
Heavy-Ball: A New Approach to Tame Delay and
Convergence in Wireless Network Optimization

Jia Liu† Atilla Eryilmaz† Ness B. Shroff† Elizabeth S. Bentley∗
†Department of Electrical and Computer Engineering, The Ohio State University

∗Air Force Research Laboratory, Information Directorate

Abstract—The last decade has seen significant advances in
optimization-based resource allocation and control approaches
for wireless networks. However, the existing work suffer from
poor performance in one or more of the metrics of optimality,
delay, and convergence speed. To overcome these limitations,
in this paper, we introduce a largely overlooked but highly
effective heavy-ball optimization method. Based on this heavy-ball
technique, we develop a cross-layer optimization framework that
offers utility-optimality, fast-convergence, and significant delay
reduction. Our contributions are three-fold: i) we propose a
heavy-ball joint congestion control and routing/scheduling frame-
work for both single-hop and multi-hop wireless networks; ii) we
show that the proposed heavy-ball method offers an elegant three-
way trade-off in utility, delay, and convergence, which is achieved
under a near index-type simple policy; and more importantly,
iii) our work opens the door to an unexplored network control
and optimization paradigm that leverages advanced optimization
techniques based on “memory/momentum” information.

I. INTRODUCTION

Due to the rapidly increasing mobile data demands, recent
years have witnessed a large body of works on resource
allocation that aim to maximize the network utility in wireless
networks (see, e.g., [1]–[4], and [5] for a survey). This has
led to an elegant mathematical decomposition framework,
from which “loosely-coupled” congestion control, scheduling,
and routing algorithms naturally emerge. These algorithms
do not require statistical knowledge of either the arrivals or
channel states. Instead, they only rely on queue-lengths and
channel state information to make control decisions. These
algorithms are also inherently connected to the Lagrangian
dual decomposition framework plus the subgradient method in
nonlinear optimization theory [1], [2], where (scaled) queue-
lengths can be interpreted as Lagrangian dual variables and the
queue-length updates play the role of subgradient directions.
Moreover, variants of the “MaxWeight” scheduling component
in this framework have already been adopted and implemented
in practice (e.g., Qualcomm’s Flashlinq peer-to-peer wireless
networks [6] and data center bridging by Cisco [7], etc.).

Despite the aforementioned attractive features, these queue-
length-based algorithms (QLA) suffer from several key limita-
tions. First, in the existing QLA framework, it has been shown

This work has been supported by NSF grants CNS-1527078, 1514260,
1446582, 1409336, 1012700, WiFiUS-1456806, ECCS-1444026, 1232118;
ONR grant N00014-15-1-2166; ARO grant W911NF-14-1-0368; DTRA
grants HDTRA 1-14-1-0058, 1-15-1-0003, AFRL VFRP’15 award; DARPA
grant HROOll-15-C-0097and QNRF grant NPRP 7-923-2-344. DISTRIBU-
TION STATEMENT A: Approved for Public Release; distribution unlimited
88ABW-2015-5989 on Dec. 14, 2015.

that a utility-optimality gap O(1/K) can be achieved with an
O(K) penalty in queueing delay, where K > 0 is a system
parameter. Hence, a small utility-optimality gap necessitates a
large K and results in large queueing delay. To address this
limitation, there have been significant recent efforts (e.g., [4],
[8]–[10], etc.) focusing on reducing the queueing delay (see
Section II for more in-depth discussions). Also, in the existing
QLA framework, the queue-length-based weight adjustment
ignores the curvature of the objective function contour and
uses a small step-size in each iteration [1]–[4], which leads
to unsatisfactory convergence speed. To address this problem,
some second-order congestion control and routing/scheduling
algorithms have been proposed recently to accelerate the
convergence speed (see, e.g., [11], [12]). However, due to their
complex algorithmic structures, these second-order approaches
require a much larger information exchange overhead and do
not scale well with the network size. These limitations of the
existing approaches motivate us to pursue a new design that
leverages the heavy-ball-based optimization framework.

Historically, the heavy-ball method was first proposed by
Polyak in 1964 [13] for solving unconstrained convex op-
timization problems, with the original goal of accelerating
the convergence of the gradient descent method. The basic
idea of the heavy-ball method is that, rather than using only
the (sub)gradient information at the current iterate and being
memoryless of the past iterates’ trajectory, one computes the
search direction using a linear combination of the gradient
(analogous to “potential”) and the update direction in the
previous step (analogous to “momentum”). The method can
be viewed as a discrete version of the second-order ordinary
differential equation (ODE) that describes a heavy body’s
motion in a potential field, hence the name “heavy-ball.” It
has been shown that, by appropriately weighing the “potential”
and “momentum,” the algorithm is insensitive to the objective
contour and leads to a much faster convergence [14]. Indeed,
the convergence speed advantage is our initial motivation
behind adopting the heavy-ball approach for wireless network
optimization. Yet surprisingly, as we show later in this paper,
the benefits of adopting the heavy-ball idea go far beyond
convergence acceleration and entail dramatic delay reduction.

We note, however, that due to a number of technical
challenges, developing a heavy-ball-based solution for wireless
network utility optimization is not straightforward. First, since
the heavy-ball method was originally designed for uncon-
strained static optimization, we need to modify the heavy-ball

method for wireless network utility maximization, which is a
constrained stochastic optimization problem with a much more
complex structure. Second, unlike the obvious connection be-
tween queue-lengths and dual variables in the QLA design, the
relationship between the heavy-ball method and the observable
network state information (e.g., queue-lengths, channel states,
etc.) is unknown. Hence, a key challenge that we will answer
in this paper is to characterize the trade-off between delay and
achieved network utility under the heavy-ball approach. Third,
due to the inclusion of past iterations, the algorithmic structure
of a heavy-ball method is different from that of the QLA
design. As a result, new analytical techniques are required
to analyze the performance of the heavy-ball approach.

The key contribution of this paper is that, by address-
ing the above challenges, we reveal the potential of many
memory/momentum-based optimization techniques that could
be leveraged to produce surprising network performance gains
in delay, throughput, and convergence. The main results and
technical contributions of this paper are as follows:

• Motivated by the heavy-ball idea, we propose a new weight
adjustment scheme for joint congestion control and rout-
ing/scheduling in wireless networks. Our work not only
provides a synergy between the heavy-ball algorithm and
observable network state information (queue-lengths and
channel states) to allow simple implementation in practice, it
also extends and generalizes the classical heavy-ball method
from unconstrained static optimization to the constrained
stochastic network utility optimization paradigm, thus ad-
vancing the state-of-the-art of the heavy-ball method in
mathematical optimization theory.

• Under our heavy-ball-based joint congestion control and
scheduling scheme with a β-parameterized momentum (β ∈
[0, 1) is a system parameter typically chosen close to 1), we
show that the delay is (1− β)–fraction of that of the QLA
approach. More specifically, our theoretical analysis unveils
that a utility-optimality gap O(1/K) can be achieved with
an O((1− β)K) +O((1 + β)

√
K) cost in queueing-delay,

where the parameter K is inversely proportional to the step-
size in the heavy-ball method. Further, in the asymptotic
regime of K where β is chosen as β = 1−O(1/

√
K), our

heavy-ball algorithm achieves an [O(1/K), O(
√
K)] utility-

delay trade-off, which is significantly better than the well-
known [O(1/K), O(K)] trade-off of the QLA methods.

• Given K and β, we show that the convergence factor of
our heavy-ball algorithm scales as max

{√
β, |1+β−φ/K|−√

β, |1+β−Φ/K|−
√
β
}

, where Φ and φ are the upper
and lower bounds of the Hessian eigen-spectrum. Combined
with the results in the previous bullet, our heavy-ball
algorithm offers an elegant three-way performance trade-
off governed by two control degrees of freedom in K and
β. Most notably, simultaneous utility-optimality and low-
delay is made possible by trading off convergence speed.
We note that this important three-way trade-off relationship
has not been discovered so far in the literature.

We hope that, collectively, our results in this paper could

pave the way for many new networking research directions
that explore advanced memory/momentum-based optimization
methods to improve key network performance metrics. The
remainder of this paper is organized as follows. In Section II,
we review related works. Section III introduces the network
model and problem formulation. Section IV presents our
heavy-ball algorithm and the performance analysis of the
algorithm. In Section V, we extend the proposed algorithm
to multi-hop networks. Section VI presents numerical results
and Section VII concludes this paper.

II. RELATED WORK

In this section, we first review the state-of-the-art of the
QLA literature that is closely related to this paper. As men-
tioned earlier, there have been significant efforts on reducing
the delay of the QLA approaches. For example, in [4], a virtual
queue technique similar to those in [15]–[17] was adopted,
where the virtual queue-lengths evolve based on service rates
that are a fraction of the actual service rates. In [9], a virtual
backlog mechanism with place-holder bits instead of real data
was proposed. It was shown that, by accepting some non-
zero packet dropping probability, this approach achieves an
[O(1/K), O(log2(K))] utility-delay trade-off. An exponential
Lyapunov virtual backlog method combined with a threshold-
based packet-dropping scheme was also proposed in [8] to
achieve an O(log(K)) delay. Although having a log-type delay
growth, a major limitation of [8], [9] is that choosing the size
of place-holder bits [9] and the threshold value [8] require non-
causal global arrival and channel statistics (cf. [8, Eq. (17)],
[9, Eq. (45)]), which is usually infeasible. Also, if the param-
eters are set inappropriately, these schemes may suffer non-
negligible packet dropping probability. To address this prob-
lem, a per-iteration learning was proposed in [10] to learn the
optimal size of place-holder bits in an online fashion. However,
the per-iteration learning mechanism significantly increases the
complexity. In some sense, all these delay reduction schemes
can be viewed as sacrificing throughput-optimality (reflected in
reduced service rates or packet dropping) for delay reduction.
In contrast, without sacrificing any throughput-optimality and
without requiring any non-causal statistical knowledge, our
heavy-ball scheme achieves an [O(1/K), O(

√
K)] utility-

delay trade-off by setting β = 1−O(1√
K

). Moreover, our
heavy-ball algorithm enables an elegant three-way trade-off
that cannot be offered by the existing works in [4], [8]–[10].

Next, we provide further background of the heavy-ball
method and then review the related works in the heavy-ball
domain. In the optimization literature, the heavy-ball method
is also referred to as the multi-step or momentum method.
Since its inception [13], the heavy-ball method has found
applications in signal processing and machine learning (see,
e.g., [18] and references therein). However, the heavy-ball
method remains largely unexplored in networking research
so far. To our knowledge, the only application of the heavy-
ball method in networking areas can be found in [19], where
the authors developed a heavy-ball-based Internet congestion
control scheme. We note that our work differs from [19]

.
.
.

.
.
.

.
.
.

Receiver 1

Receiver NqN [t]

q2[t]

q1[t]

Receiver 2

Base Station

Scheduler

a1[t]

a2[t]

aN [t]

s1[t]

s2[t]

sN [t]

Congestion
Control

Fig. 1. An illustration of the single-hop cellular downlink.

in the following key aspects: First, our proposed heavy-ball
algorithm is a dynamic scheme that works with stochastic
wireless channels, while the algorithm proposed in [19] solves
a static congestion control rate optimization problem for
wireline networks. Second, the algorithm in [19] requires some
assumptions (c.f. [19, Sec. VII-C]) to turn the problem into
an unconstrained formulation, so that the classical heavy-
ball method can be applied. However, as indicated in [19],
these assumptions restricted the use of the heavy-ball method
to problems with certain routing structures. In contrast, our
proposed method can handle all network constraints and works
with all utility optimization problems. Third, we derive explicit
utility-delay-convergence trade-off scaling laws in this paper,
while no such results were provided in [19].

III. NETWORK MODEL AND PROBLEM FORMULATION

From this section until Section IV, we will consider a
single-hop wireless network with N links, which can be
used to represent a cellular base station (or access point)
downlink/uplink channel with N users or a set of distributed
communication pairs in an ad hoc network. We will later
(in Section V) discuss how to extend the results to multi-
hop wireless networks. The rationale behind this presentation
approach is that the single-hop network model will allow us
to present the core idea behind the heavy-ball-based design
with less notational clutter, before we integrate further system
dynamics in multi-hop wireless networks. Also, as mentioned
above, since the single-hop model encompasses a large number
of networks in practice, it is important in its own right.

Notation: We use boldface to denote matrices/vectors. We
let A> denote the transpose of A. We let IN and ON denote
the N ×N identity and all-zero matrices, respectively. Also,
we let 1N and 0N denote the N -dimensional all-one and all-
zero vectors, respectively. We will often omit “N” for brevity
if the dimension is clear from the context. We use ‖ · ‖ and
‖ · ‖1 to denote L2- and L1-norms, respectively.

Network model: In the single-hop case, we will base
our discussions on the cellular downlink system, as shown
in Fig. 1. We assume that time is slotted and indexed by
t ∈ {0, 1, 2, . . .}. The channel between the base station and
the receivers can be characterized by a total of M states
and denoted by a matrix Π = [π1, . . . ,πM] ∈ RN×M ,
where each column vector πm ∈ RN corresponds to the N
links’ channel qualities under state m. For each πm, we let
Cπm denote the achievable rate region, which is defined as

the convex hull of the feasible scheduling rate vectors, i.e.,
Cπm , Conv{x(m)

1 , . . . , x
(m)
N }, where Conv{·} represents

the convex hull operation and x
(m)
n denotes a feasible rate

of link n that can be scheduled under channel state m.
We assume that, for each link n and channel state m, the
feasible rates satisfy x

(m)
n ≤ smax < ∞. We use a vector

x(m) = [x
(m)
1 , . . . , x

(m)
N]> ∈ RN to denote the feasible rates

under channel state m. We assume that the channel state
process is independent and identically distributed in each time
slot1. We let π[t] denote the channel state vector in time-slot t
and let pm , Pr{π[t] = πm} be the stationary distribution of
the channel state process being in state m. We let C̄ represent
the mean achievable rate region, which can be computed as:

C̄ ,

{
x

∣∣∣∣∣x =

M∑
m=1

pmx(m), ∀x(m) ∈ Cπm

}
.

Note that, in this paper, neither the channel state statistics nor
C̄ is assumed to be known at the base station.

Queue-stability: In each time-slot t, the controller observes
the current channel state π[t] ∈ Π and then chooses a service
rate vector s[t] , [s1[t], . . . , sN [t]]> ∈ Cπ[t] and a congestion
controlled rate vector a[t] , [a1[t], . . . , aN [t]]> ∈ RN+ . We
assume that each link n is associated with a queue, whose
queue-length in time-slot t is denoted as qn[t]. Then, the
queue-lengths evolve as:

qn[t+ 1] = (qn[t]− sn[t] + an[t])+, ∀n, (1)

where (·)+ , max{0, ·}. Let q[t] , [q1[t], . . . , qN [t]]> be
the queue-length vector in time-slot t. In this paper, we adopt
the following notion of queue-stability (same as in [2], [3]):
a network is said to be stable if the steady-state total queue-
length is finite, i.e.,

lim sup
t→∞

E {‖q[t]‖1} <∞ (2)

Problem formulation: Let ān , limT→∞
1
T

∑T−1
t=0 an[t]

denote the long-term average controlled arrival rate of link
n. Each link n is associated with a utility function Un(ān),
representing the utility gained by link n when data is injected
at rate ān. We assume that Un(·), ∀n, is strictly concave,
increasing, and twice continuously differentiable. We further
assume that Un(·) satisfies the following strong concavity
condition: there exist constants 0 < φ ≤ Φ < ∞ such that
φ ≤ −U ′′n (an) ≤ Φ, ∀an ∈ [0, amax], where amax is the
maximum arrival rates. For example, the function log(ε+ an)
with some constant ε > 0 is strongly concave. In this paper,
our goal is to maximize

∑N
n=1 Un(ān), subject to achievable

rate region Cπ[t] in each time-slot and the queue-stability
constraint. Putting together the models presented above yields
the following joint congestion control and scheduling (JCCS)
optimization problem:

JCCS: Max
N∑
n=1

Un(ān)

s.t. Queue-stabiltity in (2), sn[t]∈Cπ[t], an[t]∈ [0, amax],∀n, t.
1Following the same arguments such as those in [9], our results can be

readily generalized to Markov channel state processes.

IV. HEAVY-BALL-BASED NETWORK UTILITY
OPTIMIZATION

In this section, we first present our heavy-ball-based net-
work utility optimization algorithm and the main theoretical
results in Section IV-A and Section IV-B, respectively. Then, in
Section IV-C, we will discuss some key insights and intuition
of the theoretical results. Section IV-D focuses on performance
analysis and provides the proofs for the main theorems.

A. The Algorithm

Our heavy-ball-based network utility optimization algorithm
is described in Algorithm 1:

Algorithm 1: The Heavy-Ball-Based Wireless Network Utility
Optimization Algorithm.

Initialization:
1. Choose parameters K > 0 and β ∈ [0, 1). Set t = 0.
2. Let all queues be empty at the initial state: qn[0] = 0, ∀n.
3. Under a given K, associate each link n with a non-negative

weight w(K),n and set w(K),n[0] = w(K),n[−1] = 0, ∀n.
Main Loop:
4. MaxWeight Scheduler: In time-slot t ≥ 0, given the current

weight vector w(K)[t] , [w(K),1[t], . . . , w(K),N [t]]> and
the current channel state π[t], the scheduler chooses a
service rate vector s[t] as follows (breaking ties arbitrarily):

s[t] = arg max
x∈Cπ[t]

(w(K)[t])
>x. (3)

5. Congestion Controller: For each link n, given its current
weight wn[t], the data injection rate an[t] is an integer-
valued random variable that satisfies:

E{an[t]|w(K),n[t]}=min

{
U
′−1
n

(
w(K),n[t]

K

)
, amax

}
, (4)

E{a2
n[t]|w(K),n[t]} ≤ A <∞, ∀w(K),n[t], (5)

where U
′−1
n (·) represents the inverse function of the first-

order derivative of Un(·). In (4) and (5), amax and A are
some predefined sufficiently large positive constants.

6. Queue-Length and Heavy-Ball Weight Updates: Update the
queue-lengths following (1). Let ∆qn[t] , qn[t+1]−qn[t]
be the resultant queue-length change, ∀n. Next, update the
weights in the following (projected) heavy-ball fashion:

w(K),n[t+ 1] =
[
w(K),n[t] + ∆qn[t]

+β(w(K),n[t]− w(K),n[t− 1])
]+
, ∀n. (6)

Let t = t+ 1. Go to Step 4 and repeat the scheduling and
congestion control processes.

In Algorithm 1, we can see that the congestion control
and scheduling components are similar to those in the QLA
schemes (see, e.g., [2], [3]), but with the following key
differences: First, in both components, the weights in (3)
and (4) are not directly using current queue-lengths (or some
direct functions of current queue-lengths). It is this separa-
tion of weights and queue-lengths that leads to significant
delay reductions. Also, we note that the weight update in

(6) is motivated by the heavy-ball idea: It includes a β-
parameterized first-order memory (or called “momentum”) of
the weight change in the previous time-slot. In contrast, the
weight updates in traditional QLA algorithms are of zero-
order memory in the sense that queue-lengths only inherit the
absolute weight values in the previous time-slot. We note that
this algorithmic structural difference necessitates new proof
techniques in establishing the theoretical results. Also, the
choices of K and β will be discussed in detail in Section IV-C.

B. Main Results

The first key result in this paper is on the delay reduction
performance of our proposed heavy-ball algorithm:

Theorem 1 (Delay reduction and queue-stability). Under
the β-parameterized heavy-ball algorithm, the scaling of the
steady-state total queue-length with respect to K satisfies:

lim sup
t→∞

E{‖q[t]‖1} = O
(
(1− β)K

)
+O

(
(1 + β)

√
K
)
. (7)

Further, if β approaches 1 in such a way that β = 1−O(1√
K

),
then Eq. (7) implies that lim supt→∞ E{‖q[t]‖1} = O(

√
K).

Three remarks on Theorem 1 are in order: i) If β is fixed and
K→∞, the first term on the right-hand-side of (7) dominates
the second term and thus lim supt→∞ E{‖q[t]‖1} ≈ O

(
(1 −

β)K
)
. Recall that in a K-parameterized QLA algorithm (see,

e.g., [3], [4]), the total queue-length scales as O(K)+O(
√
K).

This means that a β-parameterized heavy-ball scheme leads to
a delay that is approximately (1 − β)–fraction of that of the
traditional QLA methods; ii) If β is varying in relation to K,
then Theorem 1 states that if β ↑ 1 fast enough as K→∞,
the total queue-length scales as O(

√
K), which significantly

outperforms the O(K) delay of the QLA algorithms. We note
that this O(

√
K) delay is achieved without sacrificing any

throughput and without requiring non-causal global statistics
as in [8], [9]; iii) In some sense, including the weight changes
in (6) can be viewed as a simple way of “learning” how the
queues had evolved in history. Interestingly, Theorem 1 shows
that even simply paying attention to “yesterday’s memory”
makes a big difference in delay performance.

Now, let U(a)=
∑N
n=1 Un(an) be the total utility function

of Problem JCCS and let a∗ be the optimal solution. Also, let
a∞(K),n, E{min{U ′−1

n (w∞(K),n/K), amax}}, ∀n, be the mean
steady-state congestion control rates offered by our heavy-
ball algorithm (the existence of steady-state will be proved in
Section IV-D). Further, we let a∞(K) , [a∞(K),1, . . . , a

∞
(K),N]>.

Then, the next result states that our proposed heavy-ball
algorithm is utility-optimal:

Theorem 2 (Utility-optimality). Under Algorithm 1 and for
some given K, the mean of the stationary rate vector a∞(K)

satisfies ‖a∞(K)−a∗‖ = O(1/
√
K). Also, the optimal utility ob-

jective value can be bounded as U
(
a∞(K)

)
≥ U(a∗)−O(1/K).

Hence, a∞(K) converges to a∗ asymptotically as K increases.

We note that the utility-optimality results stated in Theo-
rem 2 are independent of β, and the optimality gap scaling

results are same as those of the QLA schemes (see, e.g., [3],
[4]). This shows a salient feature of our proposed heavy-ball
approach: Although we have introduced the heavy-ball-based
weight updates in (6), such an algorithmic change does not
affect the utility-optimality of the original QLA framework.

Our third result is on the convergence speed performance. In
this paper, the notion of convergence speed is defined in terms
of the fewest number of time-slots that the sequence {w(K)[t]}
takes so that the resultant sequence {E{a(K)[t]|w(K)[t]}}
reaches the O(1√

K
)-neighborhood of a∗ stated in Theorem 2.

Theorem 3 (Linear convergence rate). Let K and β be
chosen as K ∈ (Φ

4 ,∞] and β ∈
[

max
{

0, Φ
2K − 1

}
, 1
)
.

Then, {E{a(K)[t]|w(K)[t]}} converges linearly2 with a factor
R(K,β) ≤ max

{√
β, |1 + β − φ/K| −

√
β, |1 + β −Φ/K| −√

β
}

. Moreover, minimizing the upper-bound of R(K,β) yields:
R∗ = (

√
Φ −

√
φ)/(
√

Φ +
√
φ), which is obtained by

K∗ = (
√

Φ +
√
φ)2/4 and β∗ = (

√
Φ−
√
φ)2/(

√
Φ +
√
φ)2.

Theorem 3 says that we can optimize K and β to achieve
R∗ = (

√
κ − 1)/(

√
κ + 1), where κ , Φ/φ is the condition

number [14]. The optimized R∗ is always smaller compared
to that of the QLA approaches, where RQLA = (κ−1)/(κ+1)
(cf. e.g., [2]), thus implying a faster convergence. Moreover,
this convergence speedup phenomenon is even more pro-
nounced when κ is large (i.e., the problem is ill-conditioned).

The proofs of Theorems 1–3 will be provided in Sec-
tion IV-D. In what follows, we will further discuss an impor-
tant three-way performance trade-off implied by the theoretical
results in Theorems 1–3.

C. A Three-Way Performance Trade-off

Collectively, Theorems 1–3 suggest a new three-way trade-
off relationship where, by appropriately selecting K and β, one
can simultaneously improve two out of the three performance
metrics by trading-off the third. To facilitate better understand-
ing, we illustrate this three-way trade-off relationship in Fig. 2.
In Fig. 2, the arrow of each axis is pointing toward worse
performance in utility, delay, and convergence, respectively.
The regions I, II, and III represent three types of trade-off
relationships achieved under our heavy-ball algorithm, and the
table in Fig. 2 illustrates how each region corresponds to the
settings of the two control knobs K and β.

First, Region I in Fig. 2 represents “achieving both utility-
optimality and low-delay by setting a large K and choosing
β close to 1, at the cost of slower convergence.” To see this,
we first note from Theorem 2 that a large K implies small
utility-optimality gap O(1/K). Also, by choosing β close to
1, Theorem 1 implies that the (1−β)–fraction delay reduction
is significant. However, when K → ∞ and β → 1, it is not
difficult to verify from Theorem 3 that:

lim
β→1
K→∞

R(K,β) ≤ lim
β→1
K→∞

{
max

{√
β, |1 + β − φ/K| −

√
β,

|1 + β − Φ/K| −
√
β
}}
→ 1.

2We say that a sequence {xk}∞k=1 converges linearly to x∗ if there exists
a factor R ∈ (0, 1) such that ‖xk+1 − x∗‖ ≤ R‖xk − x∗‖ for all k.

β

Utility

Convergence

Optimality

for Rate of

Gap

Time

Delay

Optimized

Convergence

Large

Large

Optimized

Convergence

I

II

III Close to 1

Close to 1

K

for Rate of

II

III

I

Fig. 2. An illustration of the three-way trade-off relationships.

That is, as K → ∞ and β → 1, the worst case convergence
rate factor R(K,β) asymptotically approaches 1, which implies
an increasingly slower convergence speed.

Second, Region II represents “achieving utility-optimality
and fast-convergence by setting a large K and optimizing β,
at the cost of less delay performance gain.” To see this, we
again note from Theorem 2 that a large K implies small utility-
optimality gap O(1/K). Also, by Theorem 3, we can optimize
β under a given K to minimize the convergence factor R(K,β)

to increase the convergence speed. However, the obtained β is
not necessarily close to 1 and thus the delay performance gain
may not be dramatic. We note that, in Region II, even though
the optimized β may not entail dramatic delay reduction, one
still enjoys the benefit of (1− β)–fraction delay compared to
the QLA approaches, according to Theorem 1.

Lastly, Region III represents “achieving low-delay and fast
convergence by setting β close to 1 and optimizing K, at
the cost of larger utility-optimality gap.” To see this, we note
from Theorem 1 that we can first push β close to 1 to achieve
low delay. With the given β, by Theorem 3, we can optimize
K to minimize the convergence factor R(K,β) to increase the
convergence speed. However, the obtained K is not necessarily
large and thus the utility-optimality gap may not be small.

D. Proofs of the Main Theorems

In this subsection, due to space limitation, we provide
sketched proofs for the theorems in Section IV-B and relegate
the remaining proof details to our online technical report [20].

Sketch of the proof of Theorem 1. The key steps for prov-
ing Theorem 1 are as follows. First, we consider a K-
parameterized deterministic version of Problem JCCS (see
Problem K-DJCCS in [20]), where the channel state process
is not random but fixed at its mean (i.e., the achievable
rate region is C̄), and the objective function is changed to
K
∑N
n=1 Un(an). Then, it is easy to show that its optimal

dual solution w∗(K) scales as O(K) (cf. [20, Lemma 1]). Our
next key step toward proving Theorem 1 is to establish the
following mean weight deviation bound [20, Theorem 2]:
Proposition 4 (Mean weight deviation bound [20]). Under
Algorithm 1 and a given K, there exists a constant C
that depends on Φ, smax, and amax, such that E{‖w∞(K) −
w∗(K)‖} ≤ C

√
K, where w∞(K) denotes the weights wK [t]

under parameter K in steady-state.

To show Proposition 4, we note that the heavy-ball update
in (6) can be rewritten as (see [20, Eq.(17)–(18)] for details):

w(K)[t+ 1]−w∗(K) = w(K)[t]−w∗(K)

+
(
a[t]− s[t] + u[t]

)
+ β

(
w(K)[t]−w(K)[t− 1]

)
, (8)

where u[t] ≥ 0 is some projection term. Note that since
the momentum term in (8) depends on two consecutive
time-slots of memory w(K)[t] and w(K)[t − 1], traditional
techniques used in establishing similar mean dual distance
bounds (see, e.g., [4], [9]) cannot be directly applied. To
overcome this challenge, we define a 2N -dimensional vector
z[t] , [(w(K)[t] −w∗(K))

>, (w(K)[t − 1] −w∗(K))
>]> and a

special block-structured matrix Γ ∈ R2N×2N as follows:

Γ ,

[
(1 + β)IN −βIN

IN ON

]
.

Then, it can be readily verified that (8) can be rewritten in
terms of z[t] as follows: z[t + 1] = Γz[t] + ∆q̃[t], where
∆q̃[t] , [(a[t] − s[t] + u[t])>,0>N]>. Now, consider the fol-
lowing quadratic Lyapunov function V (z[t]) , 1

2‖z[t]‖2 and
evaluate the one-slot conditional expected Lyapunov drift of
V (z[t]): E

{
∆V (z[t])

∣∣z[t]
}
, 1

2E
{
‖z[t+1]‖2−‖z[t]‖2

∣∣z[t]
}

.
Let 1A(x) be the indicator function that takes value 1 if
x ∈ A and 0 otherwise. After showing that Γ is a non-
expansive linear transformation (cf. [20, Lemma 2]) and some
algebraic derivations, we arrive at the following result (see
[20, Appendix A] for proof details):

Proposition 5. Let w be the first N entries in z[t] = z. Let
B, N

2 [A+(smax)2]. There exist constants δ, η > 0 such that

E{∆V (z[t])|z[t]=z}≤− δ√
K

∥∥w−w∗(K)

∥∥1Bc(w)+η1B(w),

where B, {w :
∥∥w−w∗(K)

∥∥≤√BΦK}, and Bc denotes the
complement of B.

Note that {z[t]} is a continuous state Markov chain in R2N

and Proposition 5 assures the Foster-Lyapunov criterion for
positive Harris-recurrence. Hence, a steady-state exists [21].
Next, we define a set Ω , {z ∈R2N : (z)1:N ∈ B}, where
(z)1:N denotes the first N entries in z. Then, telescoping the
inequality in Proposition 5 and after some derivations (see
[20, Eq. (24)]), we can show that 0 ≤ − δ√

K

∫
Ωc p

∞
z ‖w −

w∗(K)‖dz + η
∫

Ω
p∞z dz, where p∞z denotes the stationary

distribution of the continuous state Markov chain {z[t]}.
Lastly, rearranging terms, adding δ√

K

∫
Ω
p∞z ‖w−w∗(K)‖, and

multiplying both sides by
√
K
δ yields E{‖w∞(K) −w∗(K)‖} ≤

(ηδ +
√
BΦ)
√
K = O(

√
K), i.e., the result in Proposition 4.

To finish the proof of Theorem 1, we re-write the heavy-ball
weight update in the following form: w(K)[t+1]=w(K)[t]+
∆q[t]+β(w(K)[t]−w(K)[t−1])+u(2)[t], where u(2)[t] ≥ 0 is a
projection term (see [20, Eq. (17)]). Rearranging terms yields:

∆q[t]≤
(
w(K)[t+1]−w(K)[t]

)
−β
(
w(K)[t]−w(K)[t−1]

)
. (9)

Telescoping the inequality in (9) from t=0 to T−1 yields:∑T−1
t=0 ∆q[t] ≤

(
w(K)[T] − w(K)[0]

)
− β

(
w(K)[T − 1] −

w(K)[−1]
)

= w(K)[T] − βw(K)[T − 1], where the last
equality follows from the fact that w(K)[0] = w(K)[−1] =
0. Also, since q[0] = 0, we have ‖q[T]‖1 = ‖q[0] +∑T−1
t=0 ∆q[t]‖1 ≤ ‖w(K)[T]−βw(K)[T−1]‖1. Taking expec-

tation on both sides, letting T →∞, and taking limits yields:
lim supT→∞ E{‖q[T]‖1} ≤ E{w∞(K) − βw∞(K)} ≤ w∗(K) +

O(
√
K)−β(w∗(K)−O(

√
K))=O((1−β)K)+O((1+β)

√
K),

where the first inequality follows from Proposition 4 and
‖ · ‖1 ≤

√
N‖ · ‖; the second equality follows from w∗(K) =

O(K) (cf. [20, Lemma 1]). Moreover, when β = 1−O(1√
K

),
it follows from (7) that lim supT→∞ E

{
‖q[t]‖1

}
≈ O(

√
K),

i.e., the delay grows as O(
√
K). This completes the proof.

Sketch of the proof of Theorem 2. We first prove the optimal-
ity gap result for a∞(K),n , E{min{U ′−1

n (
w∞(K),n

K), amax}}.
Note that a∗n = U

′−1
n (

w∗(K),n

K), ∀n. Thus, plugging in these
definitions in

∥∥a∞(K)−a∗
∥∥2

and then upper-bounding by using
Jensen’s inequality, mean value theorem, and inverse function
lemma, we obtain (see [20, Eq. (31)] for detailed derivations):
‖a∞(K)−a∗‖2 ≤ 1

φ2K2E{‖w∞(K)−w∗(K)‖
2}. Now, consider the

term E{‖w∞(K) −w∗(K)‖
2}. From the proof of Proposition 5,

we have the following one-slot mean Lyapunov drift bound
(cf. [20, Appendix A, Eq. (51)]:

E{∆V (z[t])|z[t]} ≤ − 1

ΦK

∥∥w(K)[t]−w∗(K)

∥∥2
+B. (10)

Following the same steps in the proof of Proposition 4, we tele-
scope (10) from t = 0 to T − 1 to obtain: E{V (z[T])|z[0]}−
V (z[0]) ≤ − 1

ΦK

∑T−1
t=0

∫
R2N pz[t]|z[0](z)

∥∥w − w∗(K)

∥∥2
dz +

TB. Dividing both sides by T
ΦK , rearranging terms, and letting

T →∞, we have lim supT→∞
1
T

∑T−1
t=0

∫
R2N pz[t]|z[0](z)

∥∥w−
w∗(K)

∥∥2
dz ≤ BΦK. Note here that the left-hand-side is

precisely E
{
‖w∞(K) −w∗(K)‖

2
}

. Hence, we have

‖a∞(K)−a∗‖2≤ 1

φ2K2
E
{
‖w∞(K)−w∗(K)‖

2
}
≤ BΦ

φ2

1

K
. (11)

Taking square root on both sides of (11) yields ‖a∞(K)−a∗‖ =

O(1√
K

) and the proof of the first half is complete.
To prove that U

(
a∞(K)

)
≥ U(a∗) − O(1/K), similar to

the proof of Proposition 4, we define an augmented vector
y[t] , [w>(K)[t],w

>
(K)[t − 1]]> and a quadratic Lyapunov

function L(y[t]) = 1
2‖y[t]‖2. Following the same steps as in

the proof of Proposition 4, one can verify that y[t + 1] =
Γy[t] + ∆q̃[t]. Then, following the same argument as in
the proof of Proposition 5, we can show that the one-slot
conditional expected Lyapunov drift can be upper-bounded as
E
{

∆L(y[t])
∣∣y[t]

}
≤ −w>(K)[t]E{a[t] − s[t]

∣∣y[t]}+B. Note
that the right-hand-side is in the same form as in [3, Eq. (24)].
Thus, the rest of the proof follows from the same arguments
in [3] and the proof is complete.

Sketch of the proof of Theorem 3. Because of the one-to-one
mapping between E{a(K)[t]|w(K)[t]} and w(K)[t], the con-
vergence of {E{a(K)[t]|w(K)[t]}} can be equivalently ana-
lyzed by examining {w(K)[t]}. Note that (6) can be written as:

n6

n5

n7

n2

Dst(f1)

n3

Src(f2) Src(f3)

Dst(f3)

Dst(f2)

Src(f1)

n1

n4

Fig. 3. A multi-hop wire-
less network.

Transport

Layer
Reservoir

Congestion Control

Source

Queue

Source Node

][taf

Fig. 4. Congestion con-
trol at source node.

()
][1 tq

f

n

()
][2 tq

f

n

()
][1

1
tx

f

l

()
][2

1
tx

f

l

()
][1

2
tx

f

l

()
][2

3
tx

f

l

Node

Link

Link

Link
1

l 2
l

3
l

n

Fig. 5. Routing at inter-
mediate node.

w(K)[t+1] ≤ w(K)[t]+(a[t]−s[t])+β(w(K)[t]−w(K)[t−1]).
Dividing both sides by K (scaling does not affect conver-
gence), we have: w(1)[t + 1] ≤ w(1)[t] + 1

K (a[t] − s[t]) +
β(w(1)[t] − w(1)[t − 1]). Note that the right-hand-side is
the same as the standard unconstrained heavy-ball method
(cf. [14]) with step-size 1

K . Hence, from [14, Chap. 3.2,
Theorem 1], we have the sufficient condition for convergence
as: 1

K ∈ (0, (1+β)
Φ], and β ∈ [0, 1). After some manipulations

and noting that β > 0, we arrive at K ∈ (Φ
4 ,∞] and β ∈

[max{0, Φ
2K −1}, 1), i.e., the result stated in Theorem 3. Also,

the convergence factor upper-bound in Theorem 3 follows
directly from [19, Theorem 1]. This completes the proof.

V. EXTENSION TO MULTI-HOP NETWORKS

In this section, we will generalize our heavy-ball algorithmic
framework to multi-hop wireless networks. In the multi-hop
setting, the utility optimization problem becomes the joint con-
gestion control and routing optimization as in [1]–[3]. Here,
we first state the network model and problem formulation.

Network model and problem formulation: 1) Conges-
tion control: Consider an N -node L-link multi-hop wireless
network system as illustrated in Fig. 3. There are F end-
to-end flows in the network. The source and destination
nodes of each flow f are denoted by Src(f) and Dst(f),
respectively. As in [1]–[3], node Src(f) has a continuously-
backlogged transport layer reservoir that contains flow f ’s
data, as shown in Fig. 4. In each time-slot t, the congestion
controller determines the amount of data af [t] ∈ [0, amax

f] to
be released from the reservoir into a network layer source
queue, where the data awaits to be sent to Dst(f). We let
āf =limT→∞

1
T

∑T−1
t=0 af [t] be the time-average rate at which

flow f is injected at Src(f). Similar to the single-hop case,
each flow is associated with a strongly concave, increasing,
and twice continuously differentiable utility function Uf (āf).

2) Multi-hop routing: We let x(f)
l [t] ≥ 0 denote the rate

offered to route flow f ’s data in time-slot t at link l, as shown
in Fig. 5. We let x̄(f)

l , limT→∞
1
T

∑T−1
t=0 x

(f)
l [t] represent the

time-average service rate of flow f at link l. The channel
state process model remains the same as in the single-hop
case so that we have x(f)

l [t] ∈ Cπ[t], ∀l, f, t. As in [1]–[3], the
following routing constraints need to be satisfied:∑
l∈O(n)

x̄
(f)
l ≥

∑
l∈I(n)

x̄
(f)
l + āf1f (n), ∀f, ∀n 6= Dst(f), (12)

where O (n) and I (n) represent the sets of outgoing and
incoming links at node n, respectively; 1f (n) is an indicator
function that takes the value 1 if n = Src(f) and 0 otherwise.

3) Queue-stability: We assume that each node maintains a
separate queue for each flow f , as shown in Fig. 5. We let

q
(f)
n [t] ≥ 0 denote the queue-length of flow f at node n at

time t. Then, the queue-length evolution can be written as:

q(f)
n [t+1]=

(
q(f)
n [t]−

∑
l∈O(n)

x
(f)
l [t]

)+
+
∑
l∈I(n)̂

x
(f)
l [t]+af [t]1f (n), (13)

where x̂(f)
l [t] is the actual routing rate. Note that x̂(f)

l [t]≤x(f)
l [t]

since the transmitter node of link l ∈ I (n) may have fewer
than x(f)

l [t] amount of packets left. Let q[t] , [q
(f)
n [t],∀n, f].

Similar to the single-hop case, we say that the network is
stable if the steady-state total queue-length remains finite, i.e.,

lim sup
t→∞

E{‖q[t]‖1} <∞. (14)

4) Problem formulation: In the multi-hop wireless network
case, our goal is to develop an optimal joint congestion
control and routing scheme to maximize the total utility∑F
f=1 Uf (āf), subject to the network capacity region and

network stability constraints. Putting together the models
presented earlier yields the following joint congestion control
and routing (JCCR) optimization problem:

JCCR: Max
∑F

f=1
Uf (āf)

s.t. Routing constr. (12); Queues stability constraint in (14),

x
(f)
l [t] ∈ Cπ[t], ∀l, t, f, af [t] ≥ 0, ∀f, t.

The Algorithm: Similar to the generalization of the QLA
schemes to the multi-hop case, in our multi-hop heavy-ball
algorithm, the weights are replaced by weight differentials to
perform dynamic routing. To this end, we let E(l) denote the
two end nodes of link l. The heavy-ball-based joint congestion
control and routing algorithm is stated as follows:

Algorithm 2: The Heavy-Ball-Based Joint Congestion Control
and Routing Algorithm for Multi-Hop Wireless Networks.

Initialization:
1. Choose parameters K > 0 and β ∈ [0, 1). Set t = 0.
2. Let all queues be empty at the initial state: q(f)

n [0]=0, ∀n.
3. Under a given K, associate each link n with a weight
w

(f)
(K),n ≥ 0 and set w(f)

(K),n[0] = w
(f)
(K),n[−1] = 0,∀n, f .

Main Loop:
4. Weight Differentials: In each time-slot t ≥ 0, we let

∆w
(f)
(K),l[t] = max

{
w

(f)
(K),n[t] − w

(f)
(K),E(l)\n[t], 0

}
de-

note the weight differential of flow f , ∀n, ∀f , ∀l ∈
O (n). Let ∆w∗(K),l[t] = maxf ∆w

(f)
(K),l[t] and let f∗l [t]

= arg maxf ∆w
(f)
(K),l[t] (breaking ties arbitrarily). Let

∆w∗(K)[t] , [w∗(K),1[t], . . . , w∗(K),L[t]]> be the maximum
weight differentials vector over all links.

5. Routing and MaxWeight Scheduling: Given ∆w∗(K)[t] and
the channel state π[t], the controller schedules a service
rate vector x[t]∈RL to route only flow f∗l [t] at link l, ∀l:

x[t] = arg max
x∈Cπ[t]

(∆w∗(K)[t])
>x. (15)

6. Congestion Controller: For each flow f and in each time-
slot t, let w be the value of w(K),Src(f)[t] that the source

Iteration
0 200 400 600 800 1000

Q
u
e
u
e
-l
e
n
g
th

s

0

10

20

30

40

50

60

70

80
K = 25

β = 0

β = 0.5

β = 0.8

β = 0.99

(QLA)

Fig. 6. The impact of β on queueing
delay.

Iteration
200 400 600 800 1000

R
a
te

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
K = 25

β = 0.5

β = 0.8

β = 0.99

(QLA)β = 0

Fig. 7. The impact of β on conver-
gence speed.

Iteration
1000 2000 3000 4000 5000

Q
u
e
u
e
-l
e
n
g
th

s

0

50

100

150

200

250

300

K = 100

β = 0.99

β = 0.8

β = 0.5

β = 0 (QLA)

Fig. 8. The impact of K on queueing
delay.

Iteration
500 1000 1500 2000 2500 3000 3500

R
a

te
s

0.1

0.2

0.3

0.4

0.5

0.6

0.7
K = 100

β = 0.8

β = 0.5
β = 0

β = 0.99

(QLA)

Fig. 9. The impact of K on conver-
gence speed.

Iteration
0 1000 2000 3000 4000 5000

Q
u
e
u
e
-l
e
n
g
th

s

0

50

100

150

200

250

300
K = 100

β = 0

β = 0.35

β = 0.65 β = 0.95

(QLA)

Fig. 10. The impact of β on queueing
delay for a 15-user cellular downlink
with fading (K = 100).

Iteration
1000 2000 3000 4000 5000

R
a
te

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
K = 100

β = 0

β = 0.35

β = 0.65

β = 0.95

(QLA)

Fig. 11. The impact of β on con-
vergence speed for a 15-user cellular
downlink with fading (K = 100).

50 100 150 200 250 300

K

0

500

1000

1500

2000

2500

Q
u

e
u

e
-l
e

n
g

th

QLA

Heavy-Ball

Fig. 12. Steady-state queue-lengths
comparisons between QLA and the
heavy-ball approach.

K
50 100 150 200 250 300

Q
u

e
u

e
-l
e

n
g

th

10

20

30

40

50

60

70

80

Simulation
4.5*sqrt(K)

Fig. 13. Zoom-in view of the heavy-
ball approach in Fig. 12, which shows
the O(

√
K) scaling.

node Src(f) observes. Then, Src(f) sets af [t] to be an
integer-valued random variable that satisfies:

E{af [t]} = min
{
U
′−1
f

(w
K

)
, amax

}
, (16)

E{a2
n[t]} ≤ A <∞, (17)

where U
′−1
f (·) represents the inverse function of first-order

derivative of Uf (·). In (16) and (17), amax and A are some
predefined sufficiently large positive constants.

7. Queue-Length and Heavy-Ball Weight Updates: Update the
queue-lengths following (13). Let ∆q

(f)
n [t] , q

(f)
n [t+ 1]−

q
(f)
n [t] be the resultant queue-length change of flow f at

node n, ∀n, f . Next, update the weights in the following
(projected) heavy-ball fashion:

w
(f)
(K),n[t+ 1] =

[
w

(f)
(K),n[t] + ∆q(f)

n [t]

+ β
(
w

(f)
(K),n[t]− w(f)

(K),n[t− 1]
)]+

,∀n, f. (18)

Let t = t+ 1. Go to Step 4 and repeat the whole dynamic
routing, scheduling and congestion control processes.

Distributed Implementation: As in the QLA algorithms,
Algorithm 2 only requires weight information locally and from
one-hop neighbors. Thus, the congestion control and dynamic
routing can be implemented in a distributed fashion exactly
the same as that in the QLA algorithms and do not incur any
additional complexity in terms of messaging passing. Also
same as in the QLA algorithms, the scheduling component
in (15) is challenging for distributed implementations since it
requires global weight information. Fortunately, thanks to the
same messaging passing requirement, it can be readily verified
that all distributed algorithms developed for the QLA frame-

work can be directly applied in the scheduling component in
our heavy-ball algorithm, e.g., adaptive CSMA [22], [23], etc.

Performance Analysis: The same utility, delay, and conver-
gence results in Theorems 1–3 continue to hold in the multi-
hop case, and their proofs follow similar steps and arguments,
but with more complicated notation. Due to space limitation,
we omit these results and their proofs for brevity. We refer
readers to [20, Section V] for further information.

VI. NUMERICAL RESULTS

In this section, we conduct numerical studies to verify
the theoretical results presented in Section IV. To clearly
visualize the key insights of our theoretical results and not
being blurred by random noises, we first use a three-link
non-fading cellular network as an example. We assume that
each link has one unit capacity and only one link can be
activated in each time-slot. We use log(0.001 + a) as the
utility function for each link, i.e., the proportional fairness
metric [5]. Due to the symmetry of the setting, the optimal
congestion control rates are ā∗1 = ā∗2 = ā∗3 = 1

3 . To see the
impact of β on delay and convergence speed, we fix K = 25
and increase β from 0 to 0.99 (note that β = 0 corresponds to
the QLA approach). Because of the symmetry of the setting,
we only plot the results of link 1. As shown in Fig. 6, as
β increases, the average queue-lengths are 74.6, 37.4, 14.8,
and 1.1, respectively, which corroborates the (1− β)–fraction
reduction result in Theorem 1. We can see from Fig. 7 that,
for all choices of β, the congestion control rates all converge
to the optimal solution, confirming Theorem 2 that utility-
optimality is independent of β. However, changing β has a
significant impact on the convergence speed. In Fig. 7, as
β increases from 0 to 0.99, the convergence speed initially

increases, peaks at β = 0.8, and then decreases. Interestingly,
we note from Fig. 6 and Fig. 7 that, by setting β = 0.99, both
utility-optimality and low-delay can be achieved at the cost
of slower convergence speed, hence confirming Theorem 3.
Next, we increase K from 25 to 100 and conduct another set
of experiments on the same network. The results are shown in
Fig. 8 and Fig. 9, respectively. With a larger K, the congestion
control rates again converge to the same optimal solution with
a smaller variance, but at the cost of larger delay and slower
convergence. This again confirms the results in Theorems 1–3.

Next, we test our heavy-ball algorithm in a larger 15-link
cellular downlink with a quasi-static block fading (channel
states are constant in each time slot and vary from one time-
slot to the next). We again assume that only one user can
be activated in each time-slot. We fix K = 100 and vary β.
For clearer visualization, we only plot the results of link 1 in
Fig. 10 and Fig. 11. In Fig. 10, as β increases, the queue-
lengths also monotonically decrease and follow the (1 − β)-
fraction reduction law stated in Theorem 1. In Fig. 11, we can
see that the congestion control rates under different choices
of β all converge to the same optimal solution. Also, the
convergence speed initially increases but eventually decreases
as β increases. This again verifies the same three-way trade-off
effect in this larger network example with fading.

Lastly, we compare the delay scaling with respect to K
under QLA and our heavy-ball algorithm, respectively. Here,
as K increases, we let β ↑ 1 as β = 1− 1

2
√
K

. As expected, in
Fig. 12, the total queue-length of QLA exhibits the well-known
O(K) linear scaling law and is significantly larger than that
of our heavy-ball algorithm. Further, from the “zoom-in” view
of the heavy-ball results in Fig. 13, we can see that the total
queue-length increases as 4.5

√
K, which perfectly matches the

O(
√
K)-delay theoretical result stated in Theorem 1.

VII. CONCLUSION

In this paper, we have developed a new heavy-ball algorith-
mic framework for network utility optimization in wireless
networks. Compared to the traditional queue-length-based
algorithms, our proposed heavy-ball algorithmic framework
offers not only utility-optimality and queue-stability, but also
fast-convergence and low-delay. Our main contributions in this
paper are three-fold: i) We have proposed a heavy-ball joint
congestion control and scheduling/routing framework that is
well-suited for implementation in practice; ii) we have rigor-
ously shown the utility-optimality of the proposed heavy-ball
algorithmic framework and characterized the delay reduction
and convergence speed performances; and iii) we offered de-
sign rules for optimal selection of systems parameters, as well
as insights on an elegant three-way trade-off between utility,
delay, and convergence speed. Collectively, these results serve
as an exciting first step toward a cross-layer network control
and optimization theory that leverages “momentum/memory”
information. Memory/momentum-based cross-layer network
optimization is an important and yet under-explored area.
Future research topics may include, e.g., heavy-traffic delay

performance analysis for memory/momentum-based schedul-
ing algorithms, time-varying adaptive memory weight adjust-
ments, and investigating the impact of higher order memory
on network utility, delay, and convergence performances.

REFERENCES

[1] X. Lin and N. B. Shroff, “The impact of imperfect scheduling on cross-
layer congestion control in wireless networks,” IEEE/ACM Trans. Netw.,
vol. 14, no. 2, pp. 302–315, Apr. 2006.

[2] A. Eryilmaz and R. Srikant, “Joint congestion control, routing, and
MAC for stability and fairness in wireless networks,” IEEE J. Sel. Areas
Commun., vol. 24, no. 8, pp. 1514–1524, Aug. 2006.

[3] M. J. Neely, E. Modiano, and C.-P. Li, “Faireness and optimal stochastic
control for heterogeneous networks,” IEEE/ACM Trans. Netw., vol. 16,
no. 2, pp. 396–409, Apr. 2008.

[4] A. Eryilmaz and R. Srikant, “Fair resource allocation in wireless
networks using queue-length-based scheduling and congestion control,”
IEEE/ACM Trans. Netw., vol. 15, no. 6, pp. 1333–1344, Dec. 2007.

[5] X. Lin, N. B. Shroff, and R. Srikant, “A tutorial on cross-layer opti-
mization in wireless networks,” IEEE J. Sel. Areas Commun., vol. 24,
no. 8, pp. 1452–1463, Aug. 2006.

[6] “Qualcomm aims at peer-to-peer with flashlinq,” Feb. 2011. [Online].
Available: http://www.pcworld.com/article/219048/article.html

[7] “Data center bridging.” [Online]. Available: http://www.
cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/
ieee-802-1-data-center-bridging/at a glance c45-460907.pdf

[8] M. J. Neely, “Super-fast delay tradeoffs for utility optimal fair scheduling
in wireless networks,” IEEE J. Sel. Areas Commun., vol. 24, no. 8, pp.
1489–1501, Aug. 2006.

[9] L. Huang and M. J. Neely, “Delay reduction via lagrange multipliers in
stochastic network optimization,” IEEE Trans. Autom. Control, vol. 56,
no. 4, pp. 842–857, Apr. 2011.

[10] L. Huang, X. Liu, and X. Hao, “The power of online learning in
stochastic network optimization,” in Proc. ACM Sigmetrics, Austin, TX,
Jun.16-20, 2014, pp. 153–165.

[11] J. Liu, C. H. Xia, N. B. Shroff, and H. D. Sherali, “Distributed cross-
layer optimization in wireless networks: A second-order approach,” in
Proc. IEEE INFOCOM, Turin, Italy, Apr. 14-19, 2013.

[12] J. Liu, N. B. Shroff, C. H. Xia, and H. D. Sherali, “Joint congestion
control and routing optimization: An efficient second-order distributed
approach,” IEEE/ACM Trans. Netw., 2015.

[13] B. T. Polyak, “Some methods of speeding up the convergence of iter-
ation methods,” USSR Computational Mathematics and Mathematical
Physics, vol. 4, no. 5, pp. 1–17, 1964.

[14] ——, Introduction to Optimization. New York, NY: Optimization
Software, Inc., May 1987.

[15] R. J. Gibbens and F. P. Kelly, “Resource pricing and the evolution of
congestion control,” Automatica, vol. 35, pp. 1969–1985, 1999.

[16] S. Kunniyur and R. Srikant, “Analysis and design of an adaptive
virtual queue algorithm for active queue management,” in Proc. ACM
SIGCOMM, San Diego, CA, Aug. 2001, pp. 123–134.

[17] A. Laksmikantha, C. Beck, and R. Srikant, “Robustness of real and
virtual queue-based active queue management schemes,” IEEE/ACM
Trans. Netw., vol. 13, no. 1, pp. 81–93, Feb. 2005.

[18] P. Ochs, T. Brox, and T. Pock, “iPiasco: Inertial proximal algorithm for
strongly convex optimization,” Journal of Mathematical Imaging and
Vision (JMIV), 2015.

[19] E. Ghadimi, I. Shames, and M. Johansson, “Multi-step gradient methods
for networked optimization,” IEEE Trans. Signal Process., vol. 61,
no. 21, pp. 5417–5429, Nov. 2013.

[20] “Heavy-Ball: A new approach to tame delay and convergence
in wireless network optimization,” Technical Report, Jul.
2015. [Online]. Available: https://www.dropbox.com/s/orszj3imzcg3p1y/
HeavyBall JCCR TR.pdf?dl=0

[21] S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability,
2nd ed. Cambridge, UK: Cambridge University Press, 2009.

[22] L. Jiang and J. Walrand, “A distributed CSMA algorithm for throughput
and utility maximization in wireless networks,” IEEE/ACM Trans. Netw.,
vol. 18, no. 3, pp. 960–972, Jun. 2010.

[23] J. Ni, B. Tan, and R. Srikant, “Q-CSMA: Queue-length-based
CSMA/CA algorithms for achieving maximum throughput and low delay
in wireless networks,” IEEE/ACM Trans. Netw., vol. 20, no. 3, pp. 825–
836, Jun. 2010.

