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Abstract—In this work, we formulate and study the profit
maximization problem for a wireless service provider (SP) that
encounters time varying, yet partially predictable, demand char-
acteristics. The disparate demand levels throughout the course
of the day yield excessive service cost in the peak hour that
substantially hurts the reaped profit. With the SP’s ability to
track and statistically predict future requests of its users, we
propose to enable proactive caching of the peak hour demand
ahead during off-peak times. Thus network traffic will be
smoothed out, while end users’ activity patterns are undisturbed.
In addition, the SP is able to assign personalized pricing policies
that strike the best balance between enhancing the certainty
about the future demand for optimal proactive caching, and
maximizing the revenue collected from end users. Comparing
the proposed system’s performance with the baseline scenario of
the existing practice of no-proactive service, we show that the SP
attains profit gain that grows with number of users, at least, as
the first derivative of the cost function. Moreover, end-users that
receive proactive caching services make strictly positive savings.
Thus, we essentially demonstrate the win-win situation to be
reaped through the exploitation of the consistent users’ activity.

Index Terms—Resource allocation, wireless networks, convex
optimization, pricing.

I. INTRODUCTION

THe significant transformation of the wireless data traffic

from text and voice communication to high data rate

multimedia applications (e.g., HD video streaming) has raised

major concerns on the ability of the limited wireless spectrum

to support reliable data delivery at reasonable costs [1] for

service providers (SPs), including carriers (e.g., AT&T, T-

Mobile), and content sources (e.g., YouTube, CNN, Netflix).

On the other hand, several bands of the wireless spectrum face

a consistent underutilization issue during the off-peak time

because of the lack of user access.

Thus, there has been an urgent need for more advanced and

sophisticated techniques to boost the wireless resource man-

agement. The notion of Dynamic spectrum access (DSA) has

been introduced to allow out-of-band (cognitive or secondary)

users to access the underutilized bands of a primary network

at lower prices [2]. However, it is expected that DSA will offer

only a partial solution to the problem as most users already

idle during the off-peak time.
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While DSA implicitly relies on pricing incentives to en-

hance the spectrum utilization, it does not offer an effective

solution to the excessive demands of the peak time of the day.

More research directions have been opened to tackle such a

problem. In [3] time-of-the-day pricing has been developed

based on the instantaneous load level of the system with

prices potentially increase when the load rises and decrease

otherwise. The model, however, falls short of capturing the

inherent variability of the system loads due to the users

activity patterns, not only pricing. In a more recent work,

[4], consistency of user activity patterns have been taken into

account through a joint pricing and scheduling framework

that incentivizes users to delay their demand to the off-peak

time through optimized discounts. The potentially reaped gains

of this approach rely on the tradeoff between the economic

responsiveness of the users, and the preferred time of access.

Clearly, users will have to change their regular activity patterns

in order to retrieve low-priced service, for example a user who

wants to access the network while in public transit, may have

to defer demand to later time when network prices are less,

and thus gets pricing discount at the expense of inconvenient

access pattern. Hence, the SP gains are not surprising.

In a parallel direction, WiFi infrastructure has been pro-

posed to off-load the cellular traffic for wireless users with

WiFi connection capabilities [5], [6]. The idea is to re-route the

users demand through WiFi access points covering the users

connections. While the emerging results reveal a potential of

promising gains, the approach does not effectively tackle the

excessive costs and low quality-of-service (QoS) in places with

no WiFi coverage (e.g., public transit, rallies, stadiums, etc.).

Moreover, it is questionable that large amount of traffic will

be efficiently offloaded through WiFi since users by default

connect to WiFi as a cheaper and more reliable source of data

communication, and therefore the fraction of users who direct

their demand to the cellular provider while WiFi covered is

expected to be minor.

Content sources, such YouTube and Netflix, employ content

distribution networks (CDNs), e.g., Akamai and Limelight,

to enhance the reliability of data delivery at the peak time

and provide timely service of content requests (see e.g., [7]).

CDNs in turn seek to maximally utilize their storage resources

through efficient content placement strategies which incorpo-

rate dynamic popularity, and cache location and size [7]-[10].

Research works in [11], [12] consider proactive scheduling

for CDNs with predictable content popularity, yet demand
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characteristics have been assumed identical over time, hence

do not capture the the peak-to-average-ratio problem addressed

in this work.

Recently, we have proposed the notion of proactive resource

allocation [13], [14] as a remedy to the peak-to-average-

ratio problem. The technique aims to exploit the predictable

human demand together with the large storage offered by

the smart wireless devices in smoothing out the wireless

network traffic over time by proactively serving peak-hour

requests during the off-peak time. Thus, users need not change

their regular activity patterns, yet they will be promised

better QoS. By moving caching to end-users, SPs can attain

higher performance gains compared to the use of CDNs

only since optimized individual proactive services can further

utilize available resources. In addition, it enables personalized

incentives for enhanced certainty about future demand.

We have demonstrated the potential gains of proactive

resource allocation, under large-timescale optimization, for

unicast and multicast networks as well as networks with

heterogeneous QoS requirements under perfectly predictable

demand. Further, authors in [15] characterize potential delay

reduction gains of proactive scheduling under perfect pre-

dictability. In [16], [17] we have considered the impact of

future demand uncertainty and have introduced the notion of

demand shaping through pricing incentives. The idea is to

price data content based on the user preferences in the sense

that more popular content receives less prices, hence users

become more attracted to it, the certainty about future demand

increases, and the SP attains efficient proactive download

performance. In [17], we have shown in a single-user that

not only does the proposed joint proactive service and pricing

schemes improve the SP’s profit, but also the user pays less

without changing his activity pattern over time.

In this paper, we generalize our results to the multi-user

system served by a content source, and establish asymptotic

bounds on the extra profit the SP can make through proactive

scheduling. We develop a distributed algorithm where users

can determine proactive downloads with the promise of less

payment. In particular, the contributions of this paper along

with its structure are as follows.

• In Section II, we introduce the system setup, model the

demand profile and economic responsiveness of end users,

and formulate the content based pricing problem together with

proactive data download.

• In Section III, we study the single user case of the

problem. We derive necessary and sufficient condition on the

activity of the end user and his preferences so that the smart

pricing with proactive downloads can always yield positive

profit and savings gains for the SP and end-user relative to

the flat pricing policy without proactive service. We develop

an algorithm that attains these gains and prove its convergence.

• In Section IV, we address the multi-user case of the

problem. We tackle the non-convexity of the price allocation

problem through successive approximations of convex prob-

lems, and develop centralized and distributed algorithms to

implement the joint allocation of pricing and proactive down-

load policies. We show that the SP can reap profit gains that

grow unboundedly with the number of users through proactive

services. Moreover, all users who receive such service make

positive savings gain. Thus we highlight the potential for the

win-win situation offered by leveraging the predictability of

human behavior.

• In Section V, we present numerical simulations to validate

the theoretical results and demonstrate the system gains. We

conclude the work in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The system model has some similarities to those in [16],

[14]. We consider a system comprising a SP and a set of

N users. We consider the SP to be a content source such

as YouTube, Netflix, CNN, Facebook, etc., In a time slotted

fashion, users generate random requests targeting content from

one of possible M data items available at the SP. The SP in

turn responds to such users’ requests in a timely basis. The

content of a data item could be a movie (as in YouTube and

Netflix), a soundtrack (as in Pandora), a news update (as in

CNN and Fox News), etc.

We assume that such contents are updated consistently every

time slot, where the slot duration represents the time over

which a user consumes the content of requested data item. This

can span a few minutes to possibly hours. Thus, in the slot

duration, the SP completes delivery of requested data content,

which has been partially served over the previous slot.

Users’ demand profiles: At time slot t, user n may decide

to consume a total of Sn,t amount of data, where Š ≤ Sn,t ≤
Ŝ, ∀n, t, and 0 < Š ≤ Ŝ <∞. This consumption is from one

of the M data items, per slot. The user decides to consume

content from item m at time t with probability Pn,t(m), m =
1, · · · ,M . We denote the demand profile for user n at time t
by the vector pn,t = {Pn,t(m)}Mm=1.

Each user exhibits a different willingness-to-pay value for

every data item, which potentially captures the value of such

item to the user. The willingness-to-pay value for item m
as recognized by user n is denoted by vn(m). We assume

the SP can measure these values through different methods

(see e.g., [25] and the references therein), and through the

significant advances in machine learning and collaborative

filtering for personalized recommendation techniques [26],

[27]. As content of each data item may be updated every

time slot, we assume willingness-to-pay value to vary over a

larger time horizon, e.g., weeks or months. The SP assigns

a price yn,t(m) ≤ vn(m) for data item m when it is

requested by user n at time t. The impact of such price on

the probability of requesting item m is captured through the

mapping Pn,t(m) = φm,n,t(yn,t(m)), which is non-negative

and non-decreasing in yn,t(m)1. We model the statistics of the

predictable user demands as follows:

• The demand of user n to item m at slot t is captured by

a random variable In,t(m) where

In,t(m) =

{

1, with probability Pn,t(m),

0, with probability 1− Pn,t(m).

1While we consider a general pricing model that allows content and user
dependent pricing, the notion of pricing here is not restricted to currency.
Instead, it can be a proxy to virtual tokens or points assigned to users based
on their subscriptions.
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• Any two different users n, k have In,t(m) independent

of Ik,t(j) for all m, j.
• Each user n can consume content from at most one data

item per time slot2. Hence
∑M

m=1 In,t(m) ≤ 1.

• Any user n is idle at slot t with probability qn,t := 1−
∑M

m=1 Pn,t(m).

Further, motivated by the consistent user activity patterns

shown in [18], and the reported results on human behav-

ioral patterns in [19], we assume that the demand profile

of each user follows a cyclostationary pattern that repeats

itself consistently in a period of T time slots. The T -slot

period can be interpreted as a single day through which the

activity of each user varies each hour, but occurs with the same

statistics consistently each day. That is, Sn,t = Sn,t+k and

qn,t = qn,t+T for any non-negative integer k, and t = 0, 1, · · · .

Proactive download decisions: To balance its aggregate

load over time, the SP assigns one-slot-ahead proactive down-

load values from the potential demand of the next slot to be

served in the current. In particular, the SP sets xn,t+1(m)
as the proactive download from the content of item m to be

served to user n with the demand of time t. The assumption of

only one-slot ahead proactive service is to account for content

freshness guarantees so that cached content is relevant to the

user at the time of consumption.
Incurred cost: The SP incurs costs proportional to the

aggregate load at each slot. In particular, if L is the total SP
load at a specific slot, then the cost incurred in such slot is
C(L), for some smooth, strictly convex, and monotonically
increasing cost function C : R+ → R+. Denoting by x and
y, respectively, the collections of proactive downloads and
service prices for all users, time slots, and data items, the
SP’s time average expected cost, thus, can be written as

η(x,y) :=
1

T

T−1
∑

t=0

E

[

C

(

M
∑

m=1

N
∑

n=1

(Sn,t − xn,t(m))In,t(m)

+ xn,t+1(m)

)]

. (1)

Please note the contribution of the proactive download

xn,t+1(m) to the total load at time t, which translates to a

cost that the SP incurs.

Revenue: The SP also reaps revenue due to the users

payments for the requested content. Such revenue essentially

depends on the users’ demand profiles which are shaped

through the pricing policy used. The time average revenue

(or user payments) received by the SPs is given by

µ(y) :=
1

T

T−1
∑

t=0

M
∑

m=1

N
∑

n=1

yn,t(m)φn,m,t(yn,t(m)). (2)

As such, the SP’s profit is given by R(x,y) := µ(y) −
η(x,y). The ultimate objective is to find the optimal allocation

of x and y that maximize such a profit. The time average profit

2Please note that a data item is not restricted to contain only one video, as
for example one can consider CNN as a data item with multiple new videos
update it every time slot. A user therefore can consume all these videos in
one slot, while another user consumes only one video with roughly the same
duration from a YouTube channel which can be treated as another data item.

maximization to be solved by the SP is formulated as

R∗ :=max
x,y

R(x,y) (3)

subject to, xn,T (m) = xn,0(m), ∀m,n, (4)

0 ≤ xn,t(m) ≤ Sn,t, ∀m,n, t, (5)

0 ≤ yn,t(m) ≤ vn(m), ∀m,n, (6)

M
∑

m=1

φm,n,t(yn,t(m)) = 1− qn,t, ∀n, t. (7)

Here, the activity of each user over time is kept unchanged

through the constraints
∑M

m=1 φm,n,t(yn,t(m)) = 1 − qn,t
which ensures same access probability.

Here we note that the above formulation can also apply

to the T -slot finite horizon optimization of the problem by

replacing (4) with xn,0(m) = 0, ∀m,n. Such finite horizon

scenario can be adopted when the SP is unaware of the demand

characteristics beyond time T .

In the formulation above, there are convexity issues with

the following. (i) The objective function is not concave in

(x,y) due to the product form of the cost as a function of

proactive downloads and probability of demand as a function

of price. (ii) The functions φm,n,t(yn,t(m)) may be non-affine

in yn,t(m), hence yielding non-convex constraint set [20].

Yet, the studies carried out in [4] have revealed that users

exhibit linear responsiveness to pricing incentives, which we

will consider in our main investigations throughout the rest of

the paper. In particular, we will adopt

φm,n,t(yn,t(m)) :=
1− qn,t
Dn,t

(vn(m)− yn,t(m)), ∀m,n, t,

where Dn,t is a normalizing constant. Further, we will provide

remarks along with the main results to cover the case when

φm,n,t is not an affine function. With the above form for

φm,n,t, constraints (7), reduce to an average price constraint

1

M

M
∑

m=1

yn,t(m) = ȳn,t, ∀n, t, (8)

where ȳn,t :=
∑

m vn(m)−Dn,t.

Our main focus in the following sections is to tackle

the inherent non-convexity issue of the objective function,

and show the system gains under suboptimal, yet efficient,

algorithms. We note that, in (3), we assume the SP has only

statistical knowledge about the users activity, which is justified

since most SPs consistently log and track user interactions with

the network over time and can construct the needed demand

profiles through the aid of machine learning tools such as

collaborative filtering. Hence, in the sequel we focus on the

design of off-line algorithms which take place as a one-shot

that determines pricing and proactive caching for every slot.

In the next section, we begin with the single user scenario for

its simplicity, then generalize the design to the multi-user case

in the subsequent section.

III. THE SINGLE-USER SCENARIO

In this subsection, we consider N = 1, thus we omit
the subscript n from all the notation. While the single user
scenario facilitates an ease of exposition, it also fits the setup
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whereby the contribution of the users’ requests to the aggregate
cost is not coupled by the convex cost function. In this case, the
proactive download and price allocation problem (3) reduces
to

R
∗ := max

{x,y}T−1
t=0

1

T

T−1
∑

t=0

1− qt

Dt

[

M
∑

m=1

(v(m)− yt(m))

(

yt(m)

−C

(

St − xt(m) +

M
∑

j=1

xt+1(j)

))]

− qtC

(

M
∑

j=1

xt+1(j)

)

(9)

subject to, constraints (4), (5), (6), (8),with N = 1.

It can be noted from (9) that the non-convexity of the

objective function is still restraining the achievability of the

globally optimal solution. However, an efficient solution to it

can still be attained as described in the following subsection.

A. Single-user Iterative Pricing and Proactive Download

Our proposed suboptimal algorithm takes an iterative se-

quential form of price allocation followed by proactive down-

load steps. In particular, we start the algorithm with some ini-

tial point (x(0),y(0)), then, at every iteration k, the algorithm

goes through the following two steps:

• Step 1: Profit maximization:

R(k) := max
y∈Y

R(x(k−1),y) (10)

where x(k−1) is the optimal solution of Step 2 at iteration

k − 1,

Y :=

{

y : 0 ≤ yt(m) ≤ v(m),
1

M

M
∑

m=1

yt(m) = ȳt, ∀m, t

}

.

• Step 2: Cost minimization:

η(k) := min
x∈X

η(x,yk) (11)

where y(k) is the optimal solution of Step 1 at iteration k,

X := {x : xT (m) = x0(m), 0 ≤ xt(m) ≤ St, ∀m, t} .

The algorithm utilizes the observation that the profit max-

imization problem given a proactive download control x is a

convex function in y. Moreover, given a price allocation strat-

egy y, the profit function is convex in x, and its maximization

is equivalent to minimizing the expected cost.

The following theorem establishes the convergence of the

proposed suboptimal algorithm.

Theorem 1: The sequence of SP profits {R(k)}k generated

through the iterative solutions of (10), (11) is increasing and

convergent.

Proof. We have for any iteration k,

R(k) = max
y∈Y

R(x(k−1),y) ≥ R(x(k−1),y(k−1))

≥ R(x(k−2),y(k−1)) = R(k−1)

where the last inequality follows since x(k−1) := argminx
η(x,y(k−1)) = argminx∈Y R(x,y(k−1)).

Thus, R(k) ≥ R(k−1), ∀k ≥ 0. Now, since R(k) is

bounded above by R(k) ≤ 1
T

∑T−1
t=0

∑M
m=1 v(m) < ∞, then

it converges to a finite limit R∗ := R(x∗,y∗) with x∗,y∗ are

the limit points of {x(k)}k ,{y(k)}k, respectively.

Thus, starting from any initial point (x(0),y(0)), the algo-

rithm converges to a point (x∗,y∗) for which R(x∗,y∗) ≥
R(x(0),y(y)). In the following subsection, we investigate the

performance of the algorithm in terms of SP profit and end

user payments.

B. Performance Analysis

For performance evaluation, we compare the results of the

developed algorithm in the previous subsection with a baseline

profit and user expected payment in which no proactive down-

loads are scheduled. In other words, the proactive download

control of the baseline scenario is x̂ := 0, and the associated

pricing policy is ŷ := argmaxy∈Y R(y,0). The expected

profit, cost, and user payments under the baseline scenario

are denoted respectively by R̂, η̂, and µ̂.

In our analysis we focus on the performance of the proposed

algorithm when the initial point is of the baseline scenario,

i.e., (x(0),y(0)) = (0, ŷ). The idea behind such a choice is

to highlight the potential gains to be reaped by such system

when proactive data download is employed. In fact, under

the baseline scenario, the SP can assign time and data item

dependent prices to maximize its profit. However, with the

additional degree of freedom of proactive service, such prices

can be optimized to realize more gains.

Letting (x∗,y∗) denote the limit point of the proposed

algorithm when the initial point is (0, ŷ), we define R∗ :=
R(x∗,y∗), η∗ = η(x∗,y∗), and µ∗ = µ(y∗). We compare the

profit and savings gains of the proposed algorithm relative to

the baseline through the quantities: profit gain ∆R := R∗−R̂,

savings gain ∆µ := µ̂ − µ∗, and cost reduction gain ∆η :=
η̂ − η∗. Clearly, we have ∆η = ∆R + ∆µ. In other words,

the cost reduction achieved through proactive downloads is

divided over the profit gain and savings gain.

In the following theorem, we establish a lower bound on

the profit gain.
Theorem 2: Let m∗

t := argmaxm∈{1,··· ,M} φm,t(ŷt(m)),
and
T :=

{

t : φm∗
t ,t

(ŷt(m
∗
t ))C

′(St) > (1− qt−1)C
′(St−1)

}

, ∀t.
Then,

∆R ≥
1

T

∑

t∈T

χt

(

φm∗
t ,t

(ŷt(m
∗
t ))C

′(St − χt)−

E

[

C
′

(

M
∑

j=1

St−1Ît−1(j) + χt

)])

, (12)

where C ′ is the first derivative of C,

χt := arg max
0≤x≤St

x
(

φm∗
t ,t

(ŷt(m
∗
t ))C

′(St − x)−

E

[

C
′

(

M
∑

j=1

St−1Ît−1(j) + x

)])

,

and Ît(m) is the random variable capturing the event that the

user requests item m at time t under pricing policy ŷ.
Proof. By the monotonicity of {R(k)}k, we have ∆R ≥

R(x(1), ŷ)−R(0, ŷ), i.e. ∆R ≥ η(0, ŷ)−η(x(1), ŷ). Further,
suppose we use a suboptimal proactive download strategy
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rather than x(1). In such a strategy, we set xt(m) = χt if
m = m∗

t , and t ∈ T , and xt(m) = 0, otherwise. Hence,

∆R ≥ η(0, ŷ)− η(x, ŷ)

=
1

T

T−1
∑

t=0

E

[

C

(

M
∑

m=1

StÎt(m)

)]

−

E

[

C

(

M
∑

m=1

(St − xt(m))̂It(m) + xt+1(m)

)]

(a)

≥
1

T

T−1
∑

t=0

E

[

C
′

(

M
∑

m=1

(St − xt(m))̂It(m) + xt+1(m)

)

×

(

M
∑

m=1

xt(m)̂It(m)− xt+1(m)

)]

(b)
=

1

T

T−1
∑

t=0

M
∑

m=1

xt(m)E

[

Ît(m)C′
(

M
∑

j=1

(St − xt(j))̂It(j)

+ xt+1(j)
)

− C
′

(

M
∑

j=1

(St−1 − xt−1(j))̂It−1(j) + xt(j)

)]

(c)

≥
1

T

∑

t∈T

χt

(

φm∗
t ,t

(ŷt(m
∗
t ))C

′(St − χt)−

E

[

C
′

(

M
∑

j=1

St−1It−1(j) + χt

)])

,

Inequality (a) follows by the mean value theorem for random

variables [21] while noting that C ′ is monotonically increasing

and non-negative. Equality (b) follows by rearranging the

terms. Inequality (c) follows since we omit the non-negative

values of xt+1(j) and xt−1(j), ∀j which can only reduce the

right hand side of Inequality (b).

The established bound in Theorem 2 essentially relies on

the existence of a sufficient difference between the marginal

costs of two consecutive slots, clearly, if T is non-empty, then

the lower bound is strictly positive. For instance, the user may

be busy at work until the end of the business day, where he

decides to follow up the news and request data content. The

SP can therefore partially supply such data before the end of

the business day so as to regulate the traffic over time. We

also note that, if T = {}, then ∆R = 0, which potentially

captures the event of a user with balanced demand over time,

for which the SP does not gain by shifting the load in time.

Now, we study the effect of proactive downloads on the sav-

ings gain, ∆µ. We first establish the statement that proactive

downloads can not yield a larger expected payment than the

baseline scenario. Subsequently, we characterize the necessary

and sufficient conditions for strictly positive savings gain.

Lemma 1: The expected payment by the user under the

proposed iterative algorithm satisfies µ(y∗) ≤ µ(ŷ).
Proof. Since R(0, ŷ) = maxy∈Y µ(0,y) − η(0,y)

with η(0,y) =
∑

t,m C(St)φm,t(yt(m)), the constraint that
∑

m φm,t(yt(m)) = 1 − qt implies η(0,y) =
∑

t C(St)(1 −
qt) is independent of y. In this case, profit maximization

will reduce to maximizing the expected payment. Therefore,

µ(0, ŷ) is the maximum expected payment by the user.

The user will be charged the maximum possible payment

when the SP can not modify its load dynamics over time.

With the proactive downloads, however, the smoothed-out load

characteristics will never yield extra payments on the user. The

following theorem characterizes an even stronger result.

Theorem 3: Suppose that C(0) = 0, and maxm v(m) >
minm v(m), then the savings gain satisfies ∆µ > 0 if and

only if

φm0,t0(ŷt0(m0))C
′(St0) > (1− qt0−1)C

′(St0−1), (13)

for some time slot t0, and data item m0.

Proof. Since maxm v(m) > minm v(m), then ŷt0(m1) 6=
ŷt0(m2) for some two items m1, m2. Hence, if x∗t0(m0) > 0,

we get maxm x∗t0(m) > minm x∗t0(m), which eventually

yields µ(y∗) < µ(0, ŷ). Now, we show that (13) is necessary

and sufficient to have x∗t0(m0) > 0.
(⇒) Suppose that (13) holds. We set xt(m) = 0 for

all (m, t) 6= (m0, t0). Consider the difference between the
expected costs (we adopt C(0) = 0),

T−1
∑

t=0

M
∑

m=1

(

C(St)− C

(

St − xt(m) +
∑

j

xt+1(j)

))

φm,t(ŷt(m))

−C

(

∑

j

xt+1(j)

)

qt = (C(St)− C(St − xt0(m0)))×

φm0,t0(ŷt0(m)) + (C(St)− C(St + xt0(m0))) (1− qt0−1)

+(C(0)− C(xt0(m0)))qt0−1

≥ xt0(m0)G(xt0(m0)),

where

G(xt0(m0)) := C
′(St − xt0(m0))φm0,t0(ŷt0(m0))−

C
′(xt0(m0))qt0−1 − C

′(St−1 + xt0(m0))(1− qt0−1).

The last inequality follows by the mean value theorem.

Since G is decreasing in xt0(m0), and G(0) =
C ′(St0)φm0,t0(ŷt0(m0)) − C ′(St0−1)(1 − qt0−1) > 0 by

hypothesis. By the continuity of C ′, there exists x > 0
for which xG(x) > 0. That is, xt0(m0) > 0 will yield a

strictly reduced cost as compared to the no proactive download

scenario.
(⇐) Suppose that x∗ > 0. Suppose towards contradiction

that (13) does not hold. Since x∗ > 0, the cost reduction due
to proactive service can only be upper bounded by a positive
value. That is,

T−1
∑

t=0

M
∑

m=1

(

C(St)− C

(

St − x̂t(m) +
∑

j

x̂t+1(j)

))

φm,t(ŷt(m))

−C

(

∑

j

x
∗
t+1(j)

)

qt ≤

T−1
∑

t=0

M
∑

m=1

C
′(St)×

(

x
∗
t (m)−

∑

j

x
∗
t+1(j)

)

φm,t(ŷt(m)) =

T−1
∑

t=0

M
∑

m=1

x
∗
t (m)(φm,t(ŷt(m))C′(St)− (1− qt−1)C

′(St−1)),

hence if (13) does not hold for any m or t, the right hand side

of the last expression will be non-positive, which contradicts

the hypothesis that x∗ > 0, with positive cost reduction.

Therefore (13) must hold.

Remark 1: In Theorem 3, suppose that minm v(m) ≥
|2ȳt0 − v̄|, where v̄ = 1

M

∑

m v(m). Then Condition (13)
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reduces to

1

M
+

1

2
·
maxm v(m)− v̄

Dt0

>
(1− qt0−1)C(St0−1)

(1− qt0)C(St0)
. (14)

The requirement on minm v(m) facilitates a full characteriza-

tion of ŷ as a function of (v(m))m and Dt.

The left hand side of (14) is the probability of requesting

the service with the maximum willingness-to-pay value, given

that the user is going to request a service at time t0. Here,

ŷt0(m) = vm+v̄
2 −

Dt0

M
. Thus, it is required to have this

probability greater than the ratio between its activity at the

previous slot t0 − 1 over the activity at t0.

Remark 2: In the proofs of Theorems 1, 2, 3, we used a

general form for φm,t which is not necessarily linear in yt(m).
This therefore extends the results of those theorems to any

algorithm that yields a locally optimal solution to (9) under

general economic responsiveness.

C. Distributed Implementation

As we have seen that the end-user has a potential to achieve

positive savings gain through proactive downloads, the SP can

involve the user to carryout the proactive download decisions

of the proposed iterative algorithm in response to the user the

assigned prices. In particular, the SP can run Step 1 of the

algorithm and assign a certain pricing policy that maximizes

the profit given the adopted proactive download strategy by

the end-user.

The end-user reacts to such pricing policy by executing

Step 2 of the algorithm so as to balance its load over

time, reduce the cost at the SP’s end, and essentially attain

less payments. The two parties will iterate their respective

steps until convergence. From a game-theoretic perspective,

the point (x∗,y∗) to which the algorithm converges is a

Nash equilibrium point of the dynamic coordinated game

incorporating the SP and end-user as its players, with the

common objective of maximizing the profit gain [22].

IV. THE MULTI-USER SCENARIO

The insights derived from the single-user scenario will in-

spire the development of an iterative algorithm that essentially

yields a similar win-win situation to SPs and end-users who

employ proactive content download. In the iterative single-

user algorithm, we have observed that the separation of the

price allocation and proactive download decisions leads to

two convex problems which can be solved iteratively until

convergence. In the multi-user case, the price allocation step

suffers from a product of prices for many users that need to be

jointly optimized, thus rendering the price allocation problem

non-convex. In this section, we tackle such an additional

difficulty through tools from non-convex optimization [24],

and establish performance bounds as in the previous section.

A. Multi-user Iterative Pricing and Proactive Download

We consider the sequence of solutions to approximate

convex problems of (3). In particular, in each iteration k, we

replace the objective function R(x,y), which is non-concave,

with an approximate concave function R̃(k)(x,y), and we use

the solution to the resulting convex problem to generate a

new approximate function R̃(k+1), and so on. The series of

solutions to these approximate convex problems converges to

a point that satisfies the KKT conditions of (3).

Lemma 2: Let R̃(k) be a concave function in (x,y) that re-

places the objective function R of (3) at iteration k. Denote by

(x(k−1),y(k−1)) the optimal solution to the resulting convex

optimization problem at the (k − 1)st iteration, k = 1, 2, · · · .

If

1) R̃(k)(x,y) ≤ R(x,y) for all feasible (x,y),
2) ∇R̃(k)(x(k−1),y(k−1)) = ∇R(x(k−1),y(k−1)),
3) R̃(k)(x(k−1),y(k−1)) = R(x(k−1),y(k−1)),

then R(x(k−1),y(k−1)) < R(x(k),y(k)), ∀k, and the sequence

{(x(k),y(k))}k converges to a point (x∗,y∗) which is a locally

optimal solution to (3).

The above lemma is a special case of Theorem 1 in [24]

which aims to provide local optimal solutions to non-convex

problems.

Corollary 1: Starting from the baseline initial point

(x(0),y(0)) = (0, ŷ), a sequence of approximate functions

{R̃(k)} generated as in Lemma 2 and resulting in a KKT-

satisfying point (x∗,y∗) leads to R(0, ỹ) < f0(x̂, ŷ).

Thus, the resulting local optimal solution will essentially lead

to a better profit performance than that of the baseline scenario

when no-proactive downloads are carried out.

In the following theorem, we provide a particular approx-

imation to R of (3) at each new iteration k that satisfies the

requirements of Lemma 2.

Theorem 4: For R being the objective function of (3), the

approximate function

R̃(k)(x,y) = µ(y)−η(x,y(k−1))−
1

T

T−1
∑

t=0

∑

m,n

h
(k)
n,t(m)yn,t(m),

(15)

where

h
(k)
n,t(m) =

∂η(x(k−1),y)

∂yn,t(m)

∣

∣

∣

∣

(x(k−1),y(k−1))

, ∀m,n, t, (16)

at iteration k ≥ 1 is concave in (x,y). Further, the sequence

of solutions to the problem resulting from replacing R with

{R̃(k)}k converges to a locally optimal solution of (3).

Proof. Please refer to Appendix A.

With the construction of the approximate functions R̃(k)

in the above theorem, we now present the iterative price and

proactive download algorithm.

• Start with some initial point (x(0),y(0)).

• At each iteration k ≥ 1, compute R̃(k) as in (15), and solve

the convex problem

max
{x,y}T−1

m,n,t=0

R̃(k)(x,y) (17)

subject to , constraints (4), (5), (6), (8). (18)

In the following subsection, we focus on the performance

analysis of the proposed multi-user iterative algorithm.
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B. Performance Analysis

To quantify the performance of the multiuser iterative

algorithm, we utilize the same metrics of the single-user

counterpart. In particular, we take the initial point of the

algorithm as the baseline no-proactive download scenario. That

is, (x(0),y(0)) = (0, ŷ), where ŷ = argmaxy∈Y R(0,y), and

here we take the set Y as

Y :=

{

y : 0 ≤ yn,t(m) ≤ vn(m),

M
∑

m=1

φm,n,t(yn,t(m)) = 1− qn,t, ∀m,n, t

}

.

We use the notation (x∗,y∗) to capture the point to which

the sequence of solutions {(x(k)),y(k)}k generated according

to the multi-user iterative algorithm converges. Further we use

∆R, ∆µ, and ∆η to quantify the profit, savings, and cost re-

duction gains, respectively, where ∆R = R(x∗,y∗)−R(0, ŷ),
∆µ = µ(ŷ)− µ(y∗), and ∆η = η(0, ŷ)− η(x∗,y∗).

To characterize a lower bound on the profit gain, we

introduce the following notion of active users:

Definition 1 (Active users): For each data item m and time

slot t, we define a set Bt(m) of active users as

Bt(m) :=
{

n : E
[

În,t(m)C ′(L̂t)− C ′(L̂t−1)
]

> 0
}

,

t = 0, · · · , T − 1, m = 1, · · · ,M,

where L̂t :=
∑

m,n Sn,tÎn,t(m). We also use Bt(m) :=
|Bt(m)| is the cardinality of set Bt(m).

The active users of slot t w.r.t. item m are those users who,

in the expected sense, create higher marginal cost in slot t by

requesting item m than the marginal cost of the previous slot.

Thus, they have a high potential to improve the cost reduction

through a proactive service of their demand. We will show in

the sequel that existence of such active users is necessary and

sufficient for positive system gains. In the definition above,

the expectation E

[

În,t(m)C ′(L̂t)− C ′(L̂t−1)
]

captures the

marginal contribution of user n to the cost of time slot t,
when requests item m, over the cost of the previous time slot

t−1. This, for instance, may attribute to the disparate activity

levels of the users between times t− 1 and t.

Now, we establish the following lower bound on the profit

gain.

Theorem 5 (Lower bound on profit gain): For the sets of

active users Bt(m) defined above,

∆R ≥
1

T

T−1
∑

t=0

x̃t

M
∑

m=1

∑

n∈Bt(m)

E

[

În,t(m)C ′

(

L̂t

−
M
∑

j=1

∑

k∈Bt(j)

x̃tÎk,t(j)

)

−C ′

(

L̂t−1+
M
∑

j=1

∑

k∈Bt(j)

x̃t

)]

> 0,

(19)

where

x̃t = arg max
0≤x̃≤Š

x̃
M
∑

m=1

∑

n∈Bt(m)

E

[

În,t(m)C ′

(

L̂t

−
M
∑

j=1

∑

k∈Bt(j)

x̃Îk,t(j)

)

− C ′

(

L̂t−1 +
M
∑

j=1

∑

k∈Bt(j)

x̃

)]

Proof. Please refer to Appendix B.

The above lower bound is achieved by allocating equal

proactive download values to all active users of a certain time

slot, and unchanging the pricing policy. While such a scheme

is strictly suboptimal, it reveals insights on the users, data

items, and time slots that can essentially benefit the system,

through proactive content download, beyond the baseline.

We further consider the asymptotic behavior of the lower

bound (19) when the number of users N grows to infinity. The

idea is to study the impact of the number of users (and active

users) on the potential profit gain when the user base expands

significantly as in large rallies, stadiums, supermarkets, public

transit, etc.

To that end, we start our investigations with the assumption

that qn,t < 1 − ǫ for all n, t and some ǫ > 0. That is, each

user can request a data item at any time slot with a positive

probability, and this probability will not vanish as the number

of users grows to infinity. Hence L̂t → ∞ almost surely as

N → ∞, ∀t.
We also capture the scaling of the number of active users

with N through two main assumptions. In the first, we

consider the case when such a number grows to infinity with

N , whereas, in the second, we consider the case when the

number of active users is finite and does not scale with N .

Assumption 1 (Scaling of the number of active users):

Assume that there exists some non-decreasing function g :
N → N such that g(N) → ∞ as N → ∞, and for every time

slot t and data item m, the limit

βt(m) := lim
N→∞

Bt(m)

g(N)
(20)

exists, and βt(m) <∞, ∀m = 1, · · · ,M, t = 0, · · · , T − 1.

Thus, the function g(N) captures the maximum possible

scaling of the active users of any item m, and time slot t
with the total number of users N .

We define P̌m,t := infn∈Bt
{φm,n,t(ŷn,t(m))}.

Theorem 6 (Asymptotic profit gain for infinite number of

active users): Under Assumption 1, suppose that the cost

function C satisfies

lim
L→∞

Lδ

C ′(L)
= 0, for some δ > 0. (21)

Suppose also that βt(m) > 0 for some data item m and time

slot t, with

lim inf
N→∞

{P̌m,t} > lim sup
N→∞

E [Lt−1]

E [Lt]
. (22)

Then, ∆R(N) = Ω(g(N)C ′(γN)), for some γ > 0. In other

words, the profit gain grows with N at least as g(N)C ′(γN).
Proof. Please refer to Appendix C.
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Note that, the assumption on βt(m) > 0 for some m, t
ensures that the number of active users grows to infinity as

g(N) with N . Also, Condition (22) requires the least possible

contribution of an active user to the system not to vanish as

the number of users grows to infinity. It can be noted from

Theorem 6 that the achieved profit gain depends on the growth

of the active users of the system with the total number of users.

These are the users that essentially allow for more gains by

receiving proactive service to smooth out the network load

over time, and reduce the incurred costs. The first derivative

of the cost function captures the rate of increase in the incurred

cost as the number of users grows. Yet, it also factors-in in

the lower bound demonstrating that proactive service enable

superlinearly increasing profit gain with the number of users.

Remark 3 (Finite number of active users): If 0 < Bt(m) ≤
B for all m, t, and some positive integer B, then the reaped

profit gain grows with N as Ω(C ′(γN)). That is, even under

a finite number of active users, the SP is able to reap a profit

grain that grows unboundedly with the number of users as

C ′(γN).
Now, we shed light on the potential savings gain ∆µ for the

users. To consider the savings of a particular user, we denote

the expected payment for user n by µn(y), where

µn(y) =
1

T

T−1
∑

t=0

M
∑

m=1

yn,t(m)φm,n,t(yn,t(m))

and we consider the savings gain for user n as ∆µn :=
µn(ŷ)− µn(y).

Lemma 3: Under the proposed multi-user algorithm, the

savings gain for each user n satisfies ∆µn ≥ 0.

Proof. Starting from the initial point (0, ŷ), we have

R(0, ŷ) = max
y∈Y

µ(y)−
1

T

T−1
∑

t=0

E

[

C

(

N
∑

n=1

Sn,t

M
∑

m=1

In,t(m)

)]

But
∑M

m=1 In,t(m) is a Bernoulli random variable with param-

eter 1−qn,t, i.e., independent of {yn,t(m)}m, for all n, t. Thus,

ŷ := argmaxy∈Y µ(y). Now, since µ(y) can be decoupled to

the superposition of per-user payments µ(y) =
∑N

n=1 µn(y),
it turns out that µn(ŷ) ≥ µn(y) for all y ∈ Y .

Hence, users will not pay more than their original subscrip-

tion fees under no proactive downloads. However, unlike in

the single user scenario, where we characterized in Theorem

3 a necessary and sufficient condition that depends only on the

initial prices and willingness-to-pay values to have a positive

savings gain, in the multi-user case, the dependencies of proac-

tive download decisions of one user on the pricing policies for

the others renders the derivations of similar conditions for the

multi-user case analytically intractable.

Nevertheless, we can still draw some insights on the users

with positive savings gain.

Theorem 7: Suppose that maxm vn0
(m) > minm vn0

(m),
for some user n0. Then ∆µn0

> 0 if and only if x∗n0,t0
(m0) >

0 for some data item m0 and time slot t0.

Proof. The condition maxm vn0
(m) > minm vn0

(m) ensures

{y∗n0,t
(m)} are not identical, hence {x∗n0,t0

(m)}m are also

non identical if x∗n0,t0
(m0) > 0.

(⇒) Suppose that x∗n0,t0
(m0) > 0. Under the multi-

user iterative algorithm, since (x∗,y∗) is the limit point

of the sequence of solutions generated by the algo-

rithm, then we can write y∗ = argmaxy∈Y µ(y) −
1
T

∑T−1
t=0

∑N
n=1

∑M
m=1 hn,t(m)yn,t(m)

= argmax
y∈Y

N
∑

n=1

µn(y) +
1

T

T−1
∑

t=0

M
∑

m=1

yn,t(m)E

[

C

(

Sn,t

−x∗n,t(m)+
∑

k 6=n

M
∑

j=1

(Sk,t−x
∗
k,t(j))I

∗
k,t(j)+

∑

k,j

x∗k,t+1(j)

)]

.

Now, that x∗n0,t0
(m0) > 0, the superposition

1

T

T−1
∑

t=0

M
∑

m=1

yn0,t(m)E

[

C

(

Sn0,t − x∗n0,t
(m)

+
∑

k 6=n

M
∑

j=1

(Sk,t − x∗k,t(j))I
∗
k,t(j) +

∑

k,j

x∗k,t+1(j)

)]

(23)

is dependent on {yn0,t0(m)}m, thus, yielding the pricing pol-

icy y∗n0,t0
(m) 6= ŷn0,t0(m), ∀m. But µn(y) is strictly concave

in y, and ŷ is its unique maximizer. Thus, µn(y
∗) < µn(ŷ).

(⇐) If x∗n0,t
(m) = 0, ∀m, then the superposition (23) is in-

dependent of {yn0,t(m)}, ∀m, t. Hence, y∗n0,t
(m) = ŷn0,t(m),

and ∆µn = 0.

Thus, users whose proactive downloads converge to positive

values must receive a positive savings gain, whereas users with

zero proactive downloads make neither gain nor loss. However,

it can be noted that the profit gain reaped by the SP must be

met with savings gain reaped by at least one user. This is

formalized in the following Theorem.

Theorem 8: Under the proposed multi-user iterative algo-

rithm, ∆R > 0 and ∆µ > 0 if and only if the set of active

users Bt(m) is non-empty for some time slot and data item.

Proof. In Theorem 5, we have proved the sufficiency part.

Here prove the necessity part, that is ∆R > 0 and ∆µ > 0
imply that Bt(m) is non-empty for some time slot and data

item.

(⇐) Suppose that Bt(m) is empty for all m, t. We have

the proposed algorithm R(x(1), ŷ) ≥ R(0, ŷ), with equality if

and only if x(1) = 0. So, suppose towards contradiction that

x(1) 6= 0. Hence, that η(0, ŷ)−η(x(1), ŷ). By the mean value

theorem for random variables, we have η(0, ŷ)−η(x(1), ŷ) ≤

1

T

T−1
∑

t=0

E

[

C ′
(

L̂t

)

(

M
∑

m=1

N
∑

n=1

x
(1)
n,t(m)În,t(m)

−

M
∑

m=1

N
∑

n=1

x
(1)
n,t+1(m)

)]

(a)
=

1

T

T−1
∑

t=0

E

[

M
∑

m=1

N
∑

n=1

x
(1)
n,t(m)(În,t(m)C ′(L̂t)− C ′(L̂t−1))

]

=
1

T

T−1
∑

t=0

M
∑

m=1

N
∑

n=1

x
(1)
n,t(m)E

[

In,t(m)C ′(L̂t)− C ′(L̂t−1)

]

(b)

≤

1

T

T−1
∑

t=0

M
∑

m=1

N
∑

n∈Bt(m)

Sn,tE

[

În,t(m)C ′(L̂t)− C ′(L̂t−1)
]

.
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Equality (a) follows be rearranging the terms, and inequality

(b) follows by summing only over the elements of Bt(m)
which can only increase the RHS. Now, since Bt(m) is empty

for all m, t, it turns out that the RHS of (b) is zero, which is

a contradiction. Finally, with x(1) = 0, we have y(2) = ŷ,

yielding x(2) = 0, and so on, leading to zeros profit and

savings gains.

Theorem 8 shows that the existence of active users in

the system is necessary and sufficient for profit and savings

gains. The attained win-win situation attributes to the judicious

utilization of the predictable nature of the user behavior. In

particular, the SP trades pricing discounts for certainty which

improves proactive download performance, and thus more

profit. Users who receive proactive downloads receive also

pricing discounts so as to access proactively served content

with higher probability. Thus, both parties win.

Remark 4 (Generalizing φm,n,t): In Theorems 6, 7, 8,

we have developed the results given that the proposed algo-

rithm converges to a locally optimal solution of the problem

with ∆R > 0, which is attained under the affine form of

φm,n,t(yn,t(m)). However, the same results also hold for any

locally optimal solution for the problem with ∆R > 0 and

φm,n,t taking a more general form of non-negative and non-

decreasing function in the employed pricing policy.

Remark 5 (Multiple-slot ahead proactive service): In the

analysis above, we have focused on the one-slot ahead proac-

tive service for fresh content guarantees. Yet, for data items

with more static content, proactive service can be applied

up to ρ slots ahead, ρ ≥ 1. The profit gain can then be

lower bounded through an extended definition of active users

in which user n is active with respect to item m and time

t if there exists a time slot t′ ∈ {t − ρ, · · · , t} such that

E

[

În,t(m)C ′(L̂t)− C ′(L̂t′)
]

> 0. Thus, this shows more

opportunities for existence of active users in the system, and

promises of larger scaling orders of the function g(N) of

Theorem 6.

Having gained some insights on the performance of the

proposed algorithm, and the incentives for users to save

money, we consider the distributed implementation of it in

the following subsection.

C. Distributed Implementation

The need for distributed implementation of the algorithm

is to reduce the centralized complexity at the SP and enable

system scalability. Inspired by the single-user scenario where

the distributed implementation took place through the sequen-

tial solution of price allocation and corresponding optimal

proactive downloads, here we also aim to leverage such dy-

namics to control the algorithm. In particular, we observe that

the optimization (17) can be decomposed to price allocation

and proactive download control. Hence, we propose to run

the distributed version of the multi-user algorithm through the

iteration of the two consecutive steps of price and proactive

download assignment.

Users will determine the optimal proactive download corre-

sponding to the prices set by the SP, then the SP will respond

with optimized pricing. The allocation of optimal proactive

download in a distributed fashion is essentially more difficult

than in the single-user case, since users need to iterate on the

proactive downloads within the proactive download allocation

step itself until they converge to the minimizer of the average

cost under the current pricing. Thus, there will be an inner

loop within the proactive download step.

Also, it can be noted from the previous subsection that not

all users may necessarily attain a positive savings gain through

the proposed algorithm. Hence, before the proactive download

step of each iteration k, the SP can compute the new sets of

active users defined as:

B
(k)
t (m) :=

{

n : E
[

I
(k−1)
n,t (m)C ′(L

(k−1)
t )− C ′(L

(k−1)
t−1 )

]

> 0} , t = 0, · · · , T − 1, m = 1, · · · ,M, (24)

where L
(k−1)
t :=

∑N
n=1 Sn,t

∑

m=1 I
(k−1)
n,t (m), and

I
(k−1)
n,t (m) is the indicator that user n requests item m

at time t under the pricing policy y(k−1).

Then, only the active users will be called to participate in

such an iteration. The following lemma reveals a nice property

of the distributed implementation.

Lemma 4: Starting from the baseline initial point

(x(0),y(0)) = (0, ŷ), the updated sets of active users accord-

ing to (24) satisfy B
(k)
t (m) ⊆ B

(k−1)
t (m), for all m, t, k.

Proof. By induction. We see from the proof of Theorem 8 that

if n /∈ B
(0)
t (m) ∀m, t, i.e., n is not an active user under ŷ,

then y
(1)
n,t(m) = ŷn,t(m), ∀m, t. Now,

E[I
(1)
n,t(m)C ′(L

(1)
t )]− E[C ′(L

(1)
t−1)] =

E[̂In,t(m)C ′(L̂t)]− E[C ′(L̂t−1)],

since E[C ′(Lt−1)] is independent of the pricing policy. Thus,

n /∈ B
(1)
t (m), ∀m, t. We can also apply the same procedure

with all subsequent iterations to show that n /∈ B
(k)
t (m),

∀m, t, k.

Now, suppose that B
(k−1)
t (m) ⊆ B

(k−2)
t (m), and a pick a

user n ∈ B
(k−2)
t (m) but n /∈ B

(k−1)
t (m), for all m, t. Then,

clearly, x
(k−1)
n,t (m) = 0, ∀m, t, which in turn implies y(k) = ŷ,

and hence n /∈ B
(k)
t (m) for the reason that E[C ′(Lt−1)] is

independent of the pricing policy.

Thus, users that have been found not-active at a given

iteration can be safely excluded from participation in the

distributed algorithm for the rest of iterations. Consequently,

the system will efficiently avoid unnecessary computations.

We present our proposed distributed version of the iterative

multi-user algorithm in Algorithm 1.

We can see from the algorithm that after each price al-

location decision, selected users iterate on optimizing their

proactive downloads, with the coordination of the SP, which

supplies them with the needed information encapsulated in

the personalized cost functions ηn(xn,x
(k,l−1)
−n ) to minimize,

until convergence to the best proactive download policy cor-

responding to the set prices. Thus users need not exchange

their own information with each other. We also note that the

iterations on the proactive downloads (i.e., the inner loop)

always converge to x(k), the optimal proactive download of

(17) since the problem is convex in x.
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Algorithm 1 Distributed Multi-user Iterative Pricing and

Proactive Download

1: Initialization: choose the initial point (x(0),y(0)), mini-

mum convergence accuracy ǫ > 0, and set the iteration

index k = 1.

2: while ‖(x(k),y(k)) − (x(k−1),y(k−1))‖ > ǫ outer loop

do

3: Service provider: Compute the sets B
(k)
t (m) as in (24).

4: Service provider: Solve

y(k) = argmax
y

µy −
1

T

T−1
∑

t=0

M
∑

m=1

N
∑

n=1

h
(k)
n,t(m)yn,t(m)

s.t., 0 ≤ yn,t(m) ≤ vn(m),

1

M

M
∑

m=1

yn,t(m) = ȳn,t∀m,n, t.

5: Service provider: Set an iteration index l = 1 for

the inner loop, and let x
(k,0)
n := (x

(k)
n,t(m))m,t, ∀n ∈

∪m,tB
(k)
t (m).

6: while ‖x(k,l) − x(k,l−1)‖ > ǫ inner loop do

7: Service provider: To each user n ∈ ∪m,tB
(k)
t (m)

compute ηn(xn,x
(k,l−1)
−n ).

8: for n ∈ ∪m,tB
(k)
t (m) do

9: User n solve x
(k,l)
n := argminxn

ηn(xn,x
(k,l−1)
−n )

s.t., xn,0(m) = xn,T (m),

0 ≤ xn,t(m) ≤ Sn,t, ∀m, t,

where xn = (xn,t(m))m,t is the proactive down-

load decision vector for user n, and ηn(xn,x−n)
is the expected SP’s cost as a function of xn,

with the proactive downloads for the rest of users

x−n = (xk)k 6=n given.

10: end for

11: l = l + 1.

12: end while

13: k = k + 1.

14: end while

V. NUMERICAL RESULTS

In this subsection, we numerically show the merits of the

proposed smart pricing and proactive data downloads through

numerical simulations. We first start with simulations for the

single user scenario, and then show the gains of the multi-user

case.

A. Performance of the single-user case

We consider a setup of T = 5 time slots with the user

inactivity captured by (qt)t = (0.03, 0.9, 0.02, 0.01, 0.9). The

number of data items is M = 3, the data item size is St = 100,

∀t, the willingness-to-pay values are (2.99, 2.24, 2.10) for the

three items, and the average price per item ȳt = 2 for all

slots. We consider a quadratic cost function C(L) = BL2

with B = 2× 10−4.

We run the single-user iterative algorithm starting from

the no proactive downloads initial point (0, ŷ). Convergence

results of the expected profit as a function are plotted versus

the iteration number.
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Fig. 1: Convergence of profit and user payment in the single-user
scenario.

Fig. 1 depicts the convergence results of the system profit

and user payment under the proposed single-user iterative al-

gorithm. Clearly, convergence points imply positive profit gain

associated with positive savings gain, i.e., win-win situation.
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Fig. 2: Entropy of the normalized demand profiles.

To further elaborate on the effect of the pricing strategy

on the certainty of the user demand, we evaluate the entropy

of the normalized profile ψm,t = φm,t/(1 − qt) and plot it

versus the iteration number [23]. The value of ψm,t captures

the probability of requesting item m at time t conditioned on

the event that the user requests at least one item at time t.
Fig. 2 plots the entropy of the normalized demand profile for

all slots t = 0, · · · , 4 with the iteration number. The peak-

hour slots 0 and 2 witness reduced entropy values to improve

the proactive download performance. Note that, no proactive

downloads are applied for slot 3, since it is preceded by a

higher activity slot. The off-peak slots 1 and 4 are not assigned

proactive download values too.

B. Performance of the multi-user case

For the multi-user case, we show the convergence results

in Figs. 3, 4. In particular, we consider a system with N = 7
users and M = 5 data items. We assume that users exhibit

the same activity probabilities qn,t as in the single-user case,

that is, (qn,t)t = (0.03, 0.9, 0.02, 0.01, 0.9), ∀n. We also use

the quadratic cost function, but with B chosen such that the

baseline profit is zero, i.e., R(0, ŷ) = 0.

We have randomly generated the system parameters as

[Sn,t]n,t =





















8.69 9.06 39.18 53.07 0.23
64.26 4.71 21.12 39.53 8.44
5.81 2.16 54.11 60.39 8.10
9.91 4.39 13.73 22.18 0.57
18.48 1.63 28.28 47.73 9.87
71.12 8.56 23.13 78.42 6.89
1.28 8.03 45.56 41.29 9.69





















,
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Fig. 4: Convergence of aggregate proactive downloads per user.

[vn(m)]n,m =





















3.40 3.59 6.16 3.1 5.25
2.26 6.93 3.87 2.90 5.01
2.22 3.40 2.43 4.80 2.19
3.24 4.69 10.43 3.30 6.03
5.13 2.85 12.38 2.60 10.15
3.81 2.11 4.37 2.24 7.54
5.31 6.37 2.04 7.39 15.17





















,

and Dn,t = Dn,τ , for all t, τ , with (Dn,1)n = (11.47, 10.98,

5.04, 17.70, 23.09, 10.01, 26.28).
In Fig. 3, the evolution of the user payments are plotted

throughout the algorithm iterations. It is obvious that users

3 and 6 ( which are active according to Definition 1) can

achieve strictly positive savings gain, while the rest of the users

remain at their original payments. The disparate differences

between consumption levels from slot 1 to slot 2 in case of

user 3 and from slot 4 to slot 0 in case of user 6 render them

perfect candidates to receive proactive downloads. In addition,

based on their willingness-to-pay values, the initial normalized

entropy of their profiles is least amongst all users, thus SP is

more certain about their future demand.

To confirm Theorem 7, we plot the total amount of proactive

downloads optimized for each user throughout the iterative

algorithm evolution. Clearly, users 3 and 6 who achieved pos-

itive savings gains are receiving positive proactive download

service.

We also have considered the scaling of system gains with

the number of users. We run the simulation for T = 4
slots, with qn,t = qt, ∀n, and (qt)t = (0.32, 0.9, 0.01, 0.95),
and we consider M = 4 items. We take B = 10−3, and

generate vn(m) as follows vn(m) = 2 + en(m), where

en(m) is a realization of an exponential distribution with mean

m. We also set Dn,t =
∑M

m=1 en(m), ∀t. The amount of

consumption for user n and time t is generated based on 1−qt
as follows. If qt < 0.5 then Sn,t is uniformly distributed

on [50, 70], and Sn,t is uniformly distributed on [0, 10] if

qt ≥ 0.5. The idea behind such a choice is to increase the

likelihood of active users scaling linearly with N . We averaged

the results over a multitude of simulation runs and plotted the

profit and savings gains in Figs. 5, 6. Further, we also plot the
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Fig. 5: Expected profit gain grows with the number of users as N2
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Fig. 6: Expected savings gains vs. the number of users N

results of the finite-horizon scenario, when cyclostationarity of

demand profiles does not hold possibly because of fast varying

willingness-to-pay values, thus the SP needs to optimize each

cycle of T -slots independently from the previous one.

We can see from Fig. 5 that the profit gain satisfies the

established lower bound in Theorem 6 as it grows at least

as N2, where N is the number of users. Scaling of savings

gain is shown in Fig. 6 with an illustrating linear curve of

0.8N to give an insight on the growth rate of the aggregate

savings. Obviously, there is a linear increase of such gains,

which essentially promises of constant saving shares per user.

In addition, finite-horizon optimization attains considerable

gains despite the limitation of independent resource allocation

over cycles. In this result, the average savings gain per user are

30.2% for cyclostationary case, and 20.6% for finite-horizon

case. Further, the percentage of average exccess load due to

proactive download inaccuracies are 9.4% and 3.4% for the

two respective cases. That is, the battery loss associated with

proactive download is proportional to ∼ 9.4%, ∼ 3.4% of

additional load consumption.
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Fig. 7: Impact of number of data items M on performance gains.

In Fig. 7, we study the impact of number of data items M
when N = 12 users. As M grows, SP suffers more uncertainty

and loses profit gain. However, savings gain is not significantly

impacted since SP still needs to maintain a balance between

high pricing incentives, to combat against uncertainty, and

service costs.
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VI. CONCLUSION

In this work, we have addressed the profit maximization

problem for a SP that experiences time varying, yet pre-

dictable, demand which assumes high peak-to-average ratio.

The SP has been allowed to employ joint smart pricing

and proactive downloads so as to balance its load level

over time, without enforcing users to physically change their

regular demand activities. To achieve enhanced performance of

proactive caching, the SP assigns personalized pricing policies

based on the user preferences of different types of content

so as to enhance the certainty about future demand, and

concurrently maximize its profit. We have analyzed such a

system under single- and multi-user setups and developed

efficient algorithms that yield strictly improved profit gain

for the SP and savings gain for the end user as compared

with the baseline scenario of no-proactive services. We have

established bounds on the asymptotic scaling performance of

the profit gain, and showed that all users that receive proactive

data services must attain positive savings gain.

APPENDIX A

PROOF OF THEOREM 4

First, we note that R̃(k) is concave in (x,y) since µ(y)
is a quadratic form of y with a negative definite Hessian,

and − 1
T

∑T−1
t=0

∑

m,n h
(k)
n,t(m)yn, t(m) is an affine function

of y. Finally, η(x,y(k−1)) is a convex function of x, by the

definition of the cost function C.

Second, we consider the three conditions specified in

Lemma 2. Since R is continuous in (x,y) and is defined

over a bounded and closed feasible set, then it has a global

maximum value U > 0. Such a value can be subtracted from

R̃(k) defined above to keep Condition 1) of Lemma 2 satisfied.

However, subtracting a constant from the objective function

does not affect the solution, which is the main point of interest.

Therefore, Condition 1) of Lemma 2 is not necessary in this

case. For Condition 2) of Lemma 2, we have

∂R̃(k)(x,y)

∂xn,t(m)

∣

∣

∣

∣

(x(k−1),y(k−1))

=
∂η(x,y(k−1))

∂xn,t(m)

∣

∣

∣

∣

(x(k−1),y(k−1))

=
∂R(x,y)

∂xn,t(m)

∣

∣

∣

∣

(x(k−1),y(k−1))

, ∀m,n, t.

Likewise,

∂R̃(k)(x,y)

∂yn,t(m)

∣

∣

∣

∣

(x(k−1),y(k−1))

=
∂µ(y)

∂yn,t(m)

∣

∣

∣

∣

(x(k−1),y(k−1))

−
∂η(x(k−1),y)

∂yn,t(m)
=
∂R(x,y)

∂yn,t(m)

∣

∣

∣

∣

(x(k−1),y(k−1))

, ∀m,n, t.

Thus Condition 2) of Lemma 2 is satisfied.

Finally, Condition 3) of the same lemma need not be

satisfied since it is mainly stated in Theorem 1 [24] for

a non-convex constraint function that has to be replaced

by a convex approximate. Condition 3) mainly implies the

satisfaction of the complementary slackness conditions by both

the approximate and the original constraint functions. Since we

are interested only in the objective function, Condition 3) of

Lemma 2 is not necessary for convergence to a KKT point.

APPENDIX B

PROOF OF THEOREM 5

We have ∆R ≥ R(x(1), ŷ) − R(0, ŷ), where x(1) is

the proactive download solution to the first iteration of the

proposed multiuser algorithm when the starting point is (0, ŷ).
Thus, x(1) is also the minimizer of η(x, ŷ) under the con-

straints of (17).

Hence, we have ∆R ≥ η(0, ŷ) − η(x(1), x̂). Further,

suppose we use the suboptimal proactive download policy x̃

rather than x(1) at the first iteration, whereby x̃n,t(m) :=
x̃t, n ∈ Bt(m), and x̃n,t(m) = 0 otherwise. Hence, the profit

gain satisfies ∆R ≥

1

T

T−1
∑

t=0

E

[

C(L̂t)− C

(

L̂t −
M
∑

m=1

∑

n∈Bt(m)

x̃tÎn,t(m)

+

M
∑

m=1

∑

n∈Bt+1(m)

x̃t+1

)]

(a)

≥

1

T

T−1
∑

t=0

E

[

C ′

(

L̂t −
M
∑

m=1

∑

n∈Bt(m)

x̃tÎn,t(m)

+

M
∑

m=1

∑

n∈Bt+1(m)

x̃t+1

)

×

(

M
∑

m=1

∑

n∈Bt(m)

x̃tÎn,t(m)−
M
∑

m=1

∑

n∈Bt+1(m)

x̃t+1

)]

(b)

≥

1

T

T−1
∑

t=0

M
∑

m=1

x̃t

∑

n∈Bt(m)

E

[

În,t(m)C ′

(

L̂t −

M
∑

j=1

∑

k∈Bt(k)

x̃tÎk,t(j)

)

−

C ′

(

L̂t−1 +

M
∑

j=1

∑

k∈Bt(j)

x̃t

)]

> 0.

Inequality (a) holds by the first order condition on the

convexity of the cost function C. Inequality (b) fol-

lows by rearranging the terms of the RHS of Inequal-

ity (a) and replacing the terms
∑M

j=1

∑

k∈Bt+1(j)
x̃t+1,

−
∑M

j=1

∑

k∈Bt−1(k)
x̃t−1Ik,t−1(j) with zeros while noting

that C ′ is monotonically increasing on its domain. Finally, the

last strict inequality holds by the definition of x̃t in Theorem

5, and the definition of active users.

APPENDIX C

PROOF OF THEOREM 6

We have ∆R ≥ R(x(1), ŷ) − R(0, ŷ), this reduces to

∆R(N) ≥ η(0, ŷ) − η(x(1), ŷ), the cost reduction after the

first iteration of the multi-user iterative algorithm. To show

that η(0, ŷ)−η(x(1), ŷ) = Ω(g(N)C ′(γN)), we consider two

steps. In the first step, we show that if lim infN→∞ x̃t > 0
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then

lim inf
N→∞

1

g(N)C ′(γ ·N)

∑

n∈Bt(m)

E

[

În,t(m)C ′

(

L̂t−

M
∑

j=1

∑

k∈Bt(j)

x̃tÎk,t(j)







 > 0,

for some γ > 0. In the other step, we prove that

lim infN→∞ x̃t > 0, and

lim inf
N→∞

E

[

∑

n∈Bt(m)

În,t(m)C ′

(

L̂t −
M
∑

j=1

∑

k∈Bt(j)

x̃tÎk,t(j)

)]

∑

n∈Bt(m)

E

[

C ′

(

L̂t−1 +
M
∑

j=1

∑

k∈Bt(j)

x̃t

)] > 1.

Step 1: Suppose that lim infN→∞ x̃t > 0. By Fubini’s

theorem, we can move the summation inside the expectation,

since all the summands are non-negative. Also, by Fatou’s

lemma, we have

lim inf
N→∞

1

g(N)C ′(γ ·N)

∑

n∈Bt(m)

E



În,t(m)C ′



L̂t −
M
∑

j=1

∑

k∈Bt(j)

x̃tÎk,t(j)







 ≥

E

[

lim inf
N→∞

∑

n∈Bt(m) În,t(m)

g(N)
×

lim inf
N→∞

C ′
(

∑M
j=1

∑N
k=1,k 6=n(Sk,t − x̃t)Îk,t(j)

)

C ′(γN)





(a)
=

lim inf
N→∞

∑

n∈Bt(m) Pn,t(m)

g(N)
×

E









lim inf
N→∞

C ′

(

N ·
∑M

j=1

∑N
k=1,k 6=n(Sk,t−x̃t )̂Ik,t(j)

N

)

C ′(γN)









.

Note that, on the left hand side (LHS) of Equality (a), we
have removed the contribution of user n in the argument of

C ′ which can only reduce its value, thus yielding În,t(m)
independent of the argument of C ′. Hence, on the RHS, we
split the expectation over the product. But 1 − qn,t > ǫ for

all n, t, for any n ∈ Bt(m), lim infN→∞ P̌ (m) > 0, and
βt(m) > 0 by hypothesis. Therefore,

lim inf
N→∞

∑

n∈Bt(m)

Pn,t(m)

g(N)
= βt(m) lim inf

Bt(m)→∞

∑

n∈Bt(m)

Pn,t(m)

Bt(m)
> 0.

On the other hand, Kolmogorov’s strong law of large

numbers implies

γ : = lim
N→∞

M
∑

j=1

∑N
k=1,k 6=n(Sk,t − x̃t)Îk,t(j)

N

a.s.
= lim

N→∞

M
∑

j=1

(Sk,t − x̃t)

∑

k 6=n Pk,t(j)

N
> 0,

since qn,t < 1, ∀n, t. Hence, we have

E

[

lim inf
N→∞

∑

n∈Bt(m) Pn,t(m)

g(N)
×

lim inf
N→∞

C ′

(

N ·
∑M

j=1

∑N
k=1,k 6=n(Sk,t−x̃t )̂Ik,t(j)

N

)

C ′(γN)









≥

βt(m) · lim inf
Bt(m)→∞

∑

n∈Bt(m)

Pn,t(m)

Bt(m)
> 0.

Step 2: In this step, we prove that there exists χ > 0,

independent of N , for which if x̃t = χ, then

lim inf
N→∞

∑

n∈Bt(m)

E

[

În,t(m)C ′

(

L̂t −
M
∑

j=1

∑

k∈Bt(j)

χÎn,t(j)

)]

∑

n∈Bt(m)

E

[

C ′

(

L̂t−1 +
M
∑

j=1

∑

k∈Bt(j)

χ

)] > 1.

We set x̃t = χ, independent of N , and we will prove that

0 < χ < Š. By Fubini’s theorem and Fatou’s lemma, as in

Step 1, it suffices to prove that

lim inf
N→∞

E

[

∑

n∈Bt(m)

În,t(m)C ′

(

L̂t −
M
∑

j=1

∑

k∈Bt(j)

χÎn,t(j)

)]

E

[

∑

n∈Bt(m)

C ′

(

L̂t−1 +
M
∑

j=1

∑

k∈Bt(j)

χ

)] > 1,

for some 0 < χ < Š.

By Condition (21), we have

lim inf
N→∞

E

[

∑

n∈Bt(m)

În,t(m)C ′

(

L̂t −
M
∑

j=1

∑

k∈Bt(j)

χÎk,t(j)

)]

E

[

∑

n∈Bt(m)

C ′

(

L̂t−1 +
M
∑

j=1

∑

k∈Bt(j)

χ

)] =

lim inf
N→∞

E





∑

n∈Bt(m)

În,t(m)

(

L̂t −
M
∑

j=1

∑

k∈Bt(j)

χÎk,t(j)

)δ




E





∑

n∈Bt(m)

(

L̂t−1 +
M
∑

j=1

∑

k∈Bt(j)

χ

)δ




(a)

≥

lim inf
N→∞

E





∑

n∈Bt(m)

În,t(m)

(

M
∑

j=1

N
∑

k=1

(Sk,t − χ)Îk,t(j)

)δ




E





∑

n∈Bt(m)

(

L̂t−1 +
M
∑

j=1

N
∑

k=1

χ

)δ




(b)
=

lim inf
N→∞

E





∑

n∈Bt(m)

În,t(m)
Bt(m)

(

M
∑

j=1

N
∑

k=1

(Sk,t−χ)̂Ik,t(j)
N

)δ




E

[

(

∑M
j=1

∑N
k=1

Sk,t−1 Îk,t−1(j)
N

+Mχ
)δ
] ,

where Inequality (a) follows since we extend the negative

sum −
∑M

j=1

∑

k∈Bt(j)
χÎn,t(j) to include the terms from
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outside set Bt(j), j = 1, · · · ,M , while noting that C ′

is monotonically increasing. Further, we increase denomina-

tor by extending the sum to
∑

j,k χ. Equality (b) follows

through multiplying both the numerator and denominator by

N δBt(m).
Now, by Kolmogorov’s strong law of large numbers, we

define the quantities:

c1(m) := lim inf
N→∞

∑

n∈Bt(m)

În,t(m)

Bt(m)

a.s.
= lim inf

N→∞

∑

n∈Bt(m)

Pn,t(m)

Bt(m)
,

c2(j) := lim sup
N→∞

N
∑

k=1

Îk,t−1(j)

N

a.s.
= lim sup

N→∞

N
∑

k=1

Pk,t−1(j)

N
,

c3(j) := lim inf
N→∞

N
∑

k=1

Îk,t(j)

N

a.s.
= lim inf

N→∞

N
∑

k=1

Pk,t(j)

N
.

Since 1−qn,τ < ǫ, ∀n, τ , βt(m) > 0, and lim infN→∞ P̌t(m)

> ǫ, ∀k ∈ Bt(m), we conclude c1(m)
a.s.
> 0, c2(j)

a.s.
> 0,

j = 1, · · · ,M , and c3(j)
a.s.
> 0j = 1, · · · ,M. Hence,

E



lim inf
N→∞

∑

n∈Bt(m)

În,t(m)
Bt(m)

(

M
∑

j=1

N
∑

k=1

(Sk,t−χ)̂Ik,t(j)
N

)δ




E

[

lim sup
N→∞

(

∑M
j=1

∑N
k=1

Sk,t−1 Îk,t−1(j)
N

+Mχ
)δ
]

(c)
=

c1(m)
(

∑M
j=1(S3 − χ)c3(j)

)δ

(

Mχ+
∑M

j=1 S2c2(j)
)δ

,

where S3 := lim infN→∞

∑N
k=1 Sk,t/N , and S2 :=

lim supN→∞

∑N
k=1 Sk,t−1/N . The right hand side (RHS) of

Equality (c) is strictly greater than 1 if and only if

χ <

(

c1(m)
1
δ

∑M
j=1 c3(j)S3

)

−
∑M

j=1 c2(j))S2
(

M +
∑M

j=1 c3(j)
) .

Now, to show that χ > 0, it suffices to prove that


c1(m)
1
δ

M
∑

j=1

c3(j)S3



−
M
∑

j=1

c2(j)S2 > 0.

We have by the definition of set Bt(m) that
∑

n∈Bt(m)

E

[

În,t(m)C ′(L̂t)− C ′(L̂t−1)
]

> 0.

By Condition (21), consider n ∈ Bt(m), for sufficiently large

N , we obtain

Pn,t(m) > E

[

(

L̂t−1

)δ
]

/E

[

(

Ŝ + L̂t

)δ
]

which implies
∑

n∈B

Pn,t(m)

Bt(m)
>

E

[

(

L̂t−1

)δ
]

E

[

(

Ŝ + L̂t

)δ
]

lim inf
N→∞

∑

n∈B

Pn,t(m)

Bt(m)
>





(

∑M
j=1 c2(j)S2

)

(

∑M
j=1 c3(j)S3

)





δ

,

by (22). Hence, (c1(m))
1
δ
(
∑M

j=1 c3(j)S(j))
(
∑

M
j=1 c2(j)S(j))

> 1.
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