomized and/or distributed rate
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allocation algorithms for various interference models ([10], [5],

[11], [9], [12], [13]), and their effect on the utility maximization

is investigated in [9], [14]. However, no similar work exists

for fading channel conditions, where the changes in the fading

conditions coupled with the inability to solve the optimization

problem instantaneously make the solution much more chal-

lenging. In fact, it is not even clear what algorithm can be used

to achieve close to close-to-optimal performance.

In this work, we propose an approximate gradient projection

method and study its tracking capabilities when the channel

conditions vary over time. In our algorithm, the solution is

updated in every time slot in a direction to increase the

utility function at that time slot. But, since the channel may

vary between time-slots, the extend of these temporal channel

variations become critical to the performance. We explicitly

quantify the impact of the speed of fading on the performance

of the policy, both for the worst-case and the average behavior.

Our results also capture the effect of the degree of concavity

of the utility functions on the average performance.

Other than the papers cited above, our work is also related to

the work of Vishwanath et al. [15] which builds on [4] and takes

a similar approach to the rate and power allocation problem for

linear utility functions. Other works address different criteria

for resource allocation including minimizing the weighted sum

of transmission powers [16], and considering Quality of Service

(QoS) constraints [17].

The remainder of this paper is organized as follows: In

Section II, we introduce the model and describe the capacity

region of a multiple-access channel. In Section III, we consider

the utility maximization problem in fading channel, and present

a rate allocation policy and characterize the tracking neighbor-

hood in terms of the maximum speed of fading. In Section IV,

we provide an alternative rate allocation policy and provide a

bound on the size of tracking neighborhood as a function of

the average speed of fading. Finally, we give our concluding

remarks in Section V.

Regarding the notation, we denote by xi the i-th component

of a vector x. We denote the nonnegative orthant by Rn
+, i.e.,

Rn
+ = {x ∈ Rn | x ≥ 0}. We write x′ to denote the transpose

of a vector x. The exact projection operation on a convex set

is denoted by P .

II. SYSTEM MODEL

We consider M users sharing the same media to communi-

cate to a single receiver. We model the channel as a Gaussian

multiple access channel with flat fading effects

Y (n) =
M∑
i=1

√
Hi(n)Xi(n) + Z(n), (1)

where Xi(n) are the transmitted waveform with average power

Pi, Hi(n) is the channel state corresponding to the i-th user at

time slot n, and Z(n) is white Gaussian noise with variance

N0. The channel state process is assumed to be ergodic and

bounded. We also assume that the channel states are known to

all users and the receiver 1. Throughout this work we assume

that the transmission powers are fixed and no prior knowledge

of channel statistics is available.

We model the speed of fading as follows:

|Hi(n + 1)−Hi(n)| = V i
n, for all n, i = 1, . . . ,M, (2)

where V i
n is a nonnegative random variable bounded from above

by v̂i, and {V i
n} are independent identically distributed (i.i.d.)

for fixed i. Under slow fading conditions, the distribution of

V i
n is concentrated around zero.

We first consider the non-fading case where the channel state,

H , is fixed. The capacity region of the Gaussian multiple-

access channel with no power control is described as follows

[18]:

Cg(P ,H) =
{

R ∈ RM
+ :

∑
i∈S

Ri ≤ C
( ∑

i∈S

HiPi, N0

)
,

for all S ⊆M = {1, . . . ,M}
}

, (3)

where Pi and Ri are the i-th transmitter’s power and rate, re-

spectively. C(P,N) denotes Shannon’s formula for the capacity

of additive white Gaussian noise (AWGN) channel given by

C(P,N) =
1
2

log(1 +
P

N
) nats. (4)

For a multiple-access channel with fading, but fixed trans-

mission powers Pi, the throughput capacity region is obtained

by averaging the instantaneous capacity regions with respect to

the fading process [19]:

Ca(P ) =
{

R ∈ RM
+ :

∑
i∈S

Ri ≤ EH

[
C

( ∑
i∈S

HiPi, N0

)]
,

for all S ⊆ {1, . . . ,M}
}

, (5)

1This assumption is satisfied in practice when the receiver measures the
channels and feeds back the channel information to the users.
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where H is a random vector with the stationary distribution

of the fading process. Let us define the notion of boundary or

dominant face for any of the capacity regions defined above.

Definition 1: The dominant face or boundary of a capacity

region, denoted by F(·), is defined as the set of all M -tuples

in the capacity region such that no component can be increased

without decreasing others while remaining in the capacity

region.

III. RESOURCE ALLOCATION FOR A FADING CHANNEL

The goal of the dynamic resource allocation problem is

to find a rate allocation policy, R, which is a map from

the fading state h to the transmission rates, R(h) =

(R1(h), . . . ,RM (h)). In the following we define the optimal

rate allocation policy with respect to utility function, u(·).
Definition 2: [Optimal Policy] The optimal rate allocation

policy denoted by R∗(·) is a mapping that satisfies R∗(H) ∈
Cg

(
P∗(H),H

)
for all H , such that

EH [R∗(H)] = R∗ ∈ argmax u(R)

subject to R ∈ Ca(P ) (6)

The utility function u(R) is assumed to satisfy the following

conditions.

Assumption 1: The following conditions hold:

(a) The utility function u(R) is concave with respect to vector

R.

(b) u(R) is monotonically non-decreasing with respect to Ri,

for i = 1, . . . ,M .

(c) There exists a scalar B such that

‖g‖ ≤ B, for all g ∈ ∂u(R) and all R,

where ∂u(R) denotes the subdifferential of u at R, i.e.,

the set of all subgradients 2 of u at R.

(d) If R† = argmaxR∈Cu(R), then there exists a positive

scalar A such that

|u(R†)−u(R)| ≥ A‖R†−R‖2, for all R ∈ Cg(P ,H).

Assumption 1(c) imposes a bound on subgradients of the

utility function. In this paper, it is sufficient to have a utility

function with bounded subgradient only in a neighborhood of

optimal solution, but weakening Assumption 1(c) may require

2The vector g is a subgradient of a concave function f : D → R at x0, if
and only if f(x)− f(x0) ≤ g′(x− x0) for all x ∈ D.

unnecessary technical details. Assumption 1(d) is a strong

concavity type assumption which is satisfied for most of the

utility functions. In fact, strong concavity of the utility implies

Assumption 1(d), but it is not necessary.

Definition 3: [Greedy Policy] A greedy rate allocation pol-

icy, denoted by R̄, is given by

R̄(H) = argmax u(R)

subject to R ∈ Cg(P ,H) (7)

i.e., for each channel state, the greedy policy chooses the rate

vector that maximizes the utility function over the correspond-

ing capacity region.

Note that the greedy policy is not necessarily optimal for

general concave utility functions, i.e., the expected achieved

rate does not maximize the utility over the throughput capacity

region. However, the performance difference, i.e., utility differ-

ence between the expected rates assigned by the greedy and the

optimal policy, is bounded and the bounds can be characterized

in terms of channel variations and the structure of the utility

function [20].

The maximization problem in (7) is a convex program and

the optimal solution can be obtained by iterative methods such

as the gradient projection method with approximate projection

studied in [21]. The k-th iteration of this method is given by

Rk+1 = P̃(Rk + αkgk), gk ∈ ∂u(Rk), (8)

where gk is a subgradient of u at Rk, and αk denotes the

stepsize. P̃ denotes the approximate projection operator which

is defined in the following.

Definition 4: Let X = {x ∈ Rn|Ax ≤ b} where A has non-

negative entries. Let y ∈ Rn violate the constraint a′ix ≤ bi,

for i ∈ {i1, . . . , il}. The approximate projection of y on X ,

denoted by P̃ , is given by

P̃(y) = Pi1(. . . (Pil−1(Pil
(y)))),

where Pik
denotes the exact projection on the hyperplane {x ∈

Rn|a′ik
x = bik

}.

An example of approximate projection on a two-user

multiple-access capacity region is illustrated in Figure 1.

Note that the result of projection is not necessarily unique.

However it is pseudo-nonexpansive, i.e., the distance between

any feasible point and the projected point is smaller than its

distance to the original point. Under Assumption 1 and specific
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Fig. 1. Approximate projection of R on a two-user MAC region

stepsize rules, we established the convergence of the iterations

in (8) to the optimal solution in (7) by using the pseudo-

nonexpansiveness of the approximate projection (see [21],

Proposition 2). We also showed by exploiting the polymatroid

structure of the capacity region, each iteration in (8) can be

computed in O(M3 log M) time. However, for each channel

state, finding even a ”near-optimal” solution of the problem in

(7) requires a large number of iterations, making the online

evaluation of the greedy policy impractical. In the following

section, we introduce an alternative rate allocation policy, which

implements a single gradient projection iteration of the form (8)

per time slot.

IV. APPROXIMATE RATE ALLOCATION POLICY

In this section, we assume that the channel state information

is available instantly at each time slot n, and the computational

resources are limited such that a single iteration of the gradient

projection method in (8) can be implemented in each time slot.

Definition 5: [Approximate Policy] Given some fixed integer

k ≥ 1, we define the approximate rate allocation policy, R̃, as

follows:

R̃
(
H(0)

)
= R̄

(
H(0)

)
,

R̃
(
H(n)

)
= Rτ

t , for all n ≥ 1, (9)

where

τ = argmax
0≤j<k−1

u(Rj
t ), t =

⌊
n− 1

k

⌋
, (10)

and Rj
t ∈ RM is given by the following gradient projection

iterations

R0
t = P̃t

[
R̃

(
H(kt)

)]
,

Rj+1
t = P̃t

[
Rj

t + αjgj
]
, j = 1, . . . , k − 1, (11)

where gj is a subgradient of u(·) at Rj , αj denotes the stepsize

and P̃t is the approximate projection on Cg(P ,H(kt)).

For k = 1, (11) reduces to taking only one gradient

projection iteration at each time slot. For k > 1, the proposed

rate allocation policy essentially let the channel state change for

a block of k consecutive time slots, and then takes k iterations

of the gradient projection method with approximate projection.

Note that to compute the policy at time slot n, we are using the

channel state information at time slots kt, k(t−1), . . . Hence, in

practice the channel measurements need to be computed every

k time slots.

There is a tradeoff in choosing k, because taking only one

gradient projection step may not be sufficient to get close

enough to the greedy policy’s operating point. Moreover, for

large k the new operating point of the greedy policy can be

far from the previous one, and k iterations may be insufficient

again. So the parameter k should be chosen optimally to obtain

the best performance for the approximate policy.

Before stating the main result, let us introduce some defini-

tions and lemmas.

Definition 6: Let Q be a polyhedron described by a set of

linear constraints, i.e.,

Q = {x ∈ Rn : Ax ≤ b} . (12)

Define the expansion of Q by δ, denoted by Eδ(Q), as the

polyhedron obtained by relaxing all the constraints in (12), i.e.,

Eδ(Q) = {x ∈ Rn : Ax ≤ b + δ1} , where 1 is the vector of

all ones.

Definition 7: Let X and Y be two polyhedra described by a

set of linear constraints. Let Ed(X) be an expansion of X by

relaxing its constraints by d. The distance dH(X, Y ) between

X and Y is defined as the minimum scalar d such that X ⊆
Ed(Y ) and Y ⊆ Ed(X).

The next lemma shows that if the distance between two

capacity regions is small, the distance between the optimal

solutions of maximizing the utility function over these regions

is also small.

Lemma 1: Let H1 and H2 be two different channel states.

Also, let R∗
1 and R∗

2 be the optimal solution of maximizing a

utility function over Cg(P ,H1) and Cg(P ,H2), respectively.

If the utility satisfies Assumption 1, and

dH

(
Cg(P ,H1), Cg(P ,H2)

)
≤ δ

Then, we have

‖R∗
1 −R∗

2‖ ≤ δ
1
2

[
δ

1
2 +

(B

A

) 1
2
]

. (13)



5

Proof: See Appendix I.

In the following lemma, we translate the model for the speed

of fading in terms of channel state variations into changes in

the corresponding capacity regions.

Lemma 2: Let {[Hi(n)]i=1,...,M} be the fading process that

satisfies condition in (2). We have

dH

(
Cg

(
P ,H(n + 1)

)
, Cg

(
P ,H(n)

))
≤ Wn, (14)

where {Wn} are nonnegative independent identically dis-

tributed random variables bounded from above by ŵ =
1
2

∑M
i=1 v̂iPi, where v̂i is an upperbound on the process {V i

n}
and Pi is the i-th user’s transmission power.

Proof: By Definition 7 we have

dH

(
Cg

(
P ,H(n + 1)

)
, Cg

(
P ,H(n)

))
= max

S⊆M

1
2

∣∣∣∣ log
(
1 +

∑
i∈S(Hi(n + 1)−Hi(n))Pi

1 +
∑

i∈S Hi(n)Pi

)∣∣∣∣
≤ max

S⊆M

∑
i∈S |Hi(n + 1)−Hi(n)|Pi

2(1 +
∑

i∈S Hi(n)Pi)

≤ 1
2

M∑
i=1

|Hi(n + 1)−Hi(n)|Pi =
1
2

M∑
i=1

V i
nPi. (15)

Therefore, (14) is true for Wn = 1
2

∑M
i=1 V i

nPi. Since V i
n’s are

i.i.d. and bounded above by v̂i
n, Wn’s are i.i.d. and bounded

from above by 1
2

∑M
i=1 v̂iPi.

The following lemma by Nedić and Bertsekas [22] addresses

the convergence rate of the gradient projection method with

constant stepsize.

Lemma 3: Let rate allocation policies R̄ and R̃ be given by

Definition 3 and Definition 5, respectively. Also, let Assumption

1 hold and the stepsize αn be fixed to some positive constant

α. Then for a positive scalar ε we have

u
(
R̃

(
H(n)

))
≥ u

(
R̄

(
H(kt)

))
− αB2 + ε

2
, (16)

where k satisfies

k ≥
⌊‖R0

t − R̄
(
H(kt)

)
‖2

αε

⌋
. (17)

Proof: See Proposition 2.3 of [22].

We next state our main result, which shows that the approx-

imate rate allocation policy given by Definition 5 tracks the

greedy policy within a neighborhood which is quantified as a

function of the maximum speed of fading, the parameters of

the utility function, and the transmission powers.

Theorem 1: Let Assumption 1 hold and the rate allocation

policies R̄ and R̃ be given by Definition 3 and Definition 5,

respectively. Let k = b( 2B
Aw′ )

2
3 c and fix the stepsize to α =(

16A
B2

) 1
3 w′

2
3 in Eq. (11), where w′ = ŵ

1
2
(
ŵ

1
2 + (B

A )
1
2
)
, ŵ is

the upperbound on Wn as defined in Lemma 2, A and B are

system parameters depending on the structure of utility function

as in Assumption 1(c),(d). Then, we have

‖R̃
(
H(n)

)
− R̄

(
H(n)

)
‖ ≤ 2θ = 2(

2B

A
)

2
3 w′

1
3 . (18)

Proof: First, we show that

‖R̃
(
H(n)

)
− R̄

(
H(kt)

)
‖ ≤ θ = (

2B

A
)

2
3 w′

1
3 , (19)

where t = bn−1
k c. The proof is by induction on t. For t = 0 the

claim is trivially true. Now suppose that (19) is true for some

positive t. Hence, it also holds for n = k(t + 1) by induction

hypothesis, i.e.,

‖R0
t+1 − R̄

(
H(kt)

)
‖ ≤ θ. (20)

On the other hand, by Lemma 1 and Lemma 2 we have

‖R̄
(
H(k(t + 1))

)
− R̄

(
H(kt)

)
‖ ≤ kw′ ≤ θ. (21)

Therefore, by triangle inequality we have the following

‖R0
t+1 − R̄

(
H(k(t + 1))

)
‖ ≤ 2θ. (22)

After plugging the corresponding values of α and θ, it is

straightforward to show that (17) holds for ε = αB2. Thus,

we can apply Lemma 3 to show∣∣∣∣u(
R̃

(
H(n)

))
− u

(
R̄

(
H(k(t + 1))

))∣∣∣∣ ≤ αB2. (23)

By Assumption 1(d) we can write

‖R̃
(
H(n)

)
− R̄

(
H(k(t + 1))

)
‖ ≤

(αB2

A

) 1
2 = θ. (24)

Therefore, the proof of (19) is complete by induction.

Again by applying Lemma 1 and Lemma 2 we have

‖R̄
(
H(n)

)
− R̄

(
H(kt)

)
‖ ≤ kw′ ≤ θ, (25)

and the desired result directly follows from (19) and (25) by

triangle inequality.

It is straightforward to show that the parameters k and α

in Theorem 1 are designed such that the smallest tracking

neighborhood, θ, is obtained for the approximate policy pre-

sented in Definition 5 with constant stepsize. The proof is by

parameterizing θ, the size of the tracking neighborhood, in

terms of k and minimizing θ(k) by relaxing k to be a real and
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differentiating with respect to k. We eliminate the full proof for

brevity. Theorem 1 provides a bound on the size of the tracking

neighborhood as a function of the maximum speed of fading,

denoted by ŵ, which may be too conservative. It is of interest

to provide a rate allocation policy and a bound on the size of

its tracking neighborhood as a function of the average speed of

fading. The next section addresses this issue.

V. IMPROVED APPROXIMATE RATE ALLOCATION POLICY

In this section, we design an efficient rate allocation policy

that tracks the greedy policy within a neighborhood char-

acterized by the average speed of fading which is typically

much smaller than the maximum speed of fading. We consider

policies which can implement one gradient projection iteration

per time slot.

Unlike the approximate policy given by (9) which uses the

channel state information once in every k time slots, we present

an algorithm which uses the channel state information in all

time slots. Roughly speaking, this method takes fixed a number

of gradient projection iterations only after the change in the

channel state has reached a certain threshold.

Definition 8: [Improved Approximate Policy] Let {Wn} be

the sequence of nonnegative random variables as defined in

Lemma 2, and γ be a positive constant. Define the sequence

{Ti} as

T0 = 0,

Ti+1 = min{t |
t∑

n=Ti

Wn ≥ γ}. (26)

Define the improved approximate rate allocation policy, R̂,

with parameters γ and k, as the following:

R̂
(
H(0)

)
= R̄

(
H(0)

)
,

R̂
(
H(n)

)
= Rτ

t , for all n ≥ 1, (27)

where

t = max{i | Ti < n}, (28)

τ = argmax
0≤j<k−1

u(Rj
t ), (29)

and Rj
t ∈ RM is given by the following gradient projection

iterations

R0
t = P̃t

[
R̂

(
H(Tt)

)]
,

Rj+1
t = P̃t

[
Rj

t + αjgj
]
, j = 1, . . . , k − 1, (30)

where gj is a subgradient of u(·) at Rj , αj denotes the stepsize

and P̃t is the approximate projection on Cg(P ,H(Tt)).

Theorem 2: Let t be as defined in (28), and let w̄ denote the

expected value of Wn. If k = γ
w̄ , then we have

lim
n→∞

n

tk
= 1, with probability 1. (31)

Proof: The sequence {Ti} is obtained as the random walk

generated by Wn’s cross the threshold level γ. Since Wn’s

are positive random variables, we can think of the threshold

crossing as a renewal process, denoted by N(·), with inter

arrivals Wn.

We can rewrite the limit as follows

lim
n→∞

n−N(tγ) + N(tγ)
tk

= lim
n→∞

n−N(tγ)
tk

+ w̄
N(tγ)

tγ
.

(32)

Since the random walk will hit the threshold with probability 1,

the first term goes to zero with probability 1. Also, by Strong

law for renewal processes the second terms goes to 1 with

probability 1 (see [23], p.60).

Theorem 2 essentially guarantees that the number of gradient

projection iterations is the same as the number of channel

measurements in the long run with probability 1.

Theorem 3: Let Assumption 1 hold and the rate allocation

policies R̄ and R̂ be given by Definition 3 and Definition 8,

respectively. Also, let γ = c(B
A )

3
4 w̄

1
4 , and k = b γ

w̄ c and fix

the stepsize to α = Aγ2

B2 in (30), where c ≥ 1 is a constant

satisfying the following equation

(c2 − 1)8

28c4
= ŵ. (33)

Then

‖R̂
(
H(n)

)
− R̄

(
H(n)

)
‖ ≤ 2γ + (

γB

A
)

1
2 . (34)

Proof: We follow the line of proof of Theorem 1. First,

by induction on t we show that

‖R̂
(
H(n)

)
− R̄

(
H(Tt)

)
‖ ≤ γ, (35)

where t is defined in (28). The base is trivial. Similar to (20),

by induction hypothesis we have

‖R0
t+1 − R̄

(
H(Tt)

)
‖ ≤ γ. (36)

By definition of Ti in (26) we can write

dH

(
Cg

(
P ,H(Tt+1)

)
, Cg

(
P ,H(Tt)

))
≤ γ. (37)

Thus, by Lemma 1, we have

‖R̄
(
H(Tt+1)

)
− R̄

(
H(Tt)

)
‖ ≤ γ

1
2
(
γ

1
2 + (

B

A
)

1
2
)
. (38)
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Therefore, by combining (36) and (38) by triangle inequality

we obtain

‖R0
t+1 − R̄

(
H(Tt+1)

)
‖ ≤ 2γ + (

γB

A
)

1
2 . (39)

Using the fact that w̄ ≤ ŵ = (c2−1)8

28c4 , after a few steps of

straightforward manipulations we can show that

‖R0
t+1 − R̄

(
H(Tt+1)

)
‖2 ≤

(
2γ + (

γB

A
)

1
2

)2

≤ c4 γB

A
. (40)

Now by plugging in (17) the values of α and γ in terms of

system parameters we can verify that

k =
⌊ γ

w̄

⌋
=

⌊
c4 γB

A

A γ2

B2 Aγ2

⌋
≥

⌊‖R0
t+1 − R̄

(
H(Tt+1)

)
‖2

αε

⌋
.

(41)

Hence, we can apply Lemma 3 for ε = Aγ2, and conclude∣∣∣∣u(
R̂

(
H(n)

))
− u

(
R̄

(
H(Tt+1)

))∣∣∣∣ ≤ αB2. (42)

By exploiting Assumption 1(d) we have

‖R̂
(
H(n)

)
− R̄

(
H(Tt+1)

)
‖ ≤

(αB2

A

) 1
2 = γ. (43)

Therefore, the proof of (35) is complete by induction. Similarly

to (38) we have

‖R̄
(
H(n)

)
− R̄

(
H(Tt)

)
‖ ≤ γ

1
2
(
γ

1
2 + (

B

A
)

1
2
)
, (44)

and (34) follows immediately from (35) and (44) by invoking

triangle inequality.

Theorem 2 and Theorem 3 guarantee that the presented

rate allocation policy tracks the greedy policy within a small

neighborhood while with probability 1, only one gradient pro-

jection iteration is computed per time slot. The neighborhood

is characterized in terms of the average behavior of channel

variations and vanishes as the fading speed decreases.

VI. CONCLUSION

We study the problem of rate allocation in a fading multiple

access channel with no power control from an information the-

oretic point of view. Our goal is to approximate the optimal rate

allocation policy, which yields an average rate that maximizes

a general concave utility function of transmission rates over the

throughput capacity region of the multiple-access channel.

We present a dynamic rate allocation policy which takes

a block of channel measurements and implements the same

number of gradient projection iterations with approximate pro-

jection at the end of each block. This rate allocation policy

tracks the greedy policy within a small neighborhood whose

size decreases as a function of the maximum speed of fading.

In order to provide a bound on the tracking neighborhood in

terms of average speed of fading, we present an alternative rate

allocation policy. This policy adaptively selects variable block

lengths for channel measurements using feedback information

about the current channel states. It implements a fixed number

of gradient iterations at the end of these blocks. We show that

the ratio of the total number of channel measurements and the

number of gradient iterations converges to 1 with probability

one. We also provide a bound on the size of the neighborhood

with which the new policy tracks the greedy policy as a function

of the average speed of fading. The proposed dynamic rate allo-

cation policies are efficiently implementable since they require

a single gradient projection step per channel measurement and

the projection can be done in time polynomial in the number

of users.

REFERENCES

[1] X. Wang and G.B. Giannakis. Energy-efficient resource allocation in time
division multiple-access over fading channels. Preprint, 2005.

[2] S.J. Oh, Z. Danlu, and K.M. Wasserman. Optimal resource allocation in
multiservice CDMA networks. IEEE Transactions on Wireless Commu-
nications, 2(4):811–821, 2003.

[3] J.B. Kim and M.L. Honig. Resource allocation for multiple classes of DS-
CDMA traffic. IEEE Transactions on Vehicular Technology, 49(2):506–
519, 2000.

[4] D. Tse and S. Hanly. Multiaccess fading channels part I: Polymatroid
structure, optimal resource allocation and throughput capacities. IEEE
Transactions on Information Theory, 44(7):2796–2815, 1998.

[5] X. Lin and N. Shroff. The impact of imperfect scheduling on cross-
layer rate control in multihop wireless networks. In Proceedings of IEEE
Infocom, Miami, FL, March 2005.

[6] A. Eryilmaz and R. Srikant. Fair resource allocation in wireless networks
using queue-length based scheduling and congestion control. In Proceed-
ings of IEEE Infocom, volume 3, pages 1794–1803, Miami, FL, March
2005.

[7] M.J. Neely, E. Modiano, and C. Li. Fairness and optimal stochastic
control for heterogeneous networks. In Proceedings of IEEE Infocom,
pages 1723–1734, Miami, FL, March 2005.

[8] A. Stolyar. Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm. Queueing Systems, 50(4):401–457, 2005.

[9] A. Eryilmaz, A. Ozdaglar, and E. Modiano. Polynomial complexity algo-
rithms for full utilization of multi-hop wireless networks. In Proceedings
of IEEE Infocom, Anchorage, AL, May 2007.

[10] L. Tassiulas. Linear complexity algorithms for maximum throughput
in radio networks and input queued switches. In Proceedings of IEEE
Infocom, pages 533–539, 1998.

[11] E. Modiano, D. Shah, and G. Zussman. Maximizing throughput in wire-
less networks via gossiping. In ACM SIGMETRICS/IFIP Performance,
2006.



8

[12] S. Sanghavi, L. Bui, and R. Srikant. Distributed link scheduling with
constant overhead, 2007. Technical Report.

[13] C. Joo, X. Lin, and N. Shroff. Performance limits of greedy maximal
matching in multi-hop wireless networks. In Proceedings of IEEE
Conference on Decision and Control, New Orleans LA, December 2007.

[14] A. Eryilmaz, A. Ozdaglar, D. Shah, and E. Modiano. Randomized
algorithms for optimal control of wireless networks, 2007. ICCOPT
Conference, Hamilton CA.

[15] S. Vishwanath, S.A. Jafar, and A. Goldsmith. Optimum power and rate
allocation strategies for multiple access fading channels. In Proceedings
of IEEE VTC, 2001.

[16] D. Yu and J.M. Cioffi. Iterative water-filling for optimal resource alloca-
tion in OFDM multiple-access and broadcast channels. In Proceedings
of IEEE GLOBECOM, 2006.

[17] K. Seong, R. Narasimhan, and J. Cioffi. Scheduling for fading multiple
access channels with heterogeneous QoS constraints. In Proceedings of
International Symposium on Information Theory, 2007.

[18] T.M. Cover and J.A. Thomas. Elements of Information Theory. John
Wiley and Sons, Inc., New York, New York, 1991.

[19] S. Shamai and A.D. Wyner. Information theoretic considerations for sym-
metric, cellular, multiple-access fading channels part I. IEEE Transactions
on Information Theory, 43(6):1877–1894, 1997.

[20] A. ParandehGheibi, A. Eryilmaz, A. Ozdaglar, and M. Medard. Resource
allocation in fading multiple-access channel. Preprint, 2007.

[21] A. Parandehgheibi, A. Ozdaglar, M. Medard, and A. Eryilmaz. Utility
maximization in multiple access channels. In Asilomar Conference on
Signals, Systems, and Computers, 2007.
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APPENDIX I

PROOF OF LEMMA 1

Without loss of generality assume that u(R∗
2) ≥ u(R∗

1).

To simplify the notations for capacity regions, let C1 be a

polymatroid, i.e.,

C1 =
{

R ∈ RM
+ :

∑
i∈S

Ri ≤ f(S), for all S ⊆M
}

, (45)

for some submodular function f(S), and C2 be an expansion of

C1 by δ. We first show that for every R ∈ F(C2), there exists

a vector R′ ∈ F(C1) such that ‖R − R′‖ ≤ δ, where F(·)
denotes the dominant face of a capacity region as in Definition

1.

Assume R is a vertex of C2. Then the polymatroid structure

of C2 implies that R is the intersection of M constraints

corresponding to a chain of subsets of M. Hence, there is some

k ∈M such that Rk = f({k}) + δ. Choose R′ as follows

R′i =

{
Ri − δ, i = k

Ri, otherwise.
(46)

R′ is obviously in a δ-neighborhood of R. Moreover, the

constraint corresponding to the set M is active for R′, so we

just need to show that R′ is feasible in order to prove that it

is on the dominant face. First, let us consider the sets S that

contain k. We have∑
i∈S

R′i =
∑
i∈S

Ri − δ ≤ f(S). (47)

Second, consider the case that k /∈ S.∑
i∈S

R′i =
∑

i∈S∪{k}

R′i −Rk + δ

≤ f(S ∪ {k}) + δ −Rk

≤ f(S) + f({k}) + δ −Rl

= f(S).

where the first inequality come from (47), and the second

inequality is valid because of the submodularity of the function

f(·).
The previous argument establishes that the claim is true

for each vertex Rj of the dominant face. But every other

point R on the dominant face can be represented as a convex

combination of the vertices, i.e.,

R =
∑

j

αjRj ,
∑

j

αj = 1, αj ≥ 0.

Using the convexity of the norm function, it is quite straight-

forward to show that the desired R′ is given by

R′ =
∑

j

αjR
′
j ,

where R′
j is obtained for each Rj in the same manner as in

(46).

So we have shown that there exists some R on the dominant

face of C1 = Cg(P ,H1) such that ‖R∗
2−R‖ ≤ δ. Thus, from

the hypothesis and the fact that u(R∗
2) ≥ u(R∗

1) ≥ u(R), we

have

u(R∗
2)−u(R) = |u(R∗

2)−u(R)| ≤ B‖R∗
2−R‖ ≤ Bδ. (48)

Now suppose that ‖R∗
1 −R‖ > (B

A δ)
1
2 , hence by Assumption

1(d) we have

u(R∗
1)− u(R) = |u(R∗

1)− u(R)| > Bδ. (49)
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By subtracting (48) from (49) we obtain u(R∗
2) < u(R∗

1)

which is a contradiction. Therefore, ‖R∗
1 −R‖ ≤ (B

A δ)
1
2 , and

the desired result follows immediately by invoking the triangle

inequality.


