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Abstract—In this paper, we consider the problem of rate and
power allocation in a multiple-access channel (MAC). Our objec-
tive is to obtain rate and power allocation policies that maximize
a general concave utility function of average transmission rates
on the information-theoretic capacity region of the MAC without
using queue-length information. First, we address the utility max-
imization problem in a nonfading channel and present a gradient
projection algorithm with approximate projections. By exploiting
the polymatroid structure of the capacity region, we show that the
approximate projection can be implemented in time polynomial in
the number of users. Second, we present optimal rate and power
allocation policies in a fading channel where channel statistics are
known. For the case that channel statistics are unknown and the
transmission power is fixed, we propose a greedy rate allocation
policy and characterize the performance difference of this policy
and the optimal policy in terms of channel variations and structure
of the utility function. The numerical results demonstrate superior
convergence rate performance for the greedy policy compared to
queue-length-based policies. In order to reduce the computational
complexity of the greedy policy, we present approximate rate allo-
cation policies which track the greedy policy within a certain neigh-
borhood.

Index Terms—Fading channel, multiple access, power control,
rate splitting, resource allocation, utility maximization.

I. INTRODUCTION

D YNAMIC allocation of communication resources such
as bandwidth or transmission power is a central issue in

multiple-access channels (MACs) in view of the time-varying
nature of the channel and the interference effects. Most of the
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existing literature focuses on specific communication schemes
such as time-division multiple access (TDMA) [1], code-di-
vision multiple access (CDMA) [2], [3], and orthogonal fre-
quency-division multiplexing (OFDM) [4] systems. An excep-
tion is the work by Tse and Hanly [5], who consider the no-
tion of throughput capacity for the fading channel with channel-
state information (CSI). The throughput capacity is the notion of
Shannon capacity applied to the fading channel, where the code-
word length can be arbitrarily long to average over the fading of
the channel. Tse and Hanly [5] consider allocation of rate and
power to maximize a linear utility function of the transmission
rates over the throughput region, which characterizes the points
on the boundary of the throughput capacity region.

In this paper, we consider the problem of rate and power allo-
cation in a MAC with perfect CSI. Contrary to the linear case in
[5], we consider maximizing a general utility function of trans-
mission rates. Such a general concave utility function allows
us to capture different performance metrics such as fairness or
delay (cf., [6] and [7]).

Given a utility function, there are different notions of op-
timality for resource allocation policies. Below, we give an
overview of three criteria for optimality of a rate allocation
policy.

1) Long-term optimality: The optimal policy in this case max-
imizes the utility of the expected achieved rate over the
throughput region. This type of metric is interesting when
the communication period is significantly large and oscil-
lations in the allocated rate do not matter, e.g., when down-
loading a large file.
Various works in the literature such as the works by Tse
and Hanly [5], Eryilmaz and Srikant [8], and Neely et al.
[9] consider this notion of optimality.

2) Short-term optimality: The optimal policy in this case max-
imizes the utility function over the instantaneous capacity
region at each time slot. This metric is normally employed
for delay-sensitive traffic and traffic bursts as well as un-
certain environments.
Note that maximizing the expected utility of the allocated
rates requires short-term optimality for almost all channel
states. Also, we will see later in this paper that short-term
optimality criterion coincides with the long-term opti-
mality for linear utility functions.

3) Discounted long-term optimality: In this case, the optimal
policy maximizes the utility of a discounted average of the
allocated rates over the throughput region. This optimality
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criterion lies between the two extremes presented above.
This criterion allows choosing the discount factor so that
we can adapt to the latency requirement of the traffic.
Among several works in the literature addressing this
criterion, the works by Agrawal and Subramanian [10]
and Stolyar [11] are closely related to our setup. Agrawal
and Subramanian [10] develop optimal rate allocation
policies under a strict-convexity-type assumption for the
capacity region. Stolyar relaxes this assumption in [11] by
focusing on a fixed (not time dependent) discount factor,
and studying the asymptotic optimality when the discount
factor goes to one.

In this paper, we focus on both long-term and short-term opti-
mality criteria of resource allocation policies. Our contributions
can be summarized as follows.

We first consider a nonfading MAC where we introduce a gra-
dient projection algorithm for the problem of maximizing a con-
cave utility function of transmission rates over the capacity re-
gion. We establish the convergence of the method to the optimal
rate vector. Since the capacity region of the MAC is described
by a number of constraints exponential in the number of users,
the projection operation used in the method can be computation-
ally expensive. To reduce the computational complexity, we in-
troduce a new method that utilizes approximate projections. By
exploiting the polymatroid structure of the capacity region, we
show that the approximate projection operation can be imple-
mented in time polynomial in number of users by using submod-
ular function minimization algorithms. Moreover, we present a
more efficient algorithm for the approximate projection problem
which relies on rate splitting [12]. This algorithm also provides
the extra information that allows the receiver to decode the mes-
sage by successive cancellation.

Second, we consider the case where the transmitters do not
have the power control feature and channel statistics are not
known. We study long-term and short-optimal (greedy) rate al-
location policies. We show that the short-term optimal policy,
which greedily maximizes the utility function for any given
channel state, is suboptimal in the long-term sense for general
nonlinear utility functions. However, we can bound the long-
term performance difference between the greedy and long-term
optimal policies. We show that this bound is tight in the sense
that it goes to zero either as the utility function tends to a linear
function of the rates or as the channel variations vanish.

The short-term optimal policy requires exact solution of a
nonlinear program in each time slot, which makes it compu-
tationally intractable. To alleviate this problem, we present ap-
proximate rate allocation policies based on the gradient projec-
tion method with approximate projection and study its tracking
capabilities when the channel conditions vary over time. In our
algorithm, the solution is updated in every time slot in a direc-
tion to increase the utility function at that time slot. But, since
the channel may vary between time slots, the level of these tem-
poral channel variations becomes critical to the performance.
We explicitly quantify the impact of the speed of fading on the
performance of the policy, both for the worst case and the av-
erage speed of fading. Our results also capture the effect of the
degree of concavity of the utility functions on the average per-
formance.

Finally, we study jointly optimal rate and power allocation
problem in a fading channel where channel statistics are known
and transmission power can be controlled at the transmitters.
Owing to strict convexity properties of the capacity region along
the boundary, we show that the resource allocation problem for
a general concave utility is equivalent to another problem with
a linear utility. Hence, the optimal resource allocation policies
are obtained by applying the results in [5] for the linear utility.
Given a general utility function, the conditional gradient method
is used to obtain the corresponding linear utility.

An important literature relevant to our work appears
in the context of cross-layer design, where joint sched-
uling-routing-flow control algorithms have been proposed
and shown to achieve utility maximization for concave utility
functions while guaranteeing network stability (e.g., [8], [9],
[13], and [14]). The common idea behind these schemes is to
use properly maintained queues to make dynamic decisions
about new packet generation as well as rate allocation.

Some of these works [8], [9] explicitly address the fading
channel conditions, and show that the associated policies can
achieve rates arbitrarily close to the optimal based on a de-
sign parameter choice. However, the rate allocation with these
schemes requires that a large optimization problem requiring
global queue-length information be solved over a complex fea-
sible set in every time slot. Clearly, this may not always be pos-
sible owing to the limitations of the available information, the
processing power, or the complexity intrinsic to the feasible set.
Requirement for queue-length information may impose much
more overhead on the system than CSI. On the other hand, even
in the absence of fading, the interference constraints among
nearby nodes’ transmissions may make the feasible set so com-
plex that the optimal rate allocation problem becomes NP-hard
(see [15]). Moreover, the convergence results of queue-length-
based policies [8], [9] are asymptotic, and our simulation results
show that such policies may suffer from poor convergence rate.
In fact, duration of a communication session may not be suffi-
cient for these algorithms to approach the optimal solution while
channel-state-based policies such as the greedy policy seem to
have superior performance when communication time is lim-
ited, even though the greedy policy does not use queue-length
information.

In the absence of fading, several works have proposed and
analyzed approximate randomized and/or distributed rate al-
location algorithms for various interference models to reduce
the computational complexity of the centralized optimization
problem of the rate allocation policy [13], [15]–[19]. The effect
of these algorithms on the utility achieved is investigated in [15]
and [20]. However, no similar work exists for fading channel
conditions, where the changes in the fading conditions coupled
with the inability to solve the optimization problem instanta-
neously make the solution much more challenging.

Other than the papers cited above, our work is also related
to the work of Vishwanath et al. [21] which builds on [5] and
takes a similar approach to the resource allocation problem for
linear utility functions. Other works address different criteria
for resource allocation including minimizing delay by a queue-
length-based approach [22], minimizing the weighted sum of
transmission powers [23], and considering quality-of-service
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(QoS) constraints [24]. In contrast to this literature, we consider
the utility maximization framework for general concave utility
functions.

The remainder of this paper is organized as follows. In
Section II, we introduce the model and describe the capacity
region of a fading MAC. In Section III, we consider the utility
maximization problem in a nonfading channel and present the
gradient projection method with approximate projection. In
Section IV, we address the optimal rate allocation problem
when the transmission powers are fixed and channel statistics
are not available. We also present approximate rate allocation
policies and study their tracking behavior. In Section V, we
generalize the problem to the case where power control is
available, and propose jointly optimal rate and power allocation
schemes. Section VI provides the simulation results, and we
give our concluding remarks in Section VII.

Regarding the notation, we denote by the th component
of a vector . We write to denote the transpose of a vector .
All vectors in this paper are assumed to be column vectors, and
the transpose notation is used for row vectors. We denote the
nonnegative orthant by , i.e., .
We use the notation for the probability of an event in
the Borel -algebra on . The exact projection operation on
a closed convex set is denoted by , i.e., for any closed convex
set and , we have ,
where denotes the Euclidean norm.

II. SYSTEM MODEL

We consider transmitters sharing the same media to
communicate to a single receiver. We model the channel as a
Gaussian MAC with flat fading effects

(1)

where and are the transmitted waveform and the
fading process of the th transmitter, respectively, and is
bandlimited Gaussian noise with variance . We assume that
the fading processes of all transmitters are jointly stationary and
ergodic, and the stationary distribution of the fading process has
continuous density. We assume that all the transmitters and the
receiver have instant access to CSI. In practice, the receiver mea-
sures the channels and feeds back the channel information to the
transmitters. The implicit assumption in this model is that the
channel variations are much slower than the data rate, so that
the channel can be measured accurately at the receiver and the
amount of feedback bits is negligible compared to that of trans-
mitting information.

Definition 1: The temporal variation in fading is modeled as
follows:

for all (2)

where the ’s are nonnegative random variables independent
across time slots for each . We assume that for each , the
random variables are uniformly bounded from above by ,
which we refer to as the maximum speed of fading. Under slow

fading conditions, the distribution of is expected to be more
concentrated around zero.

Consider the nonfading case where the channel-state vector is
fixed. The capacity region of the Gaussian MAC with no power
control is described as follows [25]:

for all (3)

where and are the th transmitter’s power and rate, respec-
tively. denotes Shannon’s formula for the capacity of
the additive white Gaussian noise (AWGN) channel given by

nats (4)

For a MAC with fading, but fixed transmission powers ,
the throughput capacity region is given by averaging the instan-
taneous capacity regions with respect to the fading process [26]

for all (5)

where is a random vector with the stationary distribution of
the fading process.

A power control policy is a function that maps any given
fading state to the powers allocated to the transmitters

. Similarly, we can define the rate alloca-
tion policy as a function that maps the fading state to the
transmission rates . For any given power-control policy ,
the capacity region follows from (5) as

for all (6)

Tse and Hanly [5] have shown that the throughput capacity of a
multiple-access fading channel is given by

(7)

where for all is the set of all
power control policies satisfying the average power constraint.
Let us define the notion of boundary or dominant face for any
of the capacity regions defined above.

Definition 2: The dominant face or boundary of a capacity
region, denoted by , is defined as the set of all -tuples
in the capacity region such that no component can be increased
without decreasing others while remaining in the capacity re-
gion.
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III. RATE ALLOCATION IN A GAUSSIAN MAC

In this section, we address the problem of finding the optimal
operation rates in a nonfading Gaussian MAC from utility max-
imization point of view. Without loss of generality, we fix the
channel-state vector to unity throughout this section, and de-
note the capacity region by a simpler notation instead of

, where denotes the transmission power. A rate
vector is called optimal if it is a solution to the following
utility maximization problem for a -user channel:

maximize

subject to (8)

where and are th user rate and power, respectively.
The utility function is assumed to satisfy the following
conditions.

Assumption 1: The following conditions hold.
(a) The utility function is concave with respect

to vector .
(b) is monotonically increasing with respect to , for

.

Assumption 2: There exists a scalar such that

for all and all

where denotes the subdifferential of at , i.e., the set
of all subgradients1 of at .

Note that Assumption 2 is standard in the analysis of sub-
gradient methods for nondifferentiable optimization problems
[27]. The maximization problem in (8) is a convex program
and the optimal solution can be obtained by several optimiza-
tion methods such as the gradient projection method. The gra-
dient projection method with exact projection is typically used
for problems where the projection operation is simple, i.e., for
problems with simple constraint sets such as the nonnegative
orthant or a simplex. However, the constraint set in (8) is de-
fined by exponentially many constraints, making the projection
problem computationally intractable. To alleviate this problem,
we use an approximate projection, which is obtained by succes-
sively projecting on violated constraints.

Definition 3: Let , where
is an matrix with nonnegative entries. The approximate
projection of a vector on , denoted by , is given by

where denotes the exact projection on the half-space
, and is projection on the nonnegative orthant

.
An example of approximate projection on a two-user mul-

tiple-access capacity region is illustrated in Fig. 1. As shown in
the figure, the result of approximate projection is not unique in
general, but by definition it terminates in finitely many steps.
In order to compute the approximate projection, it is sufficient
to successively identify the violated constraints and project on
their corresponding hyperplanes. In the following, when we

1The vector ��� is a subgradient of a concave function � � �� at ��� , if and
only if ������ � ����� � � ��� ���� � ��� � for all ��� � �.

Fig. 1. Approximate projection of ��� on a two-user MAC capacity region.

write , it refers to an approximate projection for an arbitrary
order of projections on the violated hyperplanes. Although the
approximate projection is not unique, it is pseudononexpansive
as claimed in the following lemma.

Lemma 1: The approximate projection on , the ca-
pacity region of the MAC, given by Definition 3 has the fol-
lowing properties.

(i) For any , is feasible with respect to , i.e.,
.

(ii) Every is a fixed point of , i.e., .
(iii) is pseudononexpansive, i.e.,

for all (9)

Proof: For part (i), note that the constraints defining
are of the form in addition to the nonnegativity con-
straints, where has nonnegative entries. It is straightforward
to see that , projection of on the half-space , is
given by (cf. [28, Sec. II.A.I])

where . Since has only nonnegative en-
tries, no component of is increased after the projection. Hence,
the constraint will not be violated in the subsequent projec-
tions. This shows that given an arbitrary vector , the result of
successive projections on the half-spaces corresponding to the
constraints is feasible with respect to such constraints,
i.e., satisfies

for all

(10)
Nevertheless, could have negative components. It remains

to show that . It is clear that

where and are the set of indices of with negative and
nonnegative components, respectively. For any , write

(11)
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Fig. 2. Gradient projection method with approximate projection on a two-user
MAC region.

where the first inequality holds by (10), and the second one is
the result of monotonicity of with
respect to .

Part (ii) is true by definition of , because the set of violated
constraints is empty for any feasible point and projection of a
feasible point on each half-space gives the same point.

Part (iii) can be verified by successively employing the non-
expansiveness property of projection on a closed convex set (see
[28, Prop. 2.1.3]). Since is feasible in , it is a fixed point
of and for all . We conclude the claim as follows:

...

(12)

Here, we present the gradient projection method with approx-
imate projection to solve the problem in (8). The th iteration
of the gradient projection method with approximate projection
is given by

(13)

where is a subgradient of at , and denotes the step-
size. Fig. 2 demonstrates gradient projection iterations for a
two-user MAC. The following theorem provides a sufficient
condition which can be used to establish convergence of (13)
to the optimal solution.

Theorem 1: Let Assumptions 1 and 2 hold, and be an
optimal solution of problem (8). Also, let the sequence be
generated by the iteration in (13). If the stepsize satisfies

(14)

then

(15)

Proof: We have

By concavity of , we have

(16)

Hence

If the stepsize satisfies (14), the above relation yields the fol-
lowing:

Now, by applying pseudononexpansiveness of the approximate
projection, we have

Theorem 2: Let Assumptions 1 and 2 hold. Also, let the se-
quence be generated by the iteration in (13). If the stepsize

satisfies (14), then converges to an optimal solution
.

Proof: See [27, Prop. 8.2.7].

The convergence analysis for this method can be extended for
different stepsize selection rules. For instance, Theorem 1 still
holds if we employ the diminishing stepsize (cf., [28, ch. 6]),
i.e.,

or more complicated dynamic stepsize selection rules such as
the path-based incremental target level algorithm proposed by
Brännlund [29]. This stepsize selection rule guarantees conver-
gence to the optimal solution [27], and has better convergence
rate compared to the diminishing stepsize rule.

A. Complexity of the Projection Problem

Even though the approximate projection is simply obtained
by successive projection on the violated constraints, it requires
to find the violated constraints among exponentially many con-
straints describing the constraint set. In this part, we exploit the
special structure of the capacity region so that each gradient pro-
jection step in (13) can be performed in polynomial time in .

Definition 4: Let be a function defined over all
subsets of . The function is submodular if

for all
(17)

Lemma 2: Define as follows:

for all (18)

If for all , then is submodular. More-
over, the inequality (17) holds with equality if and only if

, or .
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Proof: The proof is simply by plugging the definition of
in inequality (17). In particular

(19)

Since , the above inequality holds with equality if and
only if , or . This condition is equivalent to

, or .

Theorem 3: For any , define the constraint violation
for each constraint of the capacity region (3) as

Then, the problem of finding the most violated capacity con-
straint can be written as a submodular function minimization
(SFM) problem, which is unconstrained minimization of a sub-
modular function over all .

Proof: We can rewrite the capacity constraints of
as

for all (20)

Thus, the most violated constraint at corresponds to

By Lemma 2, is a submodular function. Since summation
of a submodular and a linear function is also submodular, the
problem above is of the form of submodular function minimiza-
tion.

It was first shown by Grötschel et al. [30] that an SFM
problem can be solved in polynomial time. There are several
fully combinatorial strongly polynomial algorithms in the
literature. The best known algorithm for SFM proposed by
Orlin [31] has running time . Note that approximate
projection does not require any specific order for successive
projections. Hence, finding the most violated constraint is not
necessary for approximate projection. In view of this fact, a
more efficient algorithm based on rate splitting is presented in
Appendix I, to find a violated constraint. It is shown in Theorem
11 that the rate-splitting-based algorithm runs in
time, where is the number of users.

Although a violated constraint can be obtained in polynomial
time, it does not guarantee that the approximate projection can
be performed in polynomial time. This is so since it is possible to
have exponentially many constraints violated at some point and
hence the total running time of the projection would be exponen-
tial in . However, we show that for a small enough stepsize

in the gradient projection iteration (13), no more than con-
straints can be violated at each iteration. Let us first define the
notions of expansion and distance for a polyhedra.

Definition 5: Let be a polyhedron described by a set of
linear inequalities, i.e.,

(21)

Define the expansion of by , denoted by , as the
polyhedron obtained by relaxing all the constraints in (21), i.e.,

where is the vector of
all ones.

Definition 6: Let and be two polyhedra described by a
set of linear constraints. Let be an expansion of by
as defined in Definition 5. The distance between
and is defined as the minimum scalar such that
and .

Lemma 3: Let be as defined in (18). There exists a positive
scalar satisfying

for all (22)

and for any such , the relaxed capacity region of an
-user MAC violates no more than constraints of

defined in (3).
Proof: Existence of a positive scalar satisfying (22) fol-

lows directly from Lemma 2, using the fact that neither nor
contains the other one.

Suppose for some , there are at least
violated constraints of . Since it is not possible to have

nonempty nested sets in , there are at least two vio-
lated constraints corresponding to some sets where

, and

(23)

(24)

Since is feasible in the relaxed region

(25)

(26)

Note that if , (25) reduces to , which is a
valid inequality.

By summing the above inequalities, we conclude

(27)

which is a contradiction.

Theorem 4: Let Assumptions 1 and 2 hold. Let
be the transmission powers.
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If the stepsize in the th iteration (13) satisfies

for all (28)

then at most constraints of the capacity region can be
violated at each iteration step.

Proof: We first show that inequality in (22) holds for the
following choice of :

(29)

In order to verify this, rewrite the right-hand side of (22) as

The inequalities can be justified by using the monotonicity of
the logarithm function and the fact that is
nonempty because .

Now, let be feasible in the capacity region . For
every , we have

(30)

where the first inequality follows from Assumption 1(b), As-
sumption 2, and (28). The second inequality holds because for
any unit vector , it is true that

(31)

Thus, if satisfies (28), then ,
for some for which (22) holds. Therefore, by Lemma 3, the
number of violated constraints does not exceed .

In view of the fact that a violated constraint can be identified
in time (see the algorithm in Appendix I), The-
orem 4 implies that, for small enough stepsize, the approximate
projection can be implemented in time.

In Section IV, we will develop algorithms that use the gra-
dient projection method for dynamic rate allocation in a time-
varying channel.

IV. DYNAMIC RATE ALLOCATION IN FADING CHANNELS

In this part, we study the rate allocation problem for a fading
channel when transmission powers are fixed to . In practice,
this scenario occurs when the transmission power may be lim-
ited owing to environmental limitations such as human pres-
ence, or limitations of the hardware. Throughout this section,
we also assume that the channel statistics are not known.2 The
capacity region of the fading MAC for this scenario is a polyhe-
dron given by (5).

We study both long-term and short-term optimal rate allo-
cation policies with respect to a given utility function, which
we formally define next. We show that the short-term optimal
and long-term optimal policies coincide if the utility function
is linear. Moreover, we show that the long-term performance of
the short-term policy is close to the long-term optimal policy.
The rest of Section IV is dedicated to efficiently computing the
short-term optimal policy.

Definition 7 (Long-Term Optimal Policy): The long-term op-
timal rate allocation policy denoted by is a mapping that
satisfies for all , such that

subject to (32)

Definition 8 (Short-Term Optimal Policy): A short-term op-
timal or greedy rate allocation policy,3 denoted by , is given
by

subject to (33)

i.e., for each channel state, the greedy policy chooses the
rate vector that maximizes the utility function over the corre-
sponding capacity region.

The utility function is assumed to satisfy the following
conditions.

Assumption 3: For every , let
. The following conditions

hold.
(a) There exists a scalar such that for all

for all

where

(34)

2We could also develop optimal rate allocation algorithms for the case where
powers are fixed and channel statistics are known. See [32] for more details on
this scenario.

3We use the terms short-term optimal policy and greedy policy interchange-
ably throughout this paper.
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(b) There exists a scalar such that for all

for all

Assumption 3(a) is a weakened version of Assumption 2,
which imposes a bound on subgradients of the utility function.
This assumption only requires a bound on the subgradient in a
neighborhood of the optimal solution and away from the origin,
which is satisfied by a larger class of functions. Assumption
3(b) is a strong-concavity-type assumption. In fact, strong con-
cavity of the utility implies Assumption 3(b), but it is not nec-
essary. The scalar becomes small as the utility tends to
have a linear structure with level sets tangent to the dominant
face of the capacity region. Assumption 3 holds for a large class
of utility functions including the well-known -fair functions
given by

(35)

which do not satisfy Assumption 2.
Note that the greedy policy is not necessarily long-term op-

timal for general concave utility functions. Consider the fol-
lowing relations:

(36)

where the first and third inequalities follow from the feasibility
of the long-term optimal and the greedy policy for any channel
state, and the second inequality follows from Jensen’s inequality
by concavity of the utility function.

In the case of a linear utility function, we have
, so equality holds

throughout in (36) and is indeed long-term optimal as well
as being short-term optimal. For nonlinear utility functions, the
greedy policy can be strictly suboptimal in the long term.

However, the greedy policy is not arbitrarily worse than
the long-term optimal one. In view of (36), we can bound
the performance difference
by bounding or

from above. We
show that the first bound goes to zero as the channel variations
become small and the second bound vanishes as the utility
function tends to have a more linear structure.

Before stating the main theorems, let us introduce some
useful lemmas. The first lemma asserts that both long-term

optimal and greedy policies assign rates on the dominant face
of the capacity region.

Lemma 4: Let satisfy Assumption 1(b). Also, let
and be long-term and short-term optimal rate allocation
policies as in Definitions 7 and 8, respectively. Then:

(a) for all ;
(b) ;

where denotes the dominant face of a capacity region (cf.
Definition 2).

Proof: Part (a) is direct consequence of Assumption 1(b)
and Definition 2. If the optimal solution to the utility maximiza-
tion problem is not on the dominant face, there exists a user
such that we can increase its rate and keep all other user’s rates
fixed while staying in the capacity region. Thus, we are able to
increase the utility by Assumption 1(b), which leads to a con-
tradiction.

For part (b), first note that with the same argument as above,
we have

(37)

From Definition 2 and the definition of throughput capacity
region in (5), we have

(38)

Thus, , with probability
one, because , for all

. Therefore, by definition of MAC capacity region in (3), we
conclude , with probability one.

The following lemma extends Chebyshev’s inequality for ca-
pacity regions. It states that, with high probability, the time-
varying capacity region does not deviate much from its mean.

Lemma 5: Let be a random vector with the stationary dis-
tribution of the channel-state process, mean , and covariance
matrix . Then

(39)

where is defined as (40) shown at the bottom of the page, in
which is given by

otherwise.
(41)

Proof: See Appendix II.

The system parameter in Lemma 5 is proportional to
channel variations, and we expect it to vanish for very small

(40)
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channel variations. The following lemma ensures that the dis-
tance between the optimal solutions of the utility maximization
problem over two regions is small, provided that the regions are
close to each other.

Lemma 6: Let the utility function satisfy As-
sumptions 1 and 3. Also, let and be the optimal solutions
of maximizing the utility over and , respec-
tively. If

then, we have

(42)

Proof: See Appendix III.

The following theorem combines the results of the above two
lemmas to obtain a bound on the long-term performance differ-
ence of the greedy and the long-term optimal policy.

Theorem 5: Let satisfy Assumptions 1 and
3. Also, let and be the long-term and short-term op-
timal rate allocation policies as in Definitions 7 and 8, respec-
tively. Then, for every

(43)

where , and and are positive
scalars defined in Assumption 3.

Proof: Pick any . Define the event as

By Lemma 5, the probability of this event is at least .
Using Jensen’s inequality as in (36) we can bound the left-hand
side of (43) as follows:

(44)

where (a) follows from the fact that , and (b)
holds by nonnegativity of .

On the other hand, by definition of in (34) for any ,
write

where the equality follows from Lemma 4(a) and the fact that the
constraint is active for any point on
the dominant face. The above relation allows us to use Assump-
tion 3(a), which gives

for all

Now, by Assumption 3, we can employ Lemma 6 to conclude
the following from the above relation:

for all

which implies

(45)

The desired result follows immediately from substituting (45)
in (44).

Theorem 5 provides a bound parameterized by . For very
small channel variations, becomes small. Therefore, the pa-
rameter can be picked small enough such that the bound in (43)
tends to zero. Fig. 3 illustrates the behavior of the right-hand
side of (43) as a function of for different values of . For
each value of , the upper bound is minimized for a specific
choice of , which is illustrated by a dot in Fig. 3. As demon-
strated in the figure, for smaller channel variations, a smaller
gap is achieved and the parameter that minimizes the bound
decreases.

The next theorem provides another bound demonstrating the
impact of the structure of the utility function on the performance
of the greedy policy.

Theorem 6: Let Assumption 1 hold for the twice differen-
tiable function . Also, let and be
the long-term and short-term optimal rate allocation policies,
defined in Definitions 7 and 8, respectively. Then, for every

(46)

where , and satisfies the following:

for all (47)
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in which denotes the Hessian of , is the largest
eigenvalue of matrix , and is given by

(48)

Proof: Similarly to the proof of Theorem 5, for any
, define the event as

(49)

By Lemma 5, this event has probability at least . Lemma 4
asserts that the long-term optimal policy almost surely allocates
rate vectors on the dominant face of . Therefore, for
almost all , the long-term optimal policy satisfies the
following:

(50)

Thus, for almost all , we have

Therefore

for almost all (51)

Now, let us write the Taylor expansion of at in the
direction of

for some (52)

In the above relation, let for all . The
utility function is concave, so its Hessian is negative definite
and we can combine (51) with the above relation to write

for almost all (53)

Fig. 3. Parametric upper bound on performance difference between greedy and
long-term optimal policies as in the right-hand side of (43) for different channel
variations � as a function of �.

Taking the expectation conditioned on , and using the fact
that , we have the following:

(54)

Hence, we conclude

where the first inequality is verified by (36), and the third in-
equality follows from nonnegativity of the utility function and
the inequality in (54).

Similarly to Theorem 5, Theorem 6 provides a bound param-
eterized by . As the utility function tends to have a more linear
structure, tends to zero. For instance, is proportional to
for a weighted sum -fair utility function. Hence, we can choose

small such that the right-hand side of (46) goes to zero. The
behavior of this upper bound for different values of is similar
to the one plotted in Fig. 3.

In summary, the performance difference between the greedy
(short-term optimal) and the long-term optimal policy is
bounded from above by the minimum of the bounds provided
by Theorems 5 and 6. Since the greedy policy is short-term
optimal and can perform closely to the long-term optimal
policy, we focus on developing efficient algorithms to compute
the greedy policy.

The greedy policy (cf., Definition 8) requires solving a non-
linear program in each time slot. For each channel state, finding
even a near-optimal solution of the problem in (33) requires a
large number of iterations, making the online evaluation of the
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greedy policy impractical. In the following section, we intro-
duce an alternative rate allocation policy, which implements a
single gradient projection iteration of the form (13) per time slot.

A. Approximate Rate Allocation Policy

In this part, we assume that the CSI is available at each time
slot , and the computational resources are limited such that a
single iteration of the gradient projection method in (13) can be
implemented in each time slot. In order to simplify the notation
in this part and avoid unnecessary technical details, we consider
a stronger version of Assumption 3(b).

Assumption 4: Let . Then,
there exists a positive scalar such that

for all

Definition 9 (Approximate Policy): Given some fixed integer
, we define the approximate rate allocation policy as

follows:

(55)

where

(56)

and is given by the following gradient projection
iterations:

(57)

where is a subgradient of at , denotes

the stepsize, and is the approximate projection on
.

For , (57) reduces to taking only one gradient projection
iteration at each time slot. For , the proposed rate alloca-
tion policy essentially allows the channel state to change for a
block of consecutive time slots, and then takes iterations of
the gradient projection method with the approximate projection.
We will show below that this method tracks the greedy policy
closely. Hence, this yields an efficient method that on average
requires only one iteration step per time slot. Note that to com-
pute the policy at time slot , we are using the CSI at time slots

. Hence, in practice, the channel measurements
need to be done only every time slots.

There is a tradeoff in choosing system parameter , because
taking only one gradient projection step may not be sufficient to
get close enough to the greedy policy’s operating point. More-
over, for large , the new operating point of the greedy policy
can be far from the previous one, and iterations may be insuf-
ficient.

Before stating the main result, let us introduce some useful
lemmas. In the following lemma, we translate the model in Def-
inition 1 for temporal variations in channel state into changes in
the corresponding capacity regions.

Lemma 7: Let be the fading process that
satisfies condition in (2). We have

(58)

where are nonnegative independent identically dis-
tributed (i.i.d.) random variables bounded from above by

, where is a uniform upper bound on the
sequence of random variables and is the th user’s
transmission power.

Proof: By Definition 6, we have

(59)

Therefore, (58) is true for . Since the
random variables are i.i.d. and bounded above by , the
random variables are i.i.d. and bounded from above by

.

The following useful lemma by Nedić and Bertsekas [33] ad-
dresses the convergence rate of the gradient projection method
with constant stepsize.

Lemma 8: Let rate allocation policies and be given by
Definitions 8 and 9, respectively. Also, let Assumptions 1, 2, and
4 hold and the stepsize be fixed to some positive constant .
Then, for a positive scalar , we have

(60)

if satisfies

(61)

where .
Proof: See [33, Prop. 2.3].

We next state our main result, which shows that the approx-
imate rate allocation policy given by Definition 9 tracks the
greedy policy within a neighborhood which is quantified as a
function of the maximum speed of fading, the parameters of the
utility function, and the transmission powers.

Theorem 7: Let Assumptions 1, 2, and 4 hold and the rate
allocation policies and be given by Definitions 8 and 9,
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respectively. Choose the system parameters and for the ap-
proximate policy in Definition 9 as

where , is the upper bound on
as defined in Lemma 7, and and are constants given in
Assumptions 4 and 2. Then, we have

(62)

Proof: First, we show that

(63)

where . The proof is by induction on . For ,
note that is the result of applying steps of gradient
projection starting from the optimal solution . Hence

Thus, the claim is trivially true for . Now, suppose that
(63) is true for some positive . Hence, it also holds for

by induction hypothesis, i.e.,

(64)

On the other hand, Lemma 7 implies that for every

Thus, by Lemma 6 and the triangle inequality, we have

(65)

Therefore, by another triangle inequality, we conclude from
(64) and (65) that the initial point for the round of
the iterations is close to the optimal solution ,
in particular

(66)

Now, we show that for the given value of the stepsize , the
number of gradient projection steps satisfies (61) for .

By (66) and plugging the corresponding values of and ,
we get

Thus, we can apply Lemma 8 to show

(67)

By Assumption 4, we can write

(68)

Therefore, the proof of (63) is complete by induction.
Similarly to the derivation of (65), by applying Lemmas 6 and

7, we get

(69)

and the desired result directly follows from (63) and (69) using
the triangle inequality one last time.

Theorem 7 provides a bound on the size of the tracking neigh-
borhood as a function of the maximum speed of fading, denoted
by , which may be too conservative. It is of interest to provide
a rate allocation policy and a bound on the size of its tracking
neighborhood as a function of the average speed of fading. The
next section addresses this issue.

B. Improved Approximate Rate Allocation Policy

In this section, we design an efficient rate allocation policy
that tracks the greedy policy within a neighborhood character-
ized by the average speed of fading which is typically much
smaller than the maximum speed of fading. We consider poli-
cies which can implement one gradient projection iteration per
time slot.

Unlike the approximate policy given by (55) which uses the
CSI once in every time slots, we present an algorithm which
uses the CSI in all time slots. Roughly speaking, this method
takes a fixed number of gradient projection iterations only after
the change in the channel state has reached a certain threshold.

Definition 10 (Improved Approximate Policy): Let
be the sequence of nonnegative random variables as defined in
Lemma 7, and be a positive constant. Define the sequence

as

(70)

Define the improved approximate rate allocation policy, ,
with parameters and , as follows:

(71)

where

(72)

(73)
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Fig. 4. Improved approximate policy takes � gradient projection iterations at
time � , which is the time that the random walk generated by the random
variables � reaches the threshold � .

and is given by the following gradient projection
iterations

(74)

where is a subgradient of at , denotes

the stepsize, and is the approximate projection on
.

Fig. 4 depicts a particular realization of the random walk gen-
erated by , and the operation of the improved approximate
policy.

Theorem 8: Let be as defined in (72), and let
. If , then we have

with probability (75)

Proof: The sequence is obtained as the random walk
generated by the crosses the threshold level . Since the
random variables are positive, we can think of the threshold
crossing as a renewal process, denoted by , with interar-
rivals .

We can rewrite the limit as follows:

(76)

Since the random walk will hit the threshold with probability
, the first term goes to zero with probability . Also, by Strong

law for renewal processes the second terms goes to with prob-
ability (see [34, p. 60]).

Theorem 8 essentially guarantees that the number of gradient
projection iterations is the same as the number of channel mea-
surements in the long run with probability .

Theorem 9: Let Assumptions 1, 2, and 4 hold and the rate
allocation policies and be given by Definitions 8 and 10,
respectively. Also, let , and fix the stepsize to
in (74), where , and is a constant satisfying

(77)

Then

(78)

Proof: We follow the line of proof of Theorem 7. First, by
induction on , we show that

(79)

where is defined in (72). The base is trivial. Similar to (64), by
induction hypothesis, we have

(80)

By definition of in (70), we can write

(81)

Thus, by Lemma 6, we have

(82)

Therefore, by combining (80) and (82) by triangle inequality,
we obtain

(83)

Using the fact that , we can provide a
simpler bound for the right-hand side of (83) as follows:

(84)

that implies

which gives the following bound on the right-hand side of (83)
after rearranging the terms:

Now by plugging the values of and in terms of system
parameters in (61), we can verify that

(85)
Hence, we can apply Lemma 8 for , and conclude

(86)
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By exploiting Assumption 4, we have

(87)

Therefore, the proof of (79) is complete by induction. Simi-
larly to (82), we have

(88)

and (78) follows immediately from (79) and (88) by invoking
triangle inequality.

Theorems 8 and 9 guarantee that the presented rate alloca-
tion policy tracks the greedy policy within a small neighbor-
hood while only one gradient projection iteration is computed
per time slot, with probability . The neighborhood is charac-
terized in terms of the average behavior of temporal channel
variations and vanishes as the fading speed decreases.

In the following, we generalize the results of Section IV to
the case of joint rate and power allocation in fading channels.

V. DYNAMIC RATE AND POWER ALLOCATION

IN FADING CHANNEL

In this section, we assume that the channel statistics are
known. Our goal is to find feasible rate and power alloca-
tion policies denoted by and , respectively, such that

, and . Moreover

subject to (89)

where is a given utility function and is assumed to be dif-
ferentiable and satisfy Assumption 1.

For the case of a linear utility function, i.e., for
some , Tse and Hanly [5] have shown that the optimal
rate and power allocation policies are given by the optimal so-
lution to a linear program, i.e.,

subject to (90)

where is the channel-state realization, and is a La-
grange multiplier satisfying the average power constraint, i.e.,

is the unique solution of (91) shown at the bottom of the

page, where and are, respectively, the cumulative distribu-
tion function (cdf) and the probability density function (pdf) of
the stationary distribution of the channel-state process for trans-
mitter .

Exploiting the polymatroid structure of the capacity region,
problem (90) can be solved by a simple greedy algorithm (see
[5, Lemma 3.2]). It is also shown in [5] that, for positive , the
optimal solution to the problem in (89) is uniquely obtained.
Given the distribution of channel-state process, denoted by
and , we have (92) shown at the bottom of the page.

The uniqueness of follows from the fact that the stationary
distribution of the channel-state process has a continuous den-
sity [5]. It is worth mentioning that (92) parametrically describes
the boundary of the capacity region which is precisely defined
in Definition 2 . Thus, there is a one-to-one correspondence be-
tween the boundary of and the positive vectors with unit
norm.

Now consider a general concave utility function satisfying
Assumption 1. It is straightforward to show that , the optimal
solution to (89), is unique. Moreover, by Assumption 1(b), it lies
on the boundary of the throughput region. Now suppose that

is given by some genie. We can choose and
, as a replacement for the nonlinear utility. By

checking the optimality conditions, it can be seen that is also
the optimal solution of the problem in (89), i.e.,

subject to (93)

Thus, we can employ the rate and power allocation policies
in (90) for the linear utility function , and achieve the
optimal average rate for the nonlinear utility function .
Therefore, the problem of optimal resource allocation reduces
to computing the vector . Note that the throughput capacity
region is not characterized by a finite set of constraints, so
standard optimization methods such as gradient projection or
interior-point methods are not applicable in this case. However,
the closed-form solution to maximization of a linear function
on the throughput region is given by (92). This naturally leads
us to the conditional gradient method [28] to compute . The

th iteration of the method is given by

(94)

where is the stepsize and is obtained as

(95)

(91)

(92)
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where denotes the gradient vector of at . Since
the utility function is monotonically increasing by Assumption
1(b), the gradient vector is always positive and, hence, the
unique optimal solution to the above subproblem is obtained
by (92), in which is replaced by . By concavity of
the utility function and convexity of the capacity region, the
iteration (94) will converge to the optimal solution of (89) for
appropriate stepsize selection rules such as the Armijo rule or
limited maximization rule (cf., [28, pp. 220–222]).

Note that our goal is to determine rate and power allocation
policies. Finding allows us to determine such policies by the
greedy policy in (90) for . It is worth mentioning
that all the computations for obtaining are performed once in
the setup of the communication session. Here, the convergence
rate of the conditional gradient method is generally not of crit-
ical importance.

VI. SIMULATION RESULTS AND DISCUSSION

In this section, we provide simulation results to complement
our analytical results and make a comparison with other fair
resource allocation approaches. We focus on the case with
no power control or knowledge of channel statistics. We also
assume that the channel-state processes are generated by in-
dependent identical finite-state Markov chains. We consider a
weighted -fair function as the utility function, i.e.,

(96)

where is given by (35).
We study two different communication scenarios to compare

the performance of the greedy policy with the queue-based rate
allocation policy by Eryilmaz and Srikant [8]. This policy, pa-
rameterized by some parameter , uses queue length informa-
tion to allocate the rates arbitrarily close to the long-term op-
timal policy by choosing large enough. The parameter
is used to achieve a tradeoff between rate of convergence and
suboptimality of the achieved rates. Figs. 5 and 6 illustrate the
structure of the transmitters for queue-length-based policy and
greedy policy, respectively. As shown in Fig. 5, denotes
the queue length of the th user. At time slot , the scheduler
chooses the service rate vector based on a max-weight
policy, i.e.,

subject to (97)

The congestion controller proposed in [8] leads to a fair allo-
cation of the rates for a given -fair utility function. In partic-
ular, the data generation rate for the th transmitter, denoted by

, is a random variable satisfying the following conditions:

(98)

for all (99)

where , , and are positive constants.

Fig. 5. Structure of the �th transmitter and the receiver for the queue-length-
based policy [8].

Fig. 6. Structure of the �th transmitter and the receiver for the presented poli-
cies.

In the first scenario, we compare the average achieved rate
by the two policies for a communication session with limited
duration. In this case, the utility function is given by (96) with

and , and the corresponding op-
timal solution is . Fig. 7(a) depicts the dis-
tance between empirical average rate achieved by the greedy or
the queue-length-based policy, and , the maximizer of the
utility function over the throughput region. Fig. 7(b) demon-
strates the performance difference in terms of the value of the
utility of average allocated rates. As shown in Fig. 7, the greedy
policy outperforms the queue-length-based policy for a commu-
nication session with limited duration. The average rate tuples
allocated by the greedy and queue-length-based policies are il-
lustrated over the throughput region in Fig. 8. We see that the
points allocated by the queue-length-based policy approach the
optimal solution from the interior of the throughput region,
while the greedy policy always allocates rate tuples in a vicinity
of the optimal solution. Hence, it achieves better performance
within limited number of time slots.

It is worth noting that there is a tradeoff in choosing the pa-
rameter of the queue-length-based policy. In order to guar-
antee achieving close-to-optimal rates by queue-based policy,
the parameter should be chosen large which results in large
expected queue length and lower convergence rate. On the other
hand, if takes a small value to improve the convergence rate,
the achieved rate of the queue-based policy converges to a larger
neighborhood of the . We have tuned the parameter so
that the best performance of the queue-length-based policy is
achieved within the time frame of the communication session.

Second, we consider a file upload scenario where each user
is transmitting a file with fixed finite size to the base station. It
is assumed that a file of size is already stored at transmitter
at time . Let be the th user’s completion time of the file up-
load session for a file of size . Define the average upload rate
for the th user as . We can measure the performance of each
policy for this scenario by evaluating the utility function at the
average upload rate. Fig. 9 demonstrates the ratio of the utilities
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Fig. 7. Performance comparison of greedy and queue-based policies for a communication session with limited duration, for � � ����.

Fig. 8. Average allocated rates by greedy and queue-length-based policies approaching the optimal solution��� of maximizing the utility function over the average
capacity region. (b) is a magnification of the box in (a) to demonstrate behavior of the policies in the neighborhood of the optimal solution. The queue-based policy
approaches ��� from the interior of the region, while the greedy policy approaches ��� from the exterior.

Fig. 9. Performance comparison of greedy and queue-based policies for file
upload scenario with respect to file size � � � � � . � and � are expected
upload rate of the greedy and the queue-length-based policy, respectively.

of the average upload rates for the greedy and the queue-based
policy plotted for different file sizes. We observe that for small

file sizes, the greedy policy achieves a higher utility value com-
pared to the queue-based policy, and this difference decreases
by increasing the file size. We can interpret this behavior as fol-
lows. For the queue-length-based policy, the transmission queue
is initially empty, and almost all of each file is first buffered into
the queues with equal rate [see (98)]. Then, each queue is
emptied by a max-weight scheduler according to (97). Once the
files are all buffered in the queues, the queues are emptied with
the same rate which is not fair because it does not give any pri-
ority to the users based on their utility. In other word, the pa-
rameter that is supposed to capture different fairness notions
does not play any role in this mechanism. For larger file size,
the duration for which the entire file is emptied into the queue
is negligible compared to the total transmission time. Hence,
there is enough time for queues to build up so that the rest of
the files are buffered into the queues based on parameters of
the utility functions. As a consequence, a higher utility for the
average upload rate is achieved. In contrast, the greedy policy
always selects the transmission rates by maximizing the utility
function instantaneously, which results in close-to-optimal av-
erage achieved rates even for small file sizes (see Fig. 8).
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Fig. 10. Graphical representation of messages over MAC [12].

VII. CONCLUSION

We addressed the problem of optimal resource allocation in
a fading MAC from an information-theoretic point of view. We
formulated the problem as a utility maximization problem for a
general class of utility functions.

We considered several different scenarios for a MAC. First,
we considered the problem of optimal rate allocation in a non-
fading channel. We presented the notion of approximate projec-
tion for the gradient projection method to solve the rate alloca-
tion problem in polynomial time in the number of users.

For the case of a fading channel where power control and
channel statistics are not available, we propose a greedy rate
allocation policy that is short-term optimal but not long-term
optimal for nonlinear utility functions. Nevertheless, we showed
that its long-term performance in terms of the utility is not
arbitrarily worse compared to the long-term optimal policy, by
bounding their performance difference. The provided bound
tends to zero as the channel variations become small or the
utility function behaves more linearly.

The greedy policy may itself be computationally expensive.
A computationally efficient algorithm can be employed to allo-
cate rates close to the ones allocated by the greedy policy. Two
different rate allocation policies are presented which only take
one iteration of the gradient projection method with approxi-
mate projection at each time slot. It is shown that these policies
track the greedy policy within a neighborhood which is charac-
terized by average speed of fading as well as fading speed in the
worst case.

We also studied rate and power allocation in a fading channel
with known channel statistics. In this case, the optimal rate and
power allocation policies are obtained by greedily maximizing
a properly defined linear utility function.

Finally, using computer simulations, we compared the per-
formance of the greedy policy and a queue-length-based policy
[8] for a limited period of time. While not relying on any
queue-length information, the greedy policy outperformed the
queue-length-based policy during the communication session.
This suggests that channel-state-based approaches can be more
efficient while causing less overhead.

APPENDIX I
ALGORITHM FOR FINDING A VIOLATED CONSTRAINT

In this section, we present an alternative algorithm based on
the rate-splitting idea to identify a violated constraint for an in-
feasible point. For a feasible point, the algorithm provides in-
formation for decoding by successive cancellation. We first in-
troduce some definitions.

Definition 11: The quadruple is called a
configuration for an -user MAC, where
is the rate tuple, represents the received
power, and is the noise variance. For any given configura-
tion, the elevation is defined as the unique vector sat-
isfying

(100)

Intuitively, we can think of message as rectangles of height
, raised above the noise level by . In fact, is the amount

of additional Gaussian interference that message can tolerate.
Note that if the rate vector corresponding to a configuration is
feasible its elevation vector is nonnegative. However, the con-
trary is not true in general.

Definition 12: The configuration is single-
user codable, if after possible reindexing

(101)

where we have defined for convention.

By the graphical representation described earlier, a configu-
ration is single-user codable if none of the messages are over-
lapping. Fig. 10(a) gives an example of graphical representing
for a message with power and elevation . Fig. 10(b) and (c)
illustrates overlapping and nonoverlapping configurations, re-
spectively.

Definition 13: The quadruple is a
spinoff of if there exists a surjective map-
ping such that for all

, we have

where is the set of all that map into by
means of .

Definition 14: A hyperuser with power , rate , is ob-
tained by merging actual users with powers and
rates , i.e.,

(102)

Theorem 10: For any -user achievable configuration
, there exists a spinoff which is

single-user codable.
Proof: See [12, Th. 1].

Here, we give a brief sketch of the proof to give intuition
about the algorithm. The proof is by induction on . For a
given configuration, if none of the messages are overlapping
then the spinoff is trivially equal to the configuration. Other-
wise, merge two of the overlapping users into a hyperuser of
rate and power equal the sum rate and sum power of the over-
lapping users, respectively. Now the problem is reduced to rate
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splitting for users. This proof suggests a recursive al-
gorithm for rate splitting that gives the actual spinoff for a given
configuration.

It follows directly from the proof of Theorem 10 that this
recursive algorithm gives a single-user codable spinoff for an
achievable configuration. If the configuration is not achievable,
then the algorithm encounters a hyperuser with negative eleva-
tion. At this point the algorithm terminates. Suppose that this
hyperuser has rate and power . Negative elevation is equiv-
alent to the following:

Hence, by Definition 14, we have

where . Therefore, a hyperuser with
negative elevation leads us to a violated constraint in the initial
configuration.

Theorem 11: The presented algorithm runs in
time, where is the number of users.

Proof: The computational complexity of the algorithm
can be computed as follows. The algorithm terminates after
at most recursions. At each recursion, all the elevations
corresponding to a configuration with at most hyperusers
are computed in time. It takes time to
sort the elevation in an increasing order. Once the users are
sorted by their elevation, a hyperuser with negative elevation
could be found in time, or if such a hyperuser does
not exist, it takes time to find two overlapping hype-
rusers. In the case that there are no overlapping users and
all the elevations are nonnegative, the input configuration is
achievable, and the algorithm terminates with no violated
constraint. Hence, computational complexity of each recursion
is . Therefore,
the algorithm runs in time.

APPENDIX II
PROOF OF LEMMA 5

First, consider the following lemmas. Lemma 9 bounds
Jensen’s difference of a random variable for a concave func-
tion. The upper bound is characterized in terms of the variance
of the random variable.

Lemma 9: Let be concave and twice differ-
entiable. Let be a random variable with variance . Then

(103)

where be an upperbound on .
Proof: Pick any . By Chebyshev’s inequality,

we have

(104)

where . Therefore, we have

(105)

where the first inequality follows from nonnegativity of , and
the second inequality follows from concavity of . The scalars

and are given by
Taylor’s theorem.

Given the above relation, for any , we have

(106)

The right-hand side is minimized for

(107)

By substituting in (106), the desired result follows imme-
diately.

We next provide an upper bound on variance of
proportional to the variance of .

Lemma 10: Let be a random variable with mean
and variance . Also, let . Then, variance of

is upperbounded as

(108)
Proof: Let for some . By

invoking the mean value theorem, we have

(109)

where is a nonnegative random variable.
On the other hand, by employing Lemma 9 with

, we can write

(110)
Hence

(111)



PARANDEHGHEIBI et al.: N RESOURCE ALLOCATION IN FADING MULTIPLE-ACCESS CHANNELS 4435

where the first inequality is by (110), and the second relation can
be verified after some straightforward manipulation. By com-
bining (109) and (111), the variance of can be bounded as
follows:

(112)

Now we provide the proof for Lemma 5. Let the random vari-
able be defined as follows:

for all

(113)
The facet defining constraints of and

are of the form of and
, respectively. Therefore, by Definition 6, we have

if and only if ,
for all . Thus, we can write

(114)

where the first inequality is obtained by union bound, and the
second relation is by applying Chebyshev’s inequality. On the
other hand, can be bounded from above by employing
Lemma 10, i.e.,

(115)
where

The desired result is concluded by substituting and
in (115) and combing the result with (114).

APPENDIX III
PROOF OF LEMMA 6

Let us first state and prove a useful lemma which asserts that
Euclidean expansion of a capacity region by contains its ex-
pansion by relaxing its constraints by .

Lemma 11: Let be a capacity region with polymatroid
structure, i.e.,

for all (116)

where is a nondecreasing submodular function. Also, let
be an expansion of by as defined in Definition 5. Then,

for all , there exists some such that
.

Proof: By Definition 4, it is straightforward to show that
is also a polymatroid, i.e.,

for all

(117)
where is a submodular function. By convexity of , we
just need to prove the claim for the vertices of . Let
be a vertex of . The polymatroid structure of implies that

is generated by an ordered subset of (see [35, Th. 2.1]).
Hence, there is some such that .
Consider the following construction for :

otherwise.
(118)

By construction, is in a -neighborhood of . So we just
need to show that is feasible in . First, let us consider the
sets that contain . We have

(119)

Second, consider the case that

where the first inequality comes from (119), and the second in-
equality is true by submodularity of the function . This com-
pletes the proof.

Proof of Lemma 6: Without loss of generality assume that
. By Lemma 11, there exists some

such that . Moreover, we can always choose to
be on the boundary so that , where is defined in
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(34). Therefore, by Assumption 3(a) and the fact that
, we have

(120)

Now suppose that . By Assumption 3(b),
we can write

(121)

By subtracting (120) from (121), we obtain
which is a contradiction. Therefore, , and
the desired result follows immediately by invoking the triangle
inequality.
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