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Abstract

We consider the problem of allocating resources at a baiersta many competing flows, where
each flow is intended for a different receiver. The channabt@®mns may be time-varying and different
for different receivers. It has been shown in [6] that in aagidree network, a combination of queue-
length-based scheduling at the base station and congestitrol at the end users can guarantee queue-
length stability and fair resource allocation. In this pape= extend this result to wireless networks where
the congestion information from the base station is reckivith a feedback delay at the transmitters.
The delays can be heterogenous (i.e., different trangmittay have different round-trip delays) and
time-varying, but are assumed to be upper-bounded, witkilpigsvery large upper bounds. We will
show that the joint congestion control-scheduling al¢ponitcontinues to be stable and continues to

provide a fair allocation of the network resources.

. INTRODUCTION

We study the problem of fair allocation of resources in thevalonk of a cellular wireless
network consisting of a single base station and many rexe{gee Figure 1). The data destined
for each receiver is maintained in a separate buffer. Theadsrto the buffers are determined via
a congestion control mechanism, which will be describedetaiti later. We assume that the time
is slotted. The channels between the base station and teiweecare assumed to have random
time-varying gains which are independent from one timeé-&dothe next. The independence
assumption can be relaxed easily, but we use it here for elasaposition. The goal is to

allocate the network capacity fairly among the users, iroetance with the needs of the users,
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Fig. 1. Network with feedback delays. The channel from the base statitire receivers is time-varying.

while exploiting the time-variations in the channel corais. We associate a utility function
with each user that is a concave, increasing function of tbamservice that it receives from
the network. In an earlier paper [6], it was shown that a comtoon of Internet-style congestion
control at the end-users and queue-length based schedtlthg base station achieves the goal
of fair and stabilizing resource allocation. This resuls@mnewhat surprising since the resource
constraints in the case of a wireless network are very @iffefrom the linear constraints in
the case of the Internet [17]. The relative merits of congastontrol-based resource allocation
scheme as compared to other resource allocation schemeelfolar networks are discussed
in [6]. Several other works in the same context are [18], [10B]. However, none of these
works explicitly include the effect of feedback delay inithanalysis. One of the reasons that
delay is not important in these other works is that a speatieduling algorithm is used in the
network which allows the congestion control to be based onlythe queue length at the entry
node of each source. However, here we consider a situati@nenguch scheduling is not used
and where the bottleneck is at the cellular network while gberces may be located far away
from the base station. An example of such a situation is arfilester from a remote host over
the downlink of a cellular network. In this work, we aim to swter the effect of this essential
parameter on the fairness and stability properties of therdhm presented in [6].

In [6], it is assumed that there are no delays in the transomssf packets from an end-user
(transmitter) to the base station and in the transmissia@oogestion information from the base

station back to the end users. But if we consider the case wherend users are connected to
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the base station through the Internet, then delays existtin #irections: there is a propagation
delay Tif from the end user to the base station — we call it the forward delay of the end
useri, and a propagation dela;{D from the base station to the end user— we call it the
backward delay. It is well-known that the presence of delagy affect the performance of the
network. For example, Internet congestion controllerscivtaire globally stable for the delay-free
network may become unstable if the feedback delays are Jargeln our problem, when delays
exist, the information the end users obtain will be “outdataformation. So the congestion
information the users obtain at timeloes not reflect the queue status at the base station at time
t. So it is interesting to study a wireless network with delagd ask whether the conclusions
of [6] still hold for wireless networks with heterogeneouslays. We answer this question by
showing that for a network with uniformly-bounded delay$iei are potentially heterogeneous
and time-varying, the algorithm of [6] is stable and can bedu® approximate weightea-fair
allocation arbitrarily closely. We emphasize that the lsshold for networks with arbitrarily
large, but bounded time-varying delays. So even if the erdsusan only get very old feedback
information from the base station, the network is still &a#nd can eventually reach the fair
resource allocation. On the other hand, from the proof, we alao see that when the delays
are large, it may take more time for the network to achievefétreresource allocation. This
observation is also supported by simulations, not showa Hae to page limitations, which are
presented in [21].

The rest of the paper is organized as follows: in Section #,imtroduce the system model
including the congestion controller used by the end usedstha scheduler implemented at
the base station. In Section lll, we show that the resultiegpurce allocation approximates

weightedm fairness arbitrarily closely. Finally, we conclude in SentlV.

Il. SYSTEM MODEL

We consider a cellular network shared bylows in the downlink and assume that the base
station maintaing separate queues, one corresponding to each flow. We studsitivesource
allocation problem in this paper. Specifically we consideziglitedm fairness. It means that
each source has a utility function given byJi(z) = aii;r:, where z is the average rate at
which useri transmits andy; is a positive weighting factor [12]. Herey=1, m= 2 andm — oo

correspond to respectively proportional fair, minimum guatal delay fair and max-min fair
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resource allocations. Note that in the ca®es 1, the above utility function is not well-defined;
however, it can be shown that as— 1, the limiting resource allocation corresponds to the case
whereU;(z) = ajlogz [12]. We assume that the time is slotted and denote the leoigthe
queuei at the beginning of the time slotby x;[t], the number of arrivals to queuen time slot

t by a;[t], and the amount of service offered to queua slott by g;j[t]. We assume that each
of these parameters can only take non-negative integeesalthe evolution of the size of the

ith queue is given by:
X[t + 1] = xi[t] 4 ai[t] — i [t] + uit],

whereui[t] is a non-negative quantity which denotes the wasted segi@en to queue at time

slott and it guarantees that[t] > 0. We also assume that the channel between the base station
and the receivers can be in oneJ$tates in a given slot. We us#]| to denote the state in time
slott. The channel state is assumed to be fixed within a time slotynlaytvary from one slot to
another, thus capturing the time-varying characterigiica fading environment. Corresponding

to each channel state, sgyis an achievable rate regio@;, that is defined to be convex hull of

the feasible rate vectorg,[t] := (n1]t],...,Nn[t]), that can be offered to the queues. We assume
that eacltC; is a bounded region and 16t < « denote the upper bound on the achievable rates
for all channel states. The channel state process is asstortael independent and identically
distributed in each time slot, but we do not require that taéstics be known at the base station.

Furthermore, we define the mean achievable rate region as

J . .
C:= {r’r) = Z nfhn(l)’r)(J) GCJ’},
=1

Wherertj’h stands for the stationary distribution of the channel gpateess being in state The
scheduler will use following algorithm:

SCHEDULER: Given the current queue lenglit] := (x1]t],...,Xa[t]) and current channel state
slt], the scheduler at the base station chooses a service rate uéi¢t= (La[t],.. ., Un[t]) € Cqy
that satisfies

n
t| € arg max ) X(t|n;.
ult) < arg max 3 xit]n

This scheduling rule was introduced in the context of fixeial rates (i.e., where the arrival
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rates are not adjusted by a congestion controller) in [1%en it was also shown that it is
a stabilizing rule, i.e., the mean queue-lengths are uppended. This result was extended in
many different directions in [2], [16], [15], [7], [3], [9]i5], [14].

In our model, the packet arrival rate into the queue is asdutoebe controlled according
to the well-known dual controller that has been studied resttely in the context of Internet
congestion control [8], [11], [20], [17]. In the context afternet congestion control, a dual

controller chooses the transmission ratsuch that

aiK_

X N

for any constanK > 0. Next, we describe the operation of our congestion contrdtitowed
by some assumptions.

CONGESTIONCONTROLLER: Recall that, for user, the forward delay isrif and the backward
delay is rib. In our model, the downlink is the only bottleneck of the systeso rif, which is
the propagation delay from useto the base station, is a constant. On the other hand, packets
experience queueing delay at the base station, and themissisns between the base station
and the receivers are over wireless links. Thtﬁt] is time varying. Since users will always

use the latest feedback information, we defifi@] such that
Tib[t] = mln{ fib[t]7 Tib[t - 1] + 1}7

where {#°[t]}; are i.i.d. random variables, arfBnax— T, > T[] > 1°. Note that T is the
upper bound on the round trip delays, arifdis the propagation delay from the base station to
useri via receiveri. Now, denote the amount of data sent out by userslott by Aj[t]. The

congestion controller at uséregulates the mean dft] such that

E [)\i[t] (x. [t — Tib[t]] } = min{ o fiz};[tﬂ)w M} , 1)

wherem> 0, M > 2/} is a positive constant which ensures that the arrival raie tine queue

is upper bounded when the queue length is small,xglhe- T°[t]] is the congestion information
measured by the based station and feedback toiugarreceiveri. We will later show thatk

has to be large to approximate weightadair resource allocation.



Sinceagjt] = A [t — rif] , the mean of the number of arrivals into quduat timet given by

. aK
elaltbstt— T =€ [ [t o] o[t - [t )] =min{ - EE ) @
whereTi[t] = 1 + P [t — rif} . Define fift] = 7' + P [t — rif] , we haveT;[t] = min{Ti[t], Ti[t —
1]+1}, and {Ti[t]}; are i.i.d. random variables such tHtax > Ti[t] > T+ 1. We assumey[t]

is independent across time slots and
E [a?[t]|xi[t — Ti(t)] <V <o for all x[t — Ti(t)]. (3)

Furthermore, we assume there exist positive numBer& > T/ andh > 2 such that for any
N> A

T _ 6 .
= (leai[t— i]= N) <o foralli. (4)

In summary, the combined Scheduler-Congestion Controllgothm can be defined as
follows:

X[t+1] = x[t]+at] — pift] + uift] (5)
pit] € argnrgczgi;m[t]m, (6)

where g;[t] is a random variable satisfying the conditions in (2), (3¢ g4). Note that the
congestion control part of this algorithm is slightly di#at from the algorithm in [6]. We
impose an upper-bound on the source rates in a more naturaiangan in [6]. Our results
continue to hold for the algorithm in [6] too.

We now present the following theorem, which will be usefuktaThis theorem is similar to
Proposition 1 of [6].

Theorem 1: There exists a unique pair of vectdps’, u*) which satisfy following conditions

1
e Wrcargmay, ey X ni; % = (%)m for all i, and

IJlfm

« u*is the optimal solution to maxey il Kai7—-
<
From the above theorem, we can see flnais weightedm fair. For the stochastic model, we

will show that u[t] converges tqu*, defined in Theorem 1, in a probabilistic sense. This then
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implies that the network reaches a fair operating point.
In the rest of the paper, we will show that fair resource @t can be achieved when the

linear gain,K, used in the congestion controller goes to infinity.

1. WEIGHTED-m FAIRNESS AND STABILITY

Use || to denote the steady state pf we will show in our main theorem — Theorem 3,
that for anye > 0,
Jim P([u[eo] —p*| = €) =0,

which implies that the network can achieve weightedairness wherK is chosen to be large.
To prove this, we first need following lemma which characiesithe mean distance between
and the steady state aft].

Lemma 2: There exists a positive constaot< 1/m, and a positive constart that depends
on the mean achievable rate region, the algorithm paraméte}, and the moments of the

channel and arrival process, such that

3~

E [||X[eo] —x*[]] < cKm~ for largeK,

where x[o] is an informal notation for the steady stateofand || - || denotes the Euclidean
distance in the]".

Proof: Defineylt] = (X[t],...,X[t — Tmax, T[t]), whereTmax> Ti[t]. It is easy to see that the
process{y]t]}t>o0 is a Markov chain becaus|t] depends only om;[t — Ti[t]] and Ti[t] depends
only on Ti[t — 1], sox[t+1], Tijt+1] andy[t + 1] are determined by[t]. Further, define the

Foster-Lyapunov function

W(ylt]) =

NI -

S (k1) — %2,

and
E[AW ()] := E[W(y[t+1]) —W(Y[t])[y[t]].

Then following an argument similar to Theorem 2 of [6], thenfea will hold if there exist a
finite setSy, positive numbersr < 1/m, 6%, and { such that for largeK

*

E[AW(y)] < —

K%*GHX_X*“'yesﬁﬂLZ'yeSa- (7)



Thus we only need to show inequality (7). For a positive camst and o < 1/m define
So = {ylt] : [IX[t] = x*[| < cK? }. (8)
Note thatT;[t] < Tmax, and ||x[t] —x*|| < cK? implies that
in['[ -9 < zxi* +ncK? +nTmaxl, for all 0<s< Thax
| |

Thus, Sy is a finite set. Also, it is easy to see thayf] € Sy, there exists B< { < « such that
E[AW(y)] < {. Now, considely[t] ¢ Sy, define the evenk such that

Tmax
X6 = {m_axz aft — ] gA},
i .
=1
and eventsy| for | =1,2,... such that
t Tmax
X = {miaxj;ai[t— j] :A+I}.

Then we can rewrité&[AW (y)] as follows:
ElW ()] = 5 ELW(Y)lx]p0x)

For convenience, we also ldy}™ denote migy,M}. Then, along the lines of the proof of
Theorem 1 of [6], it can be shown that there exBts> 0, which is independent oK andx|t],

such that

M
Ili*> + By %)

E[AW(y)] < Zle.[t ({ t_m)m} _
— Zle.[t ({ t_TIDm}M—{O:?:]()m}M> (10)
M
+ZAX. ({ X" } —ui*>+Bd, (11)

whereAx;[t] = x[t] —x’. DefineG(K) := (11) andH(K) := (10), to prove inequality (7), we will

show the following three facts. The first one is that therestsxdy > O such that for all events




X,

Xt x|l (12)

G(K) < T i

Second, wherx} happens, there exist® > 0 such that
t ty % .
P(Xo) IH(K) < P(Xo); 7 IIX[t] —x7][- (13)
The last one is that there exisds > 0 such that
S PO H(K) | < S xt] =x]. 14)
; T Ke
If all three inequalities — (12), (13) and (14) — hold a&d> %— o, we will have

E[AE(y)] < G<K>+p<x5>H<K>+§ pXOH(K)
=1

t

< - ( fdi . 6Op(XOE)+61) ||X[t] _X*H
Km—9 K

5d &)+51 *
< - (-2 X
Then, wherK > ((260+61)/5d)1/(€+0—1/m)’ we have
& &ta
Km0 KE

which implies

EAW()] < —(K‘fi )nxm—x*u

m—0

and the inequality (7) holds with* = &y/2.
Now we prove (12), (13) and (14). We will first show (12). Thegiris similar to the proof
of Theorem 1 of [6]. But here we consider a generainstead ofm= 1. Define o as follows:

|, if m<1 and% iS not an integer;
—3, ifm<1andl is an integer;

, if m> 1.

Q
I
(M TN



From above definition, we have that
1 .
0< T 0< min{o,1}.

Notice that we have

_ M
(xi[t] — ) ({ (x?[lt}f)m} —,Ji*> <0 for alli.

Letting ip = argmax|x;[t] —x*|, then
ai K M L
(olth™ S~ Ho

M
Now, if {A} = M, from the definition ofM, we haveM > 27, so

(Xiplth™
ai K M o
(ot~ Hio

M
Otherwise if{?’i—K} <M, then

oo™
(i) -

G(K) < —[Xiot] =X +By.

:M—[Jiz>f7.

= Ui,
Because
o) K el =X >0, i Xft] — X < 0;
Kolt] =9 ¢ ol 2% :
X4 Xio[t] = | >0, if Xip[t] =% >0,
and

1 >

)

" m
X 1

* m
X -
XI-*O - |X|0[t] - XI*0|

we can show that

m
* Xi*o )m ’ * Xi*O * 1
- -1 > -1 >u 11— ——mml,
4| () 1= (i) R ae
where Cui*l/m 1
_ 0 o-%
&= —1/mK >0,
\/ﬁalo
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‘ 1/m
and the last inequality holds becauge= (al'l?:) and cK? < [|x[t] — x*[| < v/nxig[t] — X |-

Further, sincg1+ €)™ > 1+ me, we have

1
1+me

M me
C14me’

Hig |1

It is easy to see that for larg€e, we will have Tﬁ:ﬁ < 0. Thus, for largeK, we have

aiOK . _ u* > “;g—mg
(Xio[t])™ o 14+ me’
and
o [ Higme Bqg " Hi Bd
G(K) < —[Xi[t] — X, <1$mg X lt] — % \) < —olt] =% Iy Lo
0 io Vi aig\™ 1 o vn
ﬁ<u—z) Km0 41

Becauser%] — 0 < g, by choosing sufficiently large, we can find a positive constadtand K
such that for any > K

A

G(K) <~ Xl =y <~

1
m m

*
It = X7,

where gy = &//n.

Next, we consider (13). It is the case that the arrivals apeupounded byA. We will show

M M
a;K _ a;iK
{—m [t—mm} {—m [ﬂ)’“} ’ decreases.
We use Figure 2 to prove our result. Suppose that 0, then a;K /y™ is convex and

- {3y

is as Figure 2. Now suppose-a=d—b=A and f(a) = M. Then for anyb such thata < b,

that ask increases

we can see from the figure th&fa) — f(c) > f(b) — f(d). It means that

max (f(xq) — f(x2)) = f(a) — f(c).

{X1, X2 X0 —x1 <A}
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ab‘cd

Fig. 2. A plot of f(y) = {a;K /y"}M

Further, from the assumption we ha®#e> Tmax], SO |Xi[t] — X[t — Tmay| < A and

aK M a;K
1 m — 1\ M-
()" +a) s (2 ())
1

Since (ﬂ?—&")m is small whenK is large, and(1+ &)™ < 1+ 2me for small enoughe, we can

[FOaft =Ti]) = Fxi[t) | <M —

conclude that for sufficiently largk

M 2mMAM w1
£ (alt—Ti)) — F(x[t])] <M — < (15)
1+2m<ﬁ?—}'}"> " am  Km
_1 m
Let amin = min; a;j, then there existgy = 2nami'r‘;mAMl+T andé = n% such that
Qo R
HIOD < X —x].

Finally, we consider the complement gf, which is denoted ag}’, and derive inequality
(14). Now the arrivals are not upper bounded and can be ariytfarge. But from assumption

(4), the probabilities of these events is very small. So we siill obtain a upper bound for
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Now supposexlt occurs [ > 1), similar to inequality

st -0 et ) - e
(15), we can get

akK M (oM

() ()

o 7mA+|
t m
I;IO(XO!H( )| < (IX[t] =7 Zznamlan w<E —z P(X).

1
<2a; mM (AH)KE

and

Under assumption (4), we can further obtain

o NP t L] 6

IZlZnammmM W(A+I)p(x|) < ZZnammmM (A+I)—(A+I)h
1 o
AR-2 T KE

min

< 2na,, mmM*K (h—2)——

whered; = 2na mmM m (h—2) -

min Ah-2°

We have proved that inequalities (12), (13) and (14) hold,iais easy to see thgt>1/m—o.
Thus, whenK > 4(& + 61)?/33, inequality (7) holds withd* = &/2, and the lemma follows.
u

3~

Recall thatx" = ( K) , so from the lemma above, we have

Cur)Y/m
1
i/mKa

*
i

e [l ) < g [l ]

which converges to zero whef goes to infinity. Thus, the mean af[] concentrates around
x* for largeK, from which we can show that weighted{airness can be achieved. This is stated
in the next theorem which is the main result of this paper.

Theorem 3. Consider the combined Scheduling-Congestion Control Algoritefined by (2)-

(6). Then the steady-state service rate vegtps| satisfies the following: for ang > O,

Jim P(|ufe] — p*[ > £) =0.

Proof: Using the Markov inequality, Lemma 2 yields for aay> O,

1 c
P(E|Xi[°°] X | >5) G
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Further, since
n

t| € arg max = arg max ,
plt] guecs[mii it]ni @Juecs[t ZiKl/mm

we can conclude
Jim P([u[eo] —p*| = €) =0,

and the network is weighteah-fair according to Theorem 1. [ |
Theorem 3 allows us to conclude that even in the presencelajsiehe network will achieve
weightedm fairness. Note that, from inequality (7), wh&nis large,{y]t]} is positive recurrent
and the system is stable. Actually if we are only concerneith Wie stability of the system,
inequality (7) is much stronger than what is necessary toetbe stability. In fact, we can

show that for anyK > 0, the Markov chain is positive recurrent. Define tBg:

c= {y[t] Py xlt] < )?}. (16)

Clearly, S; is a finite set. Stability of the system is established byofeihg theorem.

Theorem 4: For anyK > 0, there exists positive numbefs X andd such that
E[AW(y)] < -0 ZLXI ye% + {lyes;,

where S is defined as (16). Hence, the Markov chdiit]} is positive recurrent.
Proof: We omit the proof here because of lack of the space. Please Teeorem 4 of
[21] for the proof ofm= 1. The case of general weightedfairness is similar. [ |
From Theorem 3, we see that fairness can only be achieved Whero. However, Theorem 4

assures that we are guaranteed at least stability fdf.all

IV. CONCLUSION

In this paper, we have shown that the algorithm (5) and (6}abls even in the presence of
heterogeneous delays and whérs large, the network will achieve weightedfairness. When
delays are not negligible in some situations, our resulttfoeces the result that the combination
of queue-length-based scheduling and congestion cordral good distributed fair resource

allocation scheme.
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