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Abstract

We consider the problem of allocating resources at a base station to many competing flows, where

each flow is intended for a different receiver. The channel conditions may be time-varying and different

for different receivers. It has been shown in [6] that in a delay-free network, a combination of queue-

length-based scheduling at the base station and congestioncontrol at the end users can guarantee queue-

length stability and fair resource allocation. In this paper, we extend this result to wireless networks where

the congestion information from the base station is received with a feedback delay at the transmitters.

The delays can be heterogenous (i.e., different transmitters may have different round-trip delays) and

time-varying, but are assumed to be upper-bounded, with possibly very large upper bounds. We will

show that the joint congestion control-scheduling algorithm continues to be stable and continues to

provide a fair allocation of the network resources.

I. I NTRODUCTION

We study the problem of fair allocation of resources in the downlink of a cellular wireless

network consisting of a single base station and many receivers (see Figure 1). The data destined

for each receiver is maintained in a separate buffer. The arrivals to the buffers are determined via

a congestion control mechanism, which will be described in detail later. We assume that the time

is slotted. The channels between the base station and the receivers are assumed to have random

time-varying gains which are independent from one time-slot to the next. The independence

assumption can be relaxed easily, but we use it here for ease of exposition. The goal is to

allocate the network capacity fairly among the users, in accordance with the needs of the users,
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Fig. 1. Network with feedback delays. The channel from the base stationto the receivers is time-varying.

while exploiting the time-variations in the channel conditions. We associate a utility function

with each user that is a concave, increasing function of the mean service that it receives from

the network. In an earlier paper [6], it was shown that a combination of Internet-style congestion

control at the end-users and queue-length based schedulingat the base station achieves the goal

of fair and stabilizing resource allocation. This result issomewhat surprising since the resource

constraints in the case of a wireless network are very different from the linear constraints in

the case of the Internet [17]. The relative merits of congestion control-based resource allocation

scheme as compared to other resource allocation schemes forcellular networks are discussed

in [6]. Several other works in the same context are [18], [10], [13]. However, none of these

works explicitly include the effect of feedback delay in their analysis. One of the reasons that

delay is not important in these other works is that a specific scheduling algorithm is used in the

network which allows the congestion control to be based onlyon the queue length at the entry

node of each source. However, here we consider a situation where such scheduling is not used

and where the bottleneck is at the cellular network while thesources may be located far away

from the base station. An example of such a situation is a file transfer from a remote host over

the downlink of a cellular network. In this work, we aim to consider the effect of this essential

parameter on the fairness and stability properties of the algorithm presented in [6].

In [6], it is assumed that there are no delays in the transmission of packets from an end-user

(transmitter) to the base station and in the transmission ofcongestion information from the base

station back to the end users. But if we consider the case wherethe end users are connected to
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the base station through the Internet, then delays exist in both directions: there is a propagation

delay τ f
i from the end useri to the base station — we call it the forward delay of the end

user i, and a propagation delayτb
i from the base station to the end useri — we call it the

backward delay. It is well-known that the presence of delaysmay affect the performance of the

network. For example, Internet congestion controllers which are globally stable for the delay-free

network may become unstable if the feedback delays are large[17]. In our problem, when delays

exist, the information the end users obtain will be “outdated” information. So the congestion

information the users obtain at timet does not reflect the queue status at the base station at time

t. So it is interesting to study a wireless network with delays and ask whether the conclusions

of [6] still hold for wireless networks with heterogeneous delays. We answer this question by

showing that for a network with uniformly-bounded delays, which are potentially heterogeneous

and time-varying, the algorithm of [6] is stable and can be used to approximate weighted-m fair

allocation arbitrarily closely. We emphasize that the results hold for networks with arbitrarily

large, but bounded time-varying delays. So even if the end users can only get very old feedback

information from the base station, the network is still stable and can eventually reach the fair

resource allocation. On the other hand, from the proof, we can also see that when the delays

are large, it may take more time for the network to achieve thefair resource allocation. This

observation is also supported by simulations, not shown here due to page limitations, which are

presented in [21].

The rest of the paper is organized as follows: in Section II, we introduce the system model

including the congestion controller used by the end users and the scheduler implemented at

the base station. In Section III, we show that the resulting resource allocation approximates

weighted-m fairness arbitrarily closely. Finally, we conclude in Section IV.

II. SYSTEM MODEL

We consider a cellular network shared byn flows in the downlink and assume that the base

station maintainsn separate queues, one corresponding to each flow. We study thefair resource

allocation problem in this paper. Specifically we consider weighted-m fairness. It means that

each sourcei has a utility function given byUi(z̄i) = αi
z̄1−m

i
1−m , where ¯zi is the average rate at

which useri transmits andαi is a positive weighting factor [12]. Here,m = 1, m = 2 andm → ∞

correspond to respectively proportional fair, minimum potential delay fair and max-min fair
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resource allocations. Note that in the case,m = 1, the above utility function is not well-defined;

however, it can be shown that asm → 1, the limiting resource allocation corresponds to the case

whereUi(z̄i) = αi logz̄i [12]. We assume that the time is slotted and denote the lengthof the

queuei at the beginning of the time slott by xi[t], the number of arrivals to queuei in time slot

t by ai[t], and the amount of service offered to queuei in slot t by µi[t]. We assume that each

of these parameters can only take non-negative integer values. The evolution of the size of the

ith queue is given by:

xi[t +1] = xi[t]+ai[t]−µi[t]+ui[t],

whereui[t] is a non-negative quantity which denotes the wasted servicegiven to queuei at time

slot t and it guarantees thatxi[t] ≥ 0. We also assume that the channel between the base station

and the receivers can be in one ofJ states in a given slot. We uses[t] to denote the state in time

slot t. The channel state is assumed to be fixed within a time slot, butmay vary from one slot to

another, thus capturing the time-varying characteristicsof a fading environment. Corresponding

to each channel state, sayj, is an achievable rate region,C j, that is defined to be convex hull of

the feasible rate vectors,η [t] := (η1[t], . . . ,ηn[t]), that can be offered to the queues. We assume

that eachC j is a bounded region and letη̂ < ∞ denote the upper bound on the achievable rates

for all channel states. The channel state process is assumedto be independent and identically

distributed in each time slot, but we do not require that the statistics be known at the base station.

Furthermore, we define the mean achievable rate region as

C̄ :=

{

η : η =
J

∑
j=1

πch
j η( j),η( j) ∈C j

}

,

whereπch
j stands for the stationary distribution of the channel stateprocess being in statej. The

scheduler will use following algorithm:

SCHEDULER: Given the current queue lengthx[t] := (x1[t], . . . ,xn[t]) and current channel state

s[t], the scheduler at the base station chooses a service rate vector µ[t] := (µ1[t], . . . ,µn[t])∈Cs[t]

that satisfies

µ[t] ∈ arg max
η∈Cs[t]

n

∑
i=1

xi[t]ηi.

This scheduling rule was introduced in the context of fixed arrival rates (i.e., where the arrival
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rates are not adjusted by a congestion controller) in [19], where it was also shown that it is

a stabilizing rule, i.e., the mean queue-lengths are upper-bounded. This result was extended in

many different directions in [2], [16], [15], [7], [3], [9],[5], [14].

In our model, the packet arrival rate into the queue is assumed to be controlled according

to the well-known dual controller that has been studied extensively in the context of Internet

congestion control [8], [11], [20], [17]. In the context of Internet congestion control, a dual

controller chooses the transmission ratezi such that

αiK
xi

= zi

for any constantK > 0. Next, we describe the operation of our congestion controller followed

by some assumptions.

CONGESTIONCONTROLLER: Recall that, for useri, the forward delay isτ f
i and the backward

delay isτb
i . In our model, the downlink is the only bottleneck of the system, so τ f

i , which is

the propagation delay from useri to the base station, is a constant. On the other hand, packets

experience queueing delay at the base station, and the transmissions between the base station

and the receivers are over wireless links. Thus,τb
i [t] is time varying. Since users will always

use the latest feedback information, we defineτb
i [t] such that

τb
i [t] = min{τ̃b

i [t],τb
i [t −1]+1},

where {τ̃b
i [t]}t are i.i.d. random variables, andTmax− τ f

i ≥ τ̃b
i [t] ≥ τ p

i . Note thatTmax is the

upper bound on the round trip delays, andτ p
i is the propagation delay from the base station to

user i via receiveri. Now, denote the amount of data sent out by useri in slot t by λi[t]. The

congestion controller at useri regulates the mean ofλi[t] such that

E
[

λi[t]
∣

∣

∣xi

[

t − τb
i [t]
]]

= min

{

αiK
(

xi
[

t − τb
i [t]
])m ,M

}

, (1)

wherem > 0, M > 2η̂ is a positive constant which ensures that the arrival rate into the queue

is upper bounded when the queue length is small, andxi[t −τb
i [t]] is the congestion information

measured by the based station and feedback to useri via receiveri. We will later show thatK

has to be large to approximate weighted-m fair resource allocation.
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Sinceai[t] = λi

[

t − τ f
i

]

, the mean of the number of arrivals into queuei at time t given by

E[ai[t]|xi[t −Ti[t]]] = E
[

λi

[

t − τ f
i

]∣

∣

∣
xi

[

t − τ f
i − τb

i

[

t − τ f
i

]]]

= min

{

αiK
(xi[t −Ti[t]])m ,M

}

, (2)

whereTi[t] = τ f
i + τb

i

[

t − τ f
i

]

. Define T̃i[t] = τ f
i + τ̃b

i

[

t − τ f
i

]

, we haveTi[t] = min{T̃i[t],Ti[t −
1]+1}, and{T̃i[t]}t are i.i.d. random variables such thatTmax≥ T̃i[t]≥ τ f

i +τ p
i . We assumeai[t]

is independent across time slots and

E
[

a2
i [t]|xi[t −Ti(t)]

]

≤V < ∞ for all xi[t −Ti(t)]. (3)

Furthermore, we assume there exist positive numbersθ , A > T η̂ and h > 2 such that for any

N > A,

P

(

T

∑
j=1

ai[t − j] = N

)

<
θ

Nh for all i. (4)

In summary, the combined Scheduler-Congestion Controller Algorithm can be defined as

follows:

xi[t +1] = xi[t]+ai[t]−µi[t]+ui[t] (5)

µ[t] ∈ arg max
η∈Cs[t]

n

∑
i=1

xi[t]ηi, (6)

where ai[t] is a random variable satisfying the conditions in (2), (3) and (4). Note that the

congestion control part of this algorithm is slightly different from the algorithm in [6]. We

impose an upper-bound on the source rates in a more natural manner than in [6]. Our results

continue to hold for the algorithm in [6] too.

We now present the following theorem, which will be useful later. This theorem is similar to

Proposition 1 of [6].

Theorem 1: There exists a unique pair of vectors(x∗,µ∗) which satisfy following conditions

• µ∗ ∈ argmaxη∈C̄ ∑n
i=1x∗i ηi; x∗i =

(

αiK
µ∗

i

) 1
m

for all i, and

• µ∗ is the optimal solution to maxµ∈C̄ ∑n
i=1Kαi

µ1−m
i

1−m .

⋄
From the above theorem, we can see thatµ∗ is weighted-m fair. For the stochastic model, we

will show that µ[t] converges toµ∗, defined in Theorem 1, in a probabilistic sense. This then
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implies that the network reaches a fair operating point.

In the rest of the paper, we will show that fair resource allocation can be achieved when the

linear gain,K, used in the congestion controller goes to infinity.

III. W EIGHTED-m FAIRNESS AND STABILITY

Use µ[∞] to denote the steady state ofµ, we will show in our main theorem — Theorem 3,

that for anyε > 0,

lim
K→∞

P(|µ[∞]−µ∗| ≥ ε) = 0,

which implies that the network can achieve weighted-m fairness whenK is chosen to be large.

To prove this, we first need following lemma which characterizes the mean distance betweenx∗

and the steady state ofx[t].

Lemma 2: There exists a positive constantσ < 1/m, and a positive constant ¯c that depends

on the mean achievable rate region, the algorithm parameters {αi}, and the moments of the

channel and arrival process, such that

E [‖x[∞]−x∗‖] ≤ c̄K
1
m−σ for largeK,

where x[∞] is an informal notation for the steady state ofx and ‖ · ‖ denotes the Euclidean

distance in theℜn.

Proof: Definey[t] = (x[t], . . . ,x[t −Tmax],T[t]) , whereTmax≥ Ti[t]. It is easy to see that the

process{y[t]}t≥0 is a Markov chain becauseai[t] depends only onxi[t −Ti[t]] andTi[t] depends

only on Ti[t −1], so xi[t + 1], Ti[t + 1] and y[t + 1] are determined byy[t]. Further, define the

Foster-Lyapunov function

W (y[t]) =
1
2

n

∑
i

(xi[t]− x∗i )
2 ,

and

E[∆Wt(y)] := E [W (y[t +1])−W (y[t])|y[t]] .

Then following an argument similar to Theorem 2 of [6], the lemma will hold if there exist a

finite setSσ , positive numbersσ < 1/m, δ ∗, andζ such that for largeK

E[∆Wt(y)] ≤− δ ∗

K
1
m−σ

‖x−x∗‖Iy∈Sc
σ +ζ Iy∈Sσ . (7)
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Thus we only need to show inequality (7). For a positive constant c andσ < 1/m define

Sσ = {y[t] : ‖x[t]−x∗‖ ≤ cKσ } . (8)

Note thatTi[t] ≤ Tmax, and‖x[t]−x∗‖ ≤ cKσ implies that

∑
i

xi[t − s] ≤ ∑
i

x∗i +ncKσ +nTmaxη̂ , for all 0≤ s ≤ Tmax.

Thus,Sσ is a finite set. Also, it is easy to see that ify[t] ∈ Sσ , there exists 0< ζ < ∞ such that

E[∆Wt(y)] < ζ . Now, considery[t] /∈ Sσ , define the eventχ t
0 such that

χ t
0 :=

{

max
i

Tmax

∑
j=1

ai[t − j] ≤ A

}

,

and eventsχ t
l for l = 1,2, . . . such that

χ t
l :=

{

max
i

Tmax

∑
j=1

ai[t − j] = A+ l

}

.

Then we can rewriteE[∆Wt(y)] as follows:

E[∆Wt(y)] =
∞

∑
l=0

E[∆Wt(y)|χ t
l ]p(χ t

l ).

For convenience, we also let{y}M denote min{y,M}. Then, along the lines of the proof of

Theorem 1 of [6], it can be shown that there existsBd > 0, which is independent onK andx[t],

such that

E[∆Wt(y)] ≤
n

∑
i=1

∆xi[t]

(

{

αiK
(xi[t −Ti])m

}M

−µ∗
i

)

+Bd (9)

=
n

∑
i=1

∆xi[t]

(

{

αiK
(xi[t −Ti])m

}M

−
{

αiK
(xi[t])m

}M
)

(10)

+
n

∑
i=1

∆xi[t]

(

{

αiK
(xi[t])m

}M

−µ∗
i

)

+Bd, (11)

where∆xi[t] = xi[t]−x∗i . DefineG(K) := (11) andH(K) := (10), to prove inequality (7), we will

show the following three facts. The first one is that there exists δd > 0 such that for all events
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χ t
l ,

G(K) ≤− δd

K
1
m−σ

‖x[t]−x∗‖. (12)

Second, whenχ t
0 happens, there existsδ0 > 0 such that

p(χ t
0) |H(K)| ≤ p(χ t

0)
δ0

Kξ ‖x[t]−x∗‖. (13)

The last one is that there existsδ1 > 0 such that

∞

∑
l=1

p(χ t
l ) |H(K)| ≤ δ1

Kξ ‖x[t]−x∗‖. (14)

If all three inequalities — (12), (13) and (14) — hold andξ > 1
m −σ , we will have

E[∆Wt(y)] ≤ G(K)+ p(χ t
0)H(K)+

∞

∑
l=1

p(χ t
l )H(K)

≤ −
(

δd

K
1
m−σ

− δ0p(χ t
0)+δ1

Kξ

)

‖x[t]−x∗‖

≤ −
(

δd

K
1
m−σ

− δ0 +δ1

Kξ

)

‖x[t]−x∗‖.

Then, whenK > ((2δ0 +δ1)/δd)
1/(ξ+σ−1/m) , we have

δd

2K
1
m−σ

− δ0 +δ1

Kξ > 0,

which implies

E[∆Wt(y)] ≤ −
(

δ ∗

K
1
m−σ

)

‖x[t]−x∗‖

and the inequality (7) holds withδ ∗ = δd/2.

Now we prove (12), (13) and (14). We will first show (12). The proof is similar to the proof

of Theorem 1 of [6]. But here we consider a generalm instead ofm = 1. Defineσ as follows:

σ =



















⌊ 1
m⌋, if m ≤ 1 and 1

m is not an integer;
1
m − 1

2, if m ≤ 1 and 1
m is an integer;

1
2m , if m > 1.

9



From above definition, we have that

0 <
1
m
−σ < min{σ ,1}.

Notice that we have

(xi[t]− x∗i )

(

{

αiK
(xi[t])m

}M

−µ∗
i

)

≤ 0 for all i.

Letting i0 = argmaxi |xi[t]− x∗i |, then

G(K) ≤−|xi0[t]− x∗i0|
∣

∣

∣

∣

∣

{

αi0K
(xi0[t])

m

}M

−µ∗
i0

∣

∣

∣

∣

∣

+Bd.

Now, if
{

αiK
(xi0[t])m

}M
= M, from the definition ofM, we haveM > 2η̂ , so

∣

∣

∣

∣

∣

{

αi0K
(xi0[t])

m

}M

−µ∗
i0

∣

∣

∣

∣

∣

= M−µ∗
i0 > η̂ .

Otherwise if
{

αiK
(xi0[t])m

}M
< M, then

∣

∣

∣

∣

∣

{

αi0K
(xi0[t])

m

}M

−µ∗
i0

∣

∣

∣

∣

∣

= µ∗
i0

∣

∣

∣

∣

(

x∗i0
xi0[t]

)m

−1

∣

∣

∣

∣

.

Because

xi0[t] =







x∗i0 −|xi0[t]− x∗i0| ≥ 0, if xi0[t]− x∗i0 ≤ 0;

x∗i0 + |xi0[t]− x∗i0| ≥ 0, if xi0[t]− x∗i0 ≥ 0,

and ∣

∣

∣

∣

∣

(

x∗i0
x∗i0 −|xi0[t]− x∗i0|

)m

−1

∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

∣

(

x∗i0
x∗i0 + |xi0[t]− x∗i0|

)m

−1

∣

∣

∣

∣

∣

,

we can show that

µ∗
i0

∣

∣

∣

∣

(

x∗i0
xi0[t]

)m

−1

∣

∣

∣

∣

≥ µ∗
i0

∣

∣

∣

∣

∣

(

x∗i0
x∗i0 + |xi0[t]− x∗i0|

)m

−1

∣

∣

∣

∣

∣

≥ µ∗
i0

∣

∣

∣

∣

1− 1
(1+ ε)m

∣

∣

∣

∣

,

where

ε =
cµ∗

i0
1/m

√
nαi0

1/m
Kσ− 1

m > 0,
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and the last inequality holds becausex∗i0 =

(

αi0K
µ∗

i0

)1/m

andcKσ ≤ ‖x[t]−x∗‖ ≤ √
n|xi0[t]− x∗i0|.

Further, since(1+ ε)m ≥ 1+mε, we have

µ∗
i0

∣

∣

∣

∣

1− 1
1+mε

∣

∣

∣

∣

=
µ∗

i0
mε

1+mε
.

It is easy to see that for largeK, we will have
µ∗

i0
mε

1+mε < η̂ . Thus, for largeK, we have

∣

∣

∣

∣

∣

{

αi0K
(xi0[t])

m

}M

−µ∗
i0

∣

∣

∣

∣

∣

≥
µ∗

i0
mε

1+mε
,

and

G(K) ≤−|xi0[t]− x∗i0|
(

µ∗
i0

mε
1+mε

− Bd

|xi0[t]− x∗i0|

)

≤−|xi0[t]− x∗i0|













µ∗
i0

√
n

mc

(

αi0
µ∗

i0

) 1
m

K
1
m−σ +1

− Bd
c√
nKσ













.

Because1
m −σ ≤ σ , by choosing sufficiently largec, we can find a positive constantδ̂ and K̂

such that for anyK ≥ K̂

G(K) ≤− δ̂
K

1
m−σ

|xi0[t]− x∗i0| ≤ − δd

K
1
m−σ

‖x[t]−x∗‖,

whereδd = δ̂/
√

n.

Next, we consider (13). It is the case that the arrivals are upper bounded byA. We will show

that asK increases,

∣

∣

∣

∣

{

αiK
(xi[t−Ti])m

}M
−
{

αiK
(xi[t])m

}M
∣

∣

∣

∣

decreases.

We use Figure 2 to prove our result. Suppose thatm > 0, thenαiK/ym is convex and

f (y) =

{

αiK
ym

}M

is as Figure 2. Now supposec−a = d −b = A and f (a) = M. Then for anyb such thata < b,

we can see from the figure thatf (a)− f (c) > f (b)− f (d). It means that

max
{x1,x2:x2−x1≤A}

( f (x1)− f (x2)) = f (a)− f (c).
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a b c d

f (a)

f (b)

f (c)
f (d)

y

f (y)

Fig. 2. A plot of f (y) = {αiK/ym}M

Further, from the assumption we haveA ≥ Tmaxη̂ , so |xi[t]− xi[t −Tmax]| ≤ A and

| f (xi[t −Ti])− f (xi[t])| ≤ M− αiK
(

(

αiK
M

) 1
m

+A

)m = M− αiK

αiK
M

(

1+
(

AmM
αiK

) 1
m

)m .

Since
(

AmM
αiK

) 1
m

is small whenK is large, and(1+ ε)m ≤ 1+2mε for small enoughε, we can

conclude that for sufficiently largeK

| f (xi[t −Ti])− f (xi[t])| ≤ M− M

1+2m
(

AmM
αiK

) 1
m

<
2mAM

1+m
m

α
1
m
i

1

K
1
m

. (15)

Let αmin = mini αi, then there existsδ0 = 2nα− 1
m

min mAM
1+m

m andξ = 1
m such that

|H(K)| ≤ δ0

Kξ ‖x[t]−x∗‖.

Finally, we consider the complement ofχ t
0, which is denoted asχ t

0
c, and derive inequality

(14). Now the arrivals are not upper bounded and can be arbitrarily large. But from assumption

(4), the probabilities of these events is very small. So we can still obtain a upper bound for

12



∑n
i=1(xi[t]− x∗i )

∣

∣

∣

∣

{

αiK
xi[t−Ti]

}M
−
{

αiK
xi[t]

}M
∣

∣

∣

∣

. Now supposeχ t
l occurs (l ≥ 1), similar to inequality

(15), we can get
∣

∣

∣

∣

∣

{

αiK
xi[t −Ti]

}M

−
{

αiK
xi[t]

}M
∣

∣

∣

∣

∣

< 2α− 1
m

i mM
1+m

m (A+ l)
1

Kξ

and

∞

∑
l=1

p(χ t
l ) |H(K)| ≤ ‖x[t]−x∗‖

∞

∑
l=1

2nα− 1
m

min mM
1+m

m
A+ l

Kξ p(χ t
l ).

Under assumption (4), we can further obtain

∞

∑
l=1

2nα− 1
m

min mM
1+m

m
1

Kξ (A+ l)p(χ t
l ) ≤

∞

∑
l=1

2nα− 1
m

min mM
1+m

m
1

Kξ (A+ l)
θ

(A+ l)h

≤ 2nα− 1
m

min mM
1+m

m
1

Kξ (h−2)
1

Ah−2 =
δ1

Kξ ,

whereδ1 = 2nα− 1
m

min mM
1+m

m (h−2) 1
Ah−2 .

We have proved that inequalities (12), (13) and (14) hold, and it is easy to see thatξ > 1/m−σ .

Thus, whenK > 4(δ0 + δ1)
2/δ 2

d , inequality (7) holds withδ ∗ = δd/2, and the lemma follows.

Recall thatx∗i =
(

αiK
µ∗

i

) 1
m

, so from the lemma above, we have

E

[ |xi[∞]− x∗i |
x∗i

]

≤ E

[‖x[∞]−x∗‖
x∗i

]

≤ c̄(µ∗)1/m

α1/m
i Kσ

,

which converges to zero whenK goes to infinity. Thus, the mean ofxi[∞] concentrates around

x∗i for largeK, from which we can show that weighted-m fairness can be achieved. This is stated

in the next theorem which is the main result of this paper.

Theorem 3: Consider the combined Scheduling-Congestion Control Algorithm defined by (2)-

(6). Then the steady-state service rate vectorµ[∞] satisfies the following: for anyε > 0,

lim
K→∞

P(|µ[∞]−µ∗| ≥ ε) = 0.

Proof: Using the Markov inequality, Lemma 2 yields for anyε > 0,

P

(

1

K
1
m

|xi[∞]− x∗i | > ε
)

≤ c̄
εKσ .

13



Further, since

µ[t] ∈ arg max
µ∈Cs[t]

n

∑
i=1

xi[t]ηi = arg max
µ∈Cs[t]

n

∑
i=1

xi[t]

K1/m
ηi,

we can conclude

lim
K→∞

P(|µ[∞]−µ∗| ≥ ε) = 0,

and the network is weightedm-fair according to Theorem 1.

Theorem 3 allows us to conclude that even in the presence of delays, the network will achieve

weighted-m fairness. Note that, from inequality (7), whenK is large,{y[t]} is positive recurrent

and the system is stable. Actually if we are only concerned with the stability of the system,

inequality (7) is much stronger than what is necessary to prove the stability. In fact, we can

show that for anyK > 0, the Markov chain is positive recurrent. Define theSX̄ :

SX̄ =

{

y[t] : ∑
i

xi[t] ≤ X̄

}

. (16)

Clearly, SX̄ is a finite set. Stability of the system is established by following theorem.

Theorem 4: For anyK > 0, there exists positive numbersζ , X̄ andδ such that

E[∆Wt(y)] ≤−δ
n

∑
i=1

xi[t]Iy∈Sc
X̄
+ζ Iy∈SX̄

,

whereSX̄ is defined as (16). Hence, the Markov chain{y[t]} is positive recurrent.

Proof: We omit the proof here because of lack of the space. Please refer Theorem 4 of

[21] for the proof ofm = 1. The case of general weighted-m fairness is similar.

From Theorem 3, we see that fairness can only be achieved whenK →∞. However, Theorem 4

assures that we are guaranteed at least stability for allK.

IV. CONCLUSION

In this paper, we have shown that the algorithm (5) and (6) is stable even in the presence of

heterogeneous delays and whenK is large, the network will achieve weighted-m fairness. When

delays are not negligible in some situations, our result reinforces the result that the combination

of queue-length-based scheduling and congestion control is a good distributed fair resource

allocation scheme.
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