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Exploiting Channel Memory for Joint Estimation
and Scheduling in Downlink Networks

– A Whittle’s Indexability Analysis
Wenzhuo Ouyang, Sugumar Murugesan, Atilla Eryilmaz, Ness B. Shroff

Abstract—We address the problem of opportunistic multiuser
scheduling in downlink networks with Markov-modeled outage
channels. We consider the scenario in which the scheduler does
not have full knowledge of the channel state information, but
instead estimates the channel state information by exploiting
the memory inherent in the Markov channels along with ARQ-
styled feedback from the scheduled users. Opportunistic schedul-
ing is optimized in two stages: (1) Channel estimation and
rate adaptation to maximize the expected immediate successful
transmission rate of the scheduled user; (2) User scheduling,
based on the optimized immediate rate, to maximize the overall
long term sum-throughput of the downlink. The scheduling
problem is a partially observable Markov decision process with
the classic ‘exploitation vs exploration’ trade-off that is difficult
to quantify. We therefore study the problem in the framework of
Restless Multi-armed Bandit Processes and perform a Whittle’s
indexability analysis. Whittle’s indexability is traditionally known
to be hard to establish and the index policy derived based on
Whittle’s indexability is known to have optimality properties
in various settings. We show that the problem of downlink
scheduling under imperfect channel state information is Whittle
indexable and derive the Whittle’s index policy in closed form.
Via extensive numerical experiments, we show that the Whittle’s
index policy has near-optimal performance and is robust against
imperfections in channel state feedback.

Our work reveals that, under incomplete channel state infor-
mation, exploiting channel memory for opportunistic scheduling
can result in significant performance gains and that almost all of
these gains can be realized using the easy-to-implement Whittle’s
index policy.

I. INTRODUCTION

The wireless channel is inherently time-varying and stochas-
tic. It can be exploited for dynamically allocating resources
to the network users, leading to the classic opportunistic
scheduling principle (e.g., [1]). Understandably, the success
of opportunistic scheduling depends heavily on reliable knowl-
edge of the instantaneous channel state information (CSI) at
the scheduler. Many sophisticated scheduling strategies have
been developed with provably optimal characteristics (e.g., [2]-
[6]) by assuming perfect CSI to be readily available, free of
cost at the scheduler.

Wenzhuo Ouyang and Atilla Eryilmaz are with the Department of
ECE, The Ohio State University (e-mails: ouyangw@ece.osu.edu, eryil-
maz@ece.osu.edu). Sugumar Murugesan was with the Department of ECE,
The Ohio State University and is currently with the School of ECEE, Arizona
State University (e-mail: sugumar.murugesan@asu.edu). Ness B. Shroff holds
a joint appointment in both the Department of ECE and the Department of
CSE at The Ohio State University (e-mail: shroff@ece.osu.edu).

A preliminary version of this paper appeared in INFOCOM 2011.
This research was supported by NSF grants CAREER-CNS-0953515, CCF-

0916664, CNS-0721236, CNS-0813000, DTRA Grant HDTRA 1-08-1-0016
and ARO MURI grant W911NF-08-1-0238.

In realistic scenarios, however, perfect CSI is rarely, if
ever, available and never cost-free, i.e., a non-trivial amount
of network resource, that could otherwise be used for data
transmission, must be spent in estimating the CSI [2]. This
calls for jointly designing channel estimation and opportunistic
scheduling strategies – an area that has recently received
attention when the channel state is modeled by i.i.d. processes
across time (e.g., [7], [8]). The i.i.d. model has traditionally
been a popular choice for researchers to abstract the fading
channels, because of its simplicity and associated ease of
analysis. On the other hand, this model fails to capture an
important characteristics of the fading channels – the time-
correlation or the channel memory [2].

In the presence of estimation cost, memory in the fading
channels is an important resource that can be intelligently
exploited for more efficient, joint estimation and scheduling
strategies. In this context, Markov channel models have been
gaining popularity as realistic abstractions of fading channels
with memory (e.g., [9]-[11]).

In this paper, we study joint channel estimation and schedul-
ing using channel memory, in downlink networks. We model
the downlink fading channels as two-state Markov Chains
with non-zero achievable rate in both states. The scheduling
decision at any time instant is associated with two potentially
contradicting objectives: (1) Immediate gains in throughput via
data transmission to the scheduled user; (2) Exploration of the
channel of a downlink user for more informed decisions and
associated throughput gains in the future. This is the classic
‘exploitation vs exploration’ trade-off often seen in sequential
decision making problems (e.g., [12], [13]). We model the joint
estimation and scheduling problem as a Partially Observable
Markov Decision Process (POMDP) and study the structure of
the problem, by explicitly accounting for the estimation cost.
Specifically, our contributions are as follows.

• We recast the POMDP scheduling problem as a Restless
Multi-armed Bandit Process (RMBP) [14] and establish its
Whittle’s indexability [14] in Section IV and V. Even though
Whittle’s indexability is difficult to establish in general [15],
we have been able to show it in the context of our problem.
• Based on a Whittle’s indexability condition, we explicitly
characterize the Whittle’s index policy for the scheduling
problem in Section VI. Whittle’s index policies are known
to have optimality properties in various RMBP processes and
have been shown to be easy to implement (e.g., [15], [16]).
• Using extensive numerical experiments, we demonstrate in
Section VII that Whittle’s index policy in our setting has near-
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Fig. 1. A two state Markov Chain.

optimal performance and that significant system level gains
can be realized by exploiting the channel memory for esti-
mation and scheduling. Numerical experiments also suggest
that Whittle’s index policy is robust against imperfections in
channel state feedback such as delays and errors. Also, the
Whittle’s index policy we derive is of polynomial complexity
in the number of downlink users (contrast this with the
PSPACE-hard complexity of optimal POMDP solutions [17]).

Our setup significantly differs from related works (e.g., [10]
[11] [18]) in the following sense: In these works, the channels
are modeled by ON-OFF Markov Chains with the OFF state
corresponding to zero-achievable rate of transmission. There,
once a user is scheduled, there is no need to estimate the
channel of that user, since it is optimal to transmit at the
constant rate allowed by the ON state irrespective of the
underlying state. In contrast, in our model, the achievable rate
at the lower state is, in general, non-zero and any rate above
this achievable rate leads to outage. This extended model
captures the realistic scenario when non-zero rates are possible
with the use of sophisticated physical layer algorithms, even
when the channel is bad. In this model, once a user is
scheduled, the scheduler must estimate the channel of that user,
with an associated cost, and adapt the transmission rate based
on the estimate. The rate adaptation must balance between
aggressive transmissions that lead to outage and conservative
transmissions that lead to under-utilization of channels. The
achievable rate expected from this process, in turn, influences
the choice of the scheduled user. Thus the channel estimation
and scheduling stages are tightly coupled, introducing several
technical challenges to the problem, which we address in this
paper.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Channel Model

We consider a downlink system with one base station (BS)
and N users. Time is slotted with the time slots of all users
synchronized. The channel between the BS and each user is
modeled as a two-state Markov chain, i.e., the state of the
channels remains static within each time slot and evolves
across time slots according to Markov chain statistics. The
Markov channels are assumed to be independent and, in
general, non-identical across users. The state space of channel
Ci between the BS and user i is given by Si = {li, hi}.
Each state corresponds to a maximum allowable data rate.
Specifically, if the channel is in state li, there exists a rate δi,
0 ≤ δi < 1, such that data transmissions at rates below δi
succeed and transmissions at rates above δi fail, i.e., outage
occurs. Similarly, state hi corresponds to data rate 1. Note that
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Fig. 2. Opportunistic scheduling with estimation and rate adaptation.

fixing the higher rate to be 1 across all users does not impose
any loss of generality in our analysis. This will be evident as
we proceed.

The Markovian channel model is illustrated in Fig. 1. For
user i, the two-state Markov channel is characterized by a 2×2
probability transition matrix

Pi =

[
pi 1− pi
ri 1− ri

]
,

where
pi := prob

(
Ci[t]=hi

∣∣ Ci[t−1]=hi

)
,

ri := prob
(
Ci[t]=hi

∣∣ Ci[t−1]=li
)
.

B. Scheduling Model

We adopt the one-hop interference model, i.e., in each time
slot, only one user can be scheduled for data transmission.
At the beginning of the slot, the scheduler does not have
exact knowledge of the channel state of the downlink users.
Instead, it maintains a belief value πi for channel i which
is the probability that Ci is in state hi at the time. We will
elaborate on the belief values soon. Using these belief values,
the scheduler picks a user, estimates its current channel state
and subsequently transmits data at a rate adapted to the channel
state estimate – all with an objective to maximize the overall
sum-throughput of the downlink system. Specifically, in each
slot, the scheduler jointly makes the following decisions: (1)
Considering each user, the scheduler decides on the optimal
channel estimator (that could involve the expenditure of net-
work resources such as time, power, etc.) and rate adapter
pair; (2) Based on the average rate of successful transmission
promised for each user by the previous decision, the scheduler
picks a user for channel estimation and subsequent data
transmission. At the end of the slot, consistent with recent
models (e.g., [10] [11] [18]), the scheduled user sends back
accurate information on the state of the Markov channel in that
slot. This accurate feedback is, in turn, used by the scheduler
to update its belief on the channels, based on the Markov
channel statistics. Note that these belief values are sufficient
statistics to the past scheduling decisions and feedback [19].
Using επ to denote an arbitrary estimator and ηπ to denote
an arbitrary rate adapter, as functions of the belief value π,
the basic operation is summarized in Fig. 2. The scheduling
problem can be formulated as a partially observable Markov
decision process [19], with the Markov channel states being
the partially observable system states.
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As noted in Section I, the scheduling decision in each slot
involves two objectives: data transmission to the scheduled
user and probing the channel of the scheduled user (through
the accurate end-of-slot feedback). On one hand, the scheduler
can transmit data to the user that promises the best achievable
rate at the moment and hence realize immediate performance
gains. On the other hand, the scheduler can schedule possibly
another user and use the channel feedback from that user to
gain a better understanding of the overall downlink system,
which, in turn, could result in more informed future scheduling
decisions with corresponding performance gains.

C. Formal Problem Statement

We now proceed to formally introduce the expected imme-
diate reward. We let πi denote the current belief value of the
channel of user i, and let u := {ε, η} denote an arbitrary
estimator and rate adapter pair. Recall from the discussion
on the scheduling model that, at the end of the slot, the
scheduled user sends back accurate feedback on its Markov
channel state in that slot. With this setup, once a user is
scheduled, the choice of the channel estimator and rate adapter
pair does not affect the future paths of the scheduling process.
Thus, within each slot, it is optimal to design this pair to
maximize the expected rate (of successful transmission) of
the user scheduled in that slot. Henceforth, in the language of
POMDPs, we call this maximized rate the expected immediate
reward. We now proceed to formally introduce the expected
immediate reward. We let πi denote the current belief value of
the channel of user i. The optimal estimator and rate adapter
pair, u∗

i,πi
={ε∗i,πi

, η∗i,πi
}, for user i, when the belief is πi, is

given by

u∗
i,πi

= argmax
u

ECi [γi(Ci, u)], (1)

where the quantity γi(Ci, u) is the average rate of successful
transmissions to user i when the channel is in state Ci and the
estimator and rate adapter pair u is deployed. The expectation
in (1) is taken over the underlying channel state Ci, with
distribution characterized by belief value πi, i.e.,

Ci =

{
hi with probability πi,

li with probability 1− πi.

The expected immediate reward when user i is scheduled
is thus given by

Ri(πi) = ECi [γi(Ci, u
∗
i,πi

)]. (2)

Note that our model is very general in the sense that we
do not restrict to any specific estimation, data transmission
structure or to any specific class of estimators. A typical
estimation, data transmission structure, corresponding to the
estimator and rate adapter pair u is illustrated in Fig. 3. Here
a pilot-aided training[2]-based estimation is performed for a
fraction of the time slots followed by data transmission at an
adapted rate in the rest of the time slots.

We now introduce the optimality equations for the schedul-
ing problem. Let π⃗[t] = (π1[t], · · · , πN [t]) denote the vector
of current belief values of the channels at the beginning of slot
t. A stationary scheduling policy, Ψ, is a stationary mapping
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Fig. 3. A typical estimation - data transmission structure.

Ψ : π⃗ → I between the belief vector and the index of the
user scheduled for data transmission in the current slot. Our
performance metric is the infinite horizon, discounted sum-
throughput of the downlink (henceforth simply the expected
discounted reward in the language of POMDPs), formally
defined next.

For a stationary policy Ψ, the expected discounted reward
under initial belief π⃗ is given by

V (Ψ, π⃗) =

∞∑
t=0

βtEπ⃗[t]RI[t]=Ψ(π⃗[t])(πI[t][t])

where π⃗[t] is the belief vector in slot t, πi[t] denotes the belief
value of user i in slot t, π⃗[0] = π⃗, I[t] denotes the index of
the user scheduled in slot t. The discount factor β ∈ [0, 1)
provides relative weighing between the immediately realizable
rates and future rates. For any initial belief π⃗, the optimal
expected discounted reward, V (π⃗) = maxΨ V (Ψ, π⃗), is given
by the Bellman equation [20]

V (π⃗) = max
I

{RI(πI) + βEπ⃗+ [V (π⃗+)]}.

Here π⃗+ denotes the belief vector in the next slot when the
current belief is π⃗. The belief evolution π⃗ → π⃗+ proceeds as
follows:

π+
i =


pi if I = i and Ci = hi

ri if I = i and Ci = li,

Qi(πi) if I ̸= i

(3)

where Qi(x) = xpi+(1−x)ri is the belief evolution operator
for user i when it is not scheduled in the current slot. A
stationary scheduling policy Ψ∗ is optimal if and only if
V (Ψ∗, π⃗) = V (π⃗) for all π⃗ [20].

In the introduction, we briefly contrasted our setup with
those in [10][11][18]. We provide a rigorous comparison here.
The works [10][11][18] studied opportunistic scheduling with
the channels modeled by ON-OFF Markov chains. In these
works, the lower state is an ‘OFF’ state, i.e., it does not allow
transmission at any non-zero data rate. Contrast this with our
model where, at the lower state li, a possibly non-zero rate
δi is achievable and outage occurs at any rate above δi. We
now further explain how these two models are fundamentally
different.
• In the ON-OFF channel model, the scheduler does not need
a channel estimator and rate adapter pair. The scheduler can
aggressively transmit at rate 1, since it has nothing to gain by
transmitting at a lower rate – a direct consequence of the ‘OFF’
nature of the lower state. On the other hand, transmitting at
a rate lesser than 1 can lead to losses due to under-utilization
of the channel.
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• In contrast, in our model, when δ > 0, the scheduler must
strike a balance between aggressive and conservative rates of
transmission. An aggressive strategy (transmit at rate 1) can
lead to losses due to outages, while a conservative strategy
can lead to losses due to under-utilization of the channel. This
underscores the importance of the knowledge of the underlying
channel state and, therefore, the need for intelligent estimation
and rate adaptation mechanisms.
• As a direct consequence of the preceding arguments, the
expected immediate reward in our model is not a trivial δ-shift
of the expected immediate reward when the rates supported by
the channel states are 0 and 1− δ. Formally,

R{δ,1}(π) ̸= R{0,1−δ}(π) + δ = (1− δ)π + δ,

where R{x,y}(π) is the immediate reward when the channel
state space is {x, y} and belief value of the scheduled user is
π. In fact, it can be shown that (in Lemma 1)

R{δ,1}(π) ≤ R{0,1−δ}(π) + δ = (1− δ)π + δ.

We believe that, our channel model, in contrast to the ON-
OFF model, better captures realistic communication channels
where, using appropriate physical layer algorithms, it is pos-
sible to transmit at a non-zero rate even at the lowest state of
the channel model and the same physical layer algorithms may
impose outage behavior when this allowed rate is exceeded.

III. OPTIMAL EXPECTED TRANSMISSION RATE –
STRUCTURAL PROPERTIES

In this section, we study the structural properties of the
expected immediate reward, Ri(πi), defined in Equation (2).
These properties will be crucial for our analysis in subsequent
sections. For notational convenience, we will drop the suffix
i in the rest of this section.

Lemma 1. The expected immediate reward R(π) has the
following properties:
(a) R(π) is convex and increasing in π for π ∈ [0, 1]
(b) R(π) is bounded as follows:

max{δ, π} ≤ R(π) ≤ (1− δ)π + δ. (4)

Proof: Let U∗ be the set of optimal estimator and rate adapter
pairs for all π ∈ [0, 1], i.e., U∗ = {u∗

π, π ∈ [0, 1]}. The
expected immediate reward, provided in Equation (2), can now
be rewritten as

R(π) = max
u∈U∗

EC [γ(C, u)]

= max
u∈U∗

[πγ(h, u) + (1− π)γ(l, u)],

where γ(s, u) denotes the average rate of successful transmis-
sion when the channel state is s ∈ {l, h}. Note that, for fixed
u, the average rate πγ(h, u) + (1 − π)γ(l, u) is linear in π.
Thus, R(π) is given as a point-wise maximum over a family
of linear functions, which is convex [21]. R(π) is therefore
convex in π, establishing the convexity statement in (a).

We next proceed to derive the bounds to R(π). From
Equation (2),

R(π) = max
u

EC [γ(C, u)] ≥ max
{u:u={η}}

EC [γ(C, u)]

where {u : u = {η}} indicates that we are considering rate
adaptation without channel estimation. This explains the last
inequality. Note that without the estimator, the rate adaptation
is solely a function of the belief value π. Thus, the average rate
achieved under the rate adapter, conditioned on the underlying
channel state, can be expressed simply by indicator functions,
as seen below:

max
{u:u={η}}

EC [γ(C, u)]

= max
η

[P (C = l)η · 1(η ≤ δ) + P (C = h)η · 1(η ≤ 1)]

= max
η

η[P (C = l) · 1(η ≤ δ) + P (C = h) · 1(η ≤ 1)]

= max {δ, π}.
This establishes the lower bound in (b).
The upper bound in (b) corresponds to the expected imme-

diate reward when full channel state information is available
at the scheduler.

It is clear from the upper and lower bounds that δ≤R(π) ≤
1. Note that when π=0 or π=1, there is no uncertainty in the
channel, hence R(0)=δ and R(1)=1. Using these properties,
along with the convexity property of R(π), we see that R(π) is
monotonically increasing in π, establishing the monotonicity
of (a). The lemma thus follows. �
Remark: Here we present some insights into the effect of the
non-zero rate δ on the channel estimation and rate adaptation
mechanisms by studying the upper and lower bounds to
R(π) provided in Lemma 1. The upper bound essentially
corresponds to the case when perfect channel state information
is available at the scheduler at the beginning of each slot.
Here, no channel estimation and rate adaptation is necessary.
The lower bound, on the other hand, corresponds to the case
when the channel estimation stage is eliminated and rate
adaptation is performed solely based on the belief value π
of the scheduled user.

Fig. 4 plots the lower and upper bounds to R(π) for
different values of δ. Note that the lower bound approaches
the upper bound in both directions, i.e., when δ → 0 or when
δ → 1. This behavior can be explained as follows: (1) δ → 1
essentially means that the states of the Markov channel move
closer to each other. This progressively reduces the channel
uncertainty and hence the need for channel estimation (and,
consequently, rate adaptation), essentially bringing the bounds
closer. (2) As δ → 0, the channel uncertainty increases. At the
same time, the impact of the channel estimator and rate adapter
pair decreases. This is because, as δ → 0, the loss in immediate
reward due to outage (transmitting at 1 when channel is in state
δ) is less severe than the loss due to under-utilization of the
channel (transmitting at rate δ when the channel is in state 1),
essentially making it optimal for the rate adaptation scheme
to be progressively more aggressive (transmit at rate 1). Thus
channel estimation loses its significance as δ → 0. This brings
the bounds closer as δ → 0.

It can be verified that the separation between the lower
and upper bounds is at its peak when δ = 0.5. This, along
with the preceding discussion, indicates the potential for rate
improvement when intelligent channel estimation and rate
adaptation is performed under moderate values of δ.
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IV. RESTLESS MULTI-ARMED BANDIT PROCESSES,
WHITTLE’S INDEXABILITY AND INDEX POLICIES

A direct analysis of the downlink scheduling problem ap-
pears difficult due to the complex nature of the ‘exploitation
vs exploration’ tradeoff. We therefore establish a connection
between the scheduling problem and the Restless Multiarmed
Bandit Processes (RMBP) [14] and make use of the established
theory behind RMBP in our analysis. We briefly overview
RMBPs and the associated theory of Whittle’s indexability in
this section.

RMBPs are defined as a family of sequential dynamic
resource allocation problems in the presence of several com-
peting, independently evolving projects. In RMBPs, a subset
of the competing projects are served in each slot. The states
of all the projects in the system stochastically evolve in time
based on the current state of the projects and the action
taken. Once a project is served, a reward dependent on the
states of the served projects and the action taken is accrued
by the controller. Hence, the RMBPs are characterized by a
fundamental tradeoff between decisions guaranteeing high im-
mediate rewards versus those that sacrifice immediate rewards
for better future rewards. Solutions to RMBPs are, in general,
known to be PSPACE-hard [17].

Under an average constraint on the number of projects
scheduled per slot, a low complexity index policy developed
by Whittle [14], commonly known as Whittle’s index policy,
is optimal. Under stringent constraint on the number of users
scheduled per slot, Whittle’s index policy may not exist and
if it does exist, its optimality properties are, in general, lost.
However, Whittle’s index policies, upon existence, are known
to have near optimal performance in various RMBPs (e.g.,
[15] [16]). For an RMBP, Whittle’s index policy exists if and
only if the RMBP satisfies a condition known as Whittle’s
indexability [14], defined next.

Consider the following setup: for each project P in the
system, consider a virtual system where, in each slot, the
controller must make one of two decisions: (1) Serve project
P and accrue an immediate reward that is a function of the
state of the project. This reward structure reflects the one in
the original RMBP for project P . (2) Do not serve project P ,
i.e., stay passive and accrue an immediate reward for passivity
ω. The state of the project P evolves in the same fashion as it
would in the original RMBP, as a function of its current state
and current action (whether P is served or not in the current
state). Let D(ω) be the set of states of project P in which it

is optimal to stay passive, where optimality is defined based
on the infinite horizon net reward.

Project P is Whittle indexable if and only if as ω increases
from −∞ to ∞, the set D(ω) monotonically expands from
∅ to S, the state space of project P . The RMBP is Whittle
indexable if and only if all the projects in the RMBP are
Whittle indexable.

For each state, s, of a project, Whittle’s index, W (s), is
given by the value of ω in which the net reward after both the
active and passive decisions are the same in the ω-subsidized
virtual system. The notion of indexability gives a consistent
ordering of states with respect to the indices. For instance, if
W (s1)>W (s2) and if it is optimal to serve the project at state
s1, then it is optimal to serve the project at s2. This natural
ordering of states based on indices renders the near-optimality
properties to Whittle’s index policy (e.g., [15], [16]).

The downlink scheduling problem we have considered is in
fact an RMBP process. Here, each downlink user, along with
the belief value of its channel, corresponds to a project in
the RMBP, and the project is served when the corresponding
user is scheduled for data transmission. Now, referring to our
earlier discussion on the RMBPs, we see that Whittle’s index
policy is very attractive from an optimality point of view.
The attractiveness of the index policy can be attributed to
the natural ordering of states (and hence projects) based on
indices, as guaranteed by Whittle’s indexability. In the rest
of the paper, we establish that this advantage carries over to
the downlink scheduling problem at hand. As a first step in
this direction, in the next section, we study the scheduling
problem in Whittle’s indexability framework and show that the
downlink scheduling problem is, in fact, Whittle indexable.

V. WHITTLE’S INDEXABILITY ANALYSIS OF THE
DOWNLINK SCHEDULING PROBLEM

In this section, we study the Whittle’s indexability of our
joint scheduling and estimation problem. To that end, we first
describe the downlink scheduling setup:

At the beginning of each slot, based on the current belief
value π (we drop the user index i in this section since
only one user is considered throughout), the scheduler takes
one of two possible actions: schedules data transmission to
the user (action a = 1) or stays idle (a = 0). Upon an
idle decision, a subsidy of ω is obtained. Otherwise, optimal
channel estimation and rate adaptation is carried out, with a
reward equal to R(π) (consistent with the immediate reward
seen in previous sections). The belief value is updated based
on the action taken and feedback from the user (upon transmit
decision). This belief update is consistent with that in the
Section II. The optimal scheduling policy (henceforth, the
ω-subsidy policy) maximizes the infinite horizon discounted
reward, parameterized by ω. The optimal infinite horizon
discounted reward is given by the Bellman equation [20]

Vω(π) = max{
[
R(π) + β

(
πVω(p) + (1− π)Vω(r)

)]
,[

ω + βVω

(
Q(π)

)]
}, (5)

where, recall from Section II, Q(π) is the evolution of the
belief value when the user is not scheduled. The first quantity
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inside the max operator corresponds to the infinite horizon
reward when a transmit decision is made in the current slot
and optimal decisions are made in the future slot. The second
element corresponds to idle decision in the current slot and
optimal decisions in all future slots.

We note that the indexability analysis in the rest of this sec-
tion bears similarities to that in [18], where the authors studied
indexability of a sequential resource allocation problem in a
cognitive radio setting. This problem is mathematically equiva-
lent to our downlink scheduling problem when δ = 0. We have
already discussed in detail (in Section II) that the structure of
the immediate reward R(π) when δ > 0 is very different
than when δ = 0, due to the need for channel estimation
and rate adaptation in the former case. Consequently, in the
Whittle’s indexability setup, the infinite horizon discounted
reward Vω(π) in our problem is different (and more general)
than that in [18], underscoring the significance of our results.

As a crucial preparatory result, we now proceed to show
that the ω-subsidy policy is thresholdable.

A. Thresholdability of the ω-subsidy policy

We first record our result on the convexity property of
the infinite horizon discounted reward, Vω(π), of (5) in the
following proposition.

Proposition 1. The infinite horizon discounted reward, Vω(π)
is convex in π ∈ [0, 1].

Proof: We first consider the discounted reward for finite hori-
zon ω-subsidy problem. We let ν1(π) = R(π) and ν0(π) = ω
represent the immediate reward corresponding to active and
idle decisions, respectively. The reward function associated
with M -stage finite horizon process is expressed as

ṼM (π[0]) = max
a[t],

t=0,...,M−1

E
[ M∑

t=0

βtνa[t](π[t])
∣∣∣π[0]]

Let V̂ω,t(π) be the reward at time t with belief value π[t] =

π. Hence ṼM (π[0]) = V̂ω,0(π[0]) and the last stage value
function V̂ω,M−1(π[M − 1]) is given by

V̂ω,M−1(π[M − 1]) = max
a[M−1]

{νa[M−1](π[M − 1])}

= max{ω,R(π[M − 1])}.

Therefore, V̂ω,M−1(π) is convex with π since it is the
maximum of a constant and a convex function. For any time
0 ≤ t < M − 1, the Bellman ([20]) equation can be written
as

V̂ω,t(π[t]) = max{V̂ 0
ω,t(π[t]), V̂

1
ω,t(π[t])}.

where

V̂ 0
ω,t(π)=ω+βV̂ω,t+1

(
Q(π)

)
, (6)

V̂ 1
ω,t(π)=R(π)+β

(
πV̂ω,t+1(p) + (1− π)V̂ω,t+1(r)

)
. (7)

Suppose now V̂ω,t+1(π) is convex with π. If a[t] = 1, it
is clear from (7) that V̂ 1

ω,t(π) is convex function of π since
it is a summation of a convex function and a linear function

of π. If a[t] = 0, V̂ 0
ω,t(π), expressed in (6), is also a convex

function, because composition of convex function V̂ω,t+1(·)
and linear function Q(π) is convex [21]. Therefore V̂ω,t(π)
is convex with π as maximum of two convex functions. By
induction, the the convexity of Vω,0(π) is thus established.

Since ṼM (π) = Vω,0(π), ṼM (π) is convex with π. For
discounted problem with bounded reward per slot, the infinite
horizon reward is the limit of of finite horizon reward ([20]).
Therefore Vω(π) = limM→∞ Vω,M (π). Upon point-wise con-
vergence, point-wise limit of convex functions is convex [21].
Hence Vω(π) is a convex function of π. �

In the next proposition, we show that the optimal ω-subsidy
policy is a threshold policy.

Proposition 2. The optimal ω-subsidy policy is thresholdable
in the belief space π. Specifically, there exists a threshold
π∗(ω) such that the optimal action a is 1 if the current belief
π > π∗(ω) and the optimal action a is 0, otherwise. The value
of the threshold π∗(ω) depends on the subsidy ω, partially
characterized below.

(i) If ω ≥ 1, π∗(ω) = 1;
(ii) If ω ≤ δ, π∗(ω) = κ for some arbitrary κ < 0;
(iii) If δ < ω < 1, π∗(ω) takes value within interval (0, 1).

Proof: Consider the Bellman equation (5), let V 1
ω (π) be the

reward corresponding to transmit decision and V 0
ω (π) be the

reward corresponding to idle decision, i.e.,

V 1
ω (π) = R(π) + β

(
πVω(p) + (1− π)Vω(r)

)
,

V 0
ω (π) = ω + βVω

(
Q(π)

)
= ω + βVω

(
πp+ (1− π)r

)
.

It is clear from the Bellman equation (5) that the optimal
action depends on the relationship between V 1

ω (π) and V 0
ω (π),

presented as follows.

Case (i). If ω ≥ 1, since R(π) ≤ 1, in each slot, the immediate
reward for being idle always dominates the reward for being
active. Hence it will be optimal to always stay idle. We can
thus set the threshold to 1.
Case (ii). If ω ≤ δ, then for any π ∈ [0, 1], we have

V 0
ω (π) =ω + βVω(πp+ (1− π)r)

≤R(π) + β(πVω(p) + (1− π)Vω(r)),

=V 1
ω (π),

where the inequality is due to δ≤R(π) along with Jensen’s
inequality [21] due to the convexity of Vω(π) from Proposition
2. Hence, it is optimal to stay active. Consistent with the
threshold definition, we can set π∗(ω) = κ for any κ < 0.
Case (iii). If δ < w < 1, then at the extreme values of belief,

V 0
ω (0) = ω + βVω(r) > δ + βVω(r) = V 1

ω (0)

V 0
ω (1) = ω + βVω(p) < 1 + βVω(p) = V 1

ω (1)

Note that the relationship of V 0
ω (π) and V 1

ω (π) is reversed
at the end points 0 and 1, and they are both convex functions
of π. Thus, there must exist a threshold π∗(ω) within (0, 1)
such that a equals 1 whenever π > π∗(ω). �
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B. Whittle’s Indexability of Downlink Scheduling

Having established that the ω-subsidy policy is thresh-
oldable in Proposition 2, Whittle’s indexability, defined in
Section IV, is re-interpreted for the downlink scheduling prob-
lem as follows: the downlink scheduling problem is Whittle
indexable if the threshold boundary π∗(ω) is monotonically
increasing with subsidy ω.

Using our discussion in Section IV, the index of the belief
value π, i.e., W (π) is the infimum value of the subsidy ω such
that it is optimal to stay idle, i.e.,

W (π) = inf{ω : V 0
ω (π) ≥ V 1

ω (π)}
= inf{ω : π∗(ω) = π}. (8)

To establish indexability, we need to investigate the infinite
horizon discounted reward Vω(π), given by (5). We can
observe from (5) that given the value of Vω(p) and Vω(r),
Vω(π) can be calculated for all π ∈ [0, 1]. Let π0 denote the
steady state probability of being in state h. The next lemma
provides a closed form expression for Vω(p) and Vω(r) and
is critical to the proof of indexability.

Lemma 2. The discounted rewards Vω(p) and Vω(r) can be
expressed as:
Case 1: p > r (positive correlation)

Vω(p)=

{
R(p)+β(1−p)Vω(r)

1−βp if π∗(ω) < p
ω

1−β if π∗(ω) ≥ p

Vω(r)=


∑∞

k=0 β
kR( r−(p−r)k+1r

1+r−p ) if π∗(ω)<r

Θ if r≤π∗(ω)<π0

ω
1−β if π∗(ω) ≥ π0

Case 2: p ≤ r (negative correlation)

Vω(p)=


∑∞

k=0 β
kR( r+(p−r)k+1(1−p)

1+r−p ) if π∗(ω)<p
ω+βR(Q(p))+β2(1−Q(p))Vω(r)

1−β2Q(p) if p≤π∗(ω)<Q(p)
ω

1−β if π∗(ω)≥Q(p)

Vω(r)=

{
R(r)+βrVω(p)

1−β(1−r) if π∗(ω)<r
ω

1−β if π∗(ω)≥r

The expression of Θ is given by Equation (9), where Qn

denotes nth iteration of Q and L(π, π∗(ω)) is a function of π
and π∗(ω). Their expressions are given in Appendix A. From
the above expressions, the closed form Vω(p) and Vω(r) can be
readily obtained. The explicit expression is space-consuming
and therefore is moved to Appendix A.

Proof: The derivation of Vω(p) and Vω(r) follows from sub-
stituting p and r in Equation (5). Together with the expression
of Q(π) given by in Section II, the expression of Vω(p) and
Vω(r) can be obtained. For details, please refer to Appendix A.
�

We note that the value function expression depends on the
correlation type of the Markov chain, because the transition

function Q(π) given in Section II will behave differently with
the correlation type of the chain.

The closed form expression of the value function given by
the previous lemma serves as a useful tool for us to establish
indexability, which is given by the next proposition.

Proposition 3. The threshold value is strictly increasing with
ω. Therefore, the problem is Whittle indexable.

Proof: The proof of indexability follows the lines of [18].
Details are provided in Appendix B. �

VI. WHITTLE’S INDEX POLICY

A. Whittle’s Index Policy

In this section, we explicitly characterize Whittle’s index
policy for the downlink scheduling problem. For user i, let π0

i

denote the steady state probability of being in state hi, and let
Vi,ω(πi) denote the reward function for its ω-subsidy problem
in (5). We first characterize the Whittle’s index as follows.

Proposition 4. For user i, the index value at state πi, i.e.,
Wi(πi) is characterized as follows,

Case 1. Positively correlated channel (pi > ri)

Wi(πi)=


Ri(πi) if πi ≥ pi
βπiRi(pi)+(1−βpi)Ri(πi)

1+βπi−βpi
if π0

i ≤ πi < pi

[Ri(πi)−βRi(Qi(πi))]+β[πi−βQi(πi)]Vi,Wi(πi)(pi)

+β[(1−πi)−β(1−Qi(πi))]Vi,Wi(πi)(ri) if πi < π0
i

Case 2. Negatively correlated channel (pi ≤ ri)

Wi(πi)=



Ri(πi) if πi ≥ ri
(1−β)[Ri(πi)+β(1−πi)Vi,Wi(πi)

(ri)]

1−βπi
if Qi(pi)≤πi<ri

(1−β)
[
Ri(πi)+β[πiVi,Wi(πi)(pi)+(1−πi)Vi,Wi(πi)(ri)]

]
if π0

i≤πi<Qi(pi)

[Ri(πi)−βRi(Qi(πi))]+β[πi−βQi(πi)]Vi,Wi(πi)(pi)

+β[(1−πi)−β(1−Qi(πi))]Vi,Wi(πi)(ri) if πi < π0
i

Proof: The derivation of the index value follows from sub-
stituting the expression of Vi,ωi(pi) and Vi,ω(ri) (given in
Lemma 2) into Equation (5). Details of the proof are provided
in Appendix C. �
Remark: Notice that Proposition 4 does not give the closed
form expression for Wi(πi). However, since the closed
form expression of the value function Vi,Wi(πi)(pi) and
Vi,Wi(πi)(ri) are derived in Lemma 2, closed form expressions
of Wi(πi) can be easily calculated and is given in Appendix C.
We now introduce Whittle’s index policy.

Whittle’s Index Policy: In each slot, with belief values
π1, . . . , πN , the user I with the highest index value Wi(πi) is
scheduled for transmission, i.e., I = argmaxi Wi(πi).

Note that, from the definition of indexability, the index value
Wi(πi) monotonically increases with πi. Therefore, when

Θ =
(1− βL(r,π∗(ω)))ω + (1− β)βL(r,π∗(ω))[R(QL(r,π∗(ω))(r)) + βQL(r,π∗(ω))(r)Vω(p)]

(1− β)[1− βL(r,π∗(ω))+1(1−QL(r,π∗(ω))(r))]
(9)
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Fig. 5. Index value evolution of user i, with πi[0] = 0.3. (a) Positive
correlation, pi=0.8, ri=0.2; (b) Negative correlation, pi=0.2, ri=0.8.
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Fig. 6. Immediate reward versus π.

the Markovian channels have the same Markovian structure
and vary independently across users (hence the state-index
mappings are the same across users), Whittle’s index policy
essentially becomes the greedy policy – schedule the user with
the highest belief value.

Fig. 5 plots an example of the index value evolution for the
case of positively correlated and negatively correlated channels
when they stay idle, i.e., not scheduled for transmission. We
see that, for the positively correlated channel, the index value
behaves monotonically, while, for the negatively correlated
channel, the index value shows oscillation. This resembles the
evolution of the belief values, which, as proven in Lemma 3
in Appendix A, approaches steady state monotonically for
the positively correlated channel, and with oscillation for the
negatively correlated channel. This resemblance in Fig. 5 is
expected since, from Proposition 3, we can infer that the index
value monotonically increases with the belief value. Thus, in
essence, from Proposition 3 and Fig. 5, we see that the index
value captures the underlying dynamics of the Markovian
channel.

VII. NUMERICAL PERFORMANCE ANALYSIS

A. Model for Simulation

In this section, we study, via numerical evaluations, the
performance of Whittle’s index policy, henceforth simply
the index policy, for joint estimation and scheduling in our
downlink system. We consider the specific class of estimator
and rate adapter structure, with pilot-aided training, discussed
in Section II and illustrated in Fig. 3. We consider a fading
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Fig. 7. Performance of the index policy in comparison with that of the
optimal policy. System parameters used: N=5, {p1=0.2, r1=0.75}, {p2 =
0.6, r2 = 0.25}, {p3 = 0.8, r3 = 0.3}, {p4 = 0.4, r4=0.7}, {p5 =
0.65, r5 = 0.55}; Fading block length: T = 20.

channel with the fading coefficients quantized into two levels
to reflect the two states of the Markov chain. Additive noise
is assumed to be white Gaussian. The channel input-output
model is given by Y = hX + ϵ, where X,Y correspond to
transmitted and received signals, respectively, h is the complex
fading coefficient and ϵ is the complex Gaussian, unit variance
additive noise. Conditioned on h, the Shannon capacity of
the channel is given by R = log(1 + |h|2). We quantize the
fading coefficients such that the allowed rate at the lower state,
δ = 0.2 for all users. The channel state, represented by the
fading coefficient, evolves as Markov chain with fading block
length T .

We consider a class of Linear Minimum Mean Square Error
(LMMSE) estimators [22] denoted as Φ. LMMSE estimators
are attractive because with additive white Gaussian noise, they
can be characterized in closed form [22] and, hence, can be
conveniently used in simulation. Let ϕπ denote the optimal
LMMSE estimator with prior {π, 1−π}. We let Φ denote the
set of LMMSE estimators optimized for various values of π.

B. Immediate Reward Structure

We now study the structure of the immediate reward R(π).
Note that R(π) is optimized over the class of estimators Φ.
Fig. 6 illustrates R(π), in comparison with the upper and lower
bounds derived in Lemma 2, for two values of block length T .
As established in Lemma 2, R(π) shows a convex increasing
structure and takes values within the bounds. Note that R(π)
also increases with T , since a larger T provides more channel
uses for channel probing and data transmission.

C. Near-optimal Performance of Whittle’s Index Policy

We proceed to evaluate the performance of the index policy
and compare it with the optimal policy. In Fig. 7, we com-
pare the expected rewards V M

opt and V M
index that, respectively,

correspond to the optimal finite M-horizon policy and the
index policy, for increasing horizon length M and randomly
generated system parameters. The value of V M

opt is obtained
via brute-force search over the finite horizon. Fig. 7 illustrates
the near optimal performance of the index policy. Also, as
expected, the higher the value of β, the higher the expected
reward.

Table I presents the performance of the index policy in
a larger perspective. Here, with randomly generated system
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N β Vopt Vindex Vnofb %gain
4 0.6337 1.6289 1.6289 1.4887 100 %

4 0.5896 1.5977 1.5866 1.2888 96.4045 %

4 0.6673 1.6537 1.6319 1.4342 90.0500 %

5 0.4537 0.9854 0.9854 0.9299 100 %

5 0.6082 1.6132 1.6072 1.4777 95.5518 %

5 0.6537 2.3728 2.3725 2.1494 99.8697 %

5 0.5397 1.6330 1.6330 1.5961 100 %

TABLE I
ILLUSTRATION OF THE GAINS ASSOCIATED WITH EXPLOITING CHANNEL

MOMORY.

parameters, the infinite horizon reward under the index policy
is compared with those of the optimal policy and a policy
that ‘throws away’ the feedback from the scheduled user. Let
Vnofb denote the reward under this ‘no feedback’ policy. The
infinite horizon rewards are obtained as limits of the finite
horizon until 1% convergence is achieved. The high values
of the quantity %gain=Vindex−Vnofb

Vopt−Vnofb
×100%, in addition to

underscoring the near-optimality of the index policy, also
signifies the high system level gains from exploiting the
channel memory using the end-of-slot feedback.

In Fig. 8 we study the effect of the channel ‘memory’ on
the performances of various baseline policies. We consider
five users with statistically identical but independently varying
channels. Thus pi = p, ri = r, i ∈ {1, · · · , 5}. We define
the channel ‘memory’ as the difference p − r and increase
the memory by increasing p from 0.5 to 1 and maintaining
r = 1 − p. Note that, with this approach, p + r = 1. Under
this condition, the steady state probability that a channel is
in the higher state h is kept constant under varying chan-
nel memory. This, essentially, provides a degree of fairness
between systems with different channel memories. Fig. 8
compares the rewards Vopt, Vindex and Vnofb that respectively
correspond to the rewards under the optimal policy, the index
policy, and the ‘no feedback’ policy introduced earlier, for
increasing channel memory. Note that when p = r, the channel
of each user evolves i.i.d. across time, with no information
contained in the channel state feedback. Thus the policy that
throws away this feedback achieves the same performance
as the optimal policy that optimally uses this feedback, i.e.,
Vnofb = Vopt when p = r. Also, since the channels are i.i.d.
across users, when p = r, the index policy simplifies to a
‘randomized’ policy that schedules randomly and uniformly
across users, in effect mirroring the ‘no feedback’ policy in
this setting. This explains Vindex = Vnofb when p = r. As the
channel memory increases, the significance of the channel state
feedback increases, resulting in an increasing gap between the
policies that use this feedback (optimal and Whittle’s index
policies) and the ‘no feedback’ policy.

Fig. 8, along with Table I, shows that exploiting channel
memory for opportunistic scheduling can result in significant
performance gains, and almost all of these gains can be
realized using the easy-to-implement index policy.

D. Impact of Imperfections in Channel State Feedback
In realistic scenarios, the channel state feedback is subject

to various imperfections such as random delays and errors, in
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Fig. 8. Illustration of the influence of channel ‘memory’, (p − r), on the
performance of the index policy and baseline policies, when β = 0.6.

turn, resulting from imperfections in the feedback generating
mechanism and the feedback channel. In this section, we
illustrate, via numerical experiments, that the index policy is
robust against feedback imperfections, i.e., numerical results
suggest that the index policy performs very close to the optimal
1 policy.

We first investigate the impact of feedback delay on the
performance of the index policy. We consider the scenario
where, once a user is scheduled, the corresponding channel
state feedback is subject to a random delay which is i.i.d.
across users. The delay in the feedback channel is an important
consideration that cannot be overlooked in realistic scenarios.
The effect of feedback delay on channel resource allocation
has been studied under various settings in the past (e.g.,
[23]-[26]). While these works assume deterministic delay, we
consider random, i.i.d. feedback delay. An instance when the
feedback delay can be i.i.d. and non-negligible is when the
delay is of the order of the scheduling slot length, resulting
from channel propagation time of the feedback signal, and
when the feedback channel environment changes drastically
due to high mobility of users – a possibility in reality. We let
PD(d) denote the probability that a channel state feedback
experience d slot delays, where d ∈ {0, · · · , dmax}. Here
d = 0 indicates an end-of-slot feedback and dmax indicates the
maximum delay that the feedback can experience. We assume
the channel state feedback is time-stamped. Thus the scheduler
takes this information into account when it updates the belief
values upon receipt of a (possibly delayed) feedback signal.
Specifically, at time slot t, if the latest (possibly delayed)
feedback from user i corresponds to the channel state τ slots
ago, then

πi[t] =

{
Qτ (1) if Ci[t−τ ] = hi,
Qτ (0) if Ci[t−τ ] = li.

where, recall that, Qτ stands for the τ th iteration of the
function Q.

Now, with delay taken into account in the belief value up-
dates, the performance of the original index policy is compared
with that of the optimal policy in Table II with dmax ∈ {1, 2}
and N ∈ {3, 4} and randomly generated system parameters
(i.e., PD(d), pi, ri, and π⃗[0]). Note that the optimal policy
takes into account the stochastic of the feedback delay and
is implemented by exhaustive brute-force search, as before.

1optimal subject to the feedback imperfections
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N β [PD(0), · · ·, PD(dmax)] (pi, ri), i = 1, · · · , N Vindex Vopt %opt
3 0.6308 [0.8539,0.1461] (0.5896,0.3478), (0.2703,0.6754), (0.6978,0.1376) 1.6644 1.6647 99.9863 %

4 0.5587 [0.4317,0.5683] (0.8538,0.4462), (0.6529, 0.5207), (0.1792, 0.7268), (0.2877,0.9321) 1.7550 1.7560 99.9405 %

3 0.6536 [0.3682,0.5216,0.1102] (0.9138,0.3075), (0.2298,0.7946), (0.3574,0.7851) 2.1044 2.1045 99.9963 %

4 0.5873 [0.6239,0.2589,0.1541] (0.2513, 0.7258), (0.6285, 0.3801), (0.1676, 0.8245), (0.3058,0.6822) 1.4764 1.4790 99.8250 %

TABLE II
PERFORMANCE OF THE INDEX POLICY WITH UNDER RANDOMLY GENERATED SYSTEM PARAMETERS.

N β [PD(0), · · ·, PD(dmax)] Vindex Vopt %opt
3 0.6 [1,0,0] 1.8941 1.8937 99.9802 %

3 0.6 [2/3,1/3,0] 1.8441 1.8440 99.9918 %

3 0.6 [1/3,1/3,1/3] 1.7883 1.7882 99.9943 %

3 0.6 [0,1/3,2/3] 1.7274 1.7267 99.9544 %

3 0.6 [0,0,1] 1.7195 1.7177 99.8969 %

TABLE III
PERFORMANCE OF THE INDEX POLICY UNDER VARIOUS DELAY DISTRIBUTIONS. SYSTEM PARAMETERS USED:

{(pi, ri)i} = {(0.2513, 0.7258), (0.6285, 0.3801), (0.1676, 0.8245), (0.3058, 0.6822)}

N = 3, β = 0.6, Delay=[2/3,1/3], π⃗[0] = [0.8, 0.3, 0.65] N = 4, β = 0.6, Delay=[0.6,0.4], π⃗[0] = [0.8, 0.3, 0.65]

{(pi, ri)}i={(0.77, 0.25), (0.34, 0.90), (0.81, 0.30)} {(pi, ri)}i={(0.85, 0.25), (0.6, 0.35), (0.2, 0.7), (0.3, 0.8)}
ϵ Vindex Vopt %opt ϵ Vindex Vopt %opt
0 1.8440 1.8441 99.9918 % 0 1.8085 1.8091 99.9703 %

0.25 1.7731 1.7757 99.8541 % 0.25 1.7528 1.7530 99.9864 %

0.5 1.7304 1.7304 100 % 0.5 1.7333 1.7333 100 %

0.75 1.7731 1.7757 99.8541 % 0.75 1.7528 1.7530 99.9864 %

1 1.8440 1.8441 99.9918 % 1 1.8085 1.8091 99.9703 %

TABLE IV
PERFORMANCE OF THE INDEX POLICY WITH KNOWN PROBABILITY OF ERROR IN CHANNEL STATE FEEDBACK.

N = 3, β = 0.6, Delay=[2/3,1/3], π⃗[0] = [0.8, 0.3, 0.65] N = 4, β = 0.6, Delay=[0.6,0.4], π⃗[0] = [0.8, 0.3, 0.65]

{(pi, ri)}i={(0.77, 0.25), (0.34, 0.90), (0.81, 0.30)} {(pi, ri)}i={(0.85, 0.25), (0.6, 0.35), (0.2, 0.7), (0.3, 0.8)}
ϵ Vindex Vopt %opt ϵ Vindex Vopt %opt
0 1.1.8440 1.8441 99.9918 % 0 1.8085 1.8091 99.9703 %

0.25 1.7722 1.7746 99.8695 % 0.25 1.7349 1.7397 99.7203 %

0.5 1.7031 1.7056 99.8520 % 0.5 1.6792 1.6849 99.6579 %

0.75 1.6305 1.6326 99.8743 % 0.75 1.6096 1.6147 99.6833 %

1 1.5692 1.5711 99.8794 % 1 1.5692 1.5711 99.8794 %

TABLE V
PERFORMANCE OF THE INDEX POLICY WITH UNKNOWN PROBABILITY OF ERROR IN CHANNEL STATE FEEDBACK.

The high value of the quantity %opt := Vindex/Vopt × 100%
indicates that Whittles index policy has a performance very
close to that of the optimal policy under the delayed feedback
setup. In Table III, the performance comparison is made under
more controlled choice of delay, i.e., with dmax fixed at 2, and
the tail of the delay mass function is gradually made heavy. We
observe that as the delay tail grows heavier, the performances
of both the optimal and the index policy decrease. This is
expected because, with the delay tail growing heavier, the
received channel state feedback progressively tends to become
outdated, and hence the value of information contained in
the feedback decreases, essentially reducing the performances
of both the optimal and the index policies that use this
feedback. In summary, Tables II and III illustrate that the
index policy derived for the original system without feedback
delay, performs very close to the optimal policy in the system

with feedback delay, essentially indicating the robustness of
the index policy.

We now study the performance of the index policy in the
presence of random errors in the channel state feedbacks.
This error could have initiated at the feedback generating
mechanism at the user or during propagation in the feedback
channel. Let Fi[t] ∈ {li, hi} be the feedback received at the
scheduler that corresponds to actual channel state Ci[t]. The
channel state feedback error is characterized by the mismatch
probability ϵ defined as follows:

ϵ := prob
(
Fi[t]=li

∣∣Ci[t]=hi

)
= prob

(
Fi[t]=hi

∣∣Ci[t]=li
)
.

We first assume that the error probability, ϵ, is known at the
scheduler and compare the throughput performances in Ta-
ble IV. Observe that, for various values of error probabilities,
the index policy still has performance very close to the optimal
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policy, essentially suggesting its robustness against feedback
errors. As also observed from the table, the performances of
both the optimal and Whittle’s index policies are symmetric
around ϵ = 0.5 that corresponds to the worst rewards. This
is expected since, when ϵ = 0.5, the feedback contains no
information about the channel state, in turn, resulting in zero
gain from exploiting channel memory.

We now consider the case when the scheduler is unaware
that there is a (possible) error in the channel state feedback,
and study its impact on the performances of the index and
the optimal policies. In this scenario, the scheduler simply
trusts the feedback to be accurate when making scheduling
decisions. The performances of both policies under various
values of ϵ are recorded in Table V. Once again, the high
value of %opt suggests the robustness of the index policy
against feedback errors even when the scheduler is unaware
of the possible presence of errors. Also, as expected, when
the error probability, ϵ, increases, the performances of both
policies decrease monotonically. This phenomenon contrasts
to the case in Table IV, when the scheduler is aware of the
presence of errors and its stochastic, i.e., the value ϵ.

E. Impact of Incorrect Transmission Rate knowledge
We now study the robustness of the index policy under

mismatch between the supportable lower state transmission
rate assumed at the scheduler and the actual lower state trans-
mission rate. Recall that δi denotes the allowable transmission
rate at the lower state li of user i. Let δ′i denote the lower state
transmission rate assumed at the scheduler for this channel. We
also assume that the scheduler is unaware of the presence of
this mismatch which could have resulted from errors in the
initial rate estimate or when the actual underlying rate has
shifted from the initial value over time. We consider the case
when the actual lower state transmission rate and the assumed
rate at the scheduler are identical across users, i.e., δi = δj
and δ′i = δ′j for all i, j ∈ {1, · · · , N}. We assume δ = 0.5
and compare the performance of the index policy with that
of the optimal policy in Table VI, for various values of δ′.
Note that as before, the optimal policy is defined within the
context of the imperfection (δ mismatch, in the present case).
It can be observed that for various values of δ′, the index
policy closely tracks the performance of the optimal policy,
indicating its robustness against transmission rate mismatch.
Also, it can be expected that when δ′ < δ, both Whittle’s index
and optimal policies under-utilize the available channel rate,
resulting in reduced performances. On the other hand, when
δ′ > δ, both policies aggressively transmit, leading to outage,
thus resulting in reduced performances. This can be observed
in Table VI where the performances drop monotonically as
δ′ deviates from δ. Also, the drop in performance appears
to be more severe when δ′ > δ, suggesting that aggressive
transmission and the resulting outages can be more detrimental
than conservative transmission and the associated channel
under-utilization.

VIII. CONCLUSION

In this paper, we studied downlink multiuser scheduling
under Markov-modeled channels. We considered the scenario

δ′ Vindex Vopt %opt
0.1 1.82698 1.82698 100 %

0.3 1.83417 1.83421 99.99820 %

0.5 1.87696 1.87746 99.97328 %

0.7 1.66211 1.66412 99.87927 %

0.9 1.01255 1.01514 99.74553 %

TABLE VI
PERFORMANCE OF THE INDEX POLICY UNDER IMPERFECT KNOWLEDGE

OF LOWER STATE TRANSMISSION RATE. SYSTEM PARAMETERS USED:
δ = 0.5, N = 3, β = 0.6,

{(pi, ri)i}i = {(0.38, 0.05), (0.16, 0.95), (0.86, 0.12)}.

where the channel state information is not perfectly known
at the scheduler, essentially requiring a joint design of user
selection, channel estimation and rate adaptation. This calls
for a two-stage optimization: (1) Within each slot, the channel
estimation and rate adaptation is optimized to obtain an
optimal transmission rate in the scheduling slot; (2) Across
scheduling slots, users are selected to maximize the infinite
horizon discounted reward. We formulated the scheduling
problem as a partially observable Markov decision process
with the classic ‘exploitation versus exploration’ trade-off.
We then linked the problem to a restless multiarmed bandit
processes and conducted a Whittle’s indexability analysis. By
obtaining structural properties of the optimal reward within
the indexability setup, we showed that the downlink scheduling
problem is Whittle indexable. We then explicitly characterized
the the index policy and studied the performance of this
policy using extensive numerical experiments, which suggest
that the index policy has near optimal performance and that
significant system level gains can be realized by exploiting the
channel memory for joint channel estimation and scheduling.
Numerical experiments also suggest that the index policy is
robust against various imperfections in channel state feedback.

APPENDIX A
PROOF OF LEMMA 2

We first establish structural properties of the belief update
when a user stays idle. Suppose a user has the initial belief
value π[0] and stays idle at all times, the belief value at tth

slot is then given by π[t] = Qt(πi[0]), where Qt is the tth

iteration of function Q, given by

Qt(π) =
r − (p− r)t

(
r − (1 + r − p)π

)
1 + r − p

. (10)

We let π0 be the steady state distribution of the two-state
channel being at the higher state, i.e.,

π0 =
r

1 + r − p
.

It is clear that π0 = limt→∞ Qt(π). An example of
the belief evolution when a user stays idle is depicted in
Fig. 9. This figure shows that, when staying idle, the belief
value approaches steady state monotonically for positively
correlated channel and approaches steady state with oscillation
for negatively correlated channel. The structural properties of
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Fig. 9. Evolution of belief values under consecutive idle decisions. (a)
Positive correlation, p = 0.8, r = 0.2; (b) Negative correlation, p = 0.2,
r = 0.8.

Qt(πi[0]) is critical to the rest of the proof and is recorded in
the following lemma.

Lemma 3.
(i) For positively correlated channel (i.e., p > r), π[t]
converges to steady state π0 monotonically. For negatively
correlated channel (i.e., p ≤ r), π[t] converges to steady state
π0 with oscillation and a monotonically converging envelope.
(ii) min{p, r} ≤ Qt(πi[0]) ≤ max{p, r} for all t = 1, 2, · · ·
and πi[0] ∈ [0, 1].

Proof: (i) Since we have 0 < p − r ≤ 1 for positively
correlated channel and −1 ≤ p − r ≤ 0 for negatively
correlated channel, it is clear from the expression of (10)
that π[t] converges to steady state π0 monotonically and ap-
proaches steady state π0 with oscillation and a monotonically
converging envelop.
(ii) Since we have established part (i), it suffices to check
that the first step transition satisfies: min{p, r} ≤ Q[π] ≤
max{p, r}, for all π, as shown below.

Q(π) =
r − (p− r)

(
r − (1 + r − p)π

)
1 + r − p

.

For positively correlated channel, since p− r > 0

Q(π) ≥r − (p− r)r

1 + r − p
= r.

Q(π) ≤
r−(p−r)

(
r−(1+r−p)

)
1 + r − p

=
p(1− p+ r)

1 + r − p
= p.

For negatively correlated channel, since p− r ≤ 0,

Q(π) ≤r − (p− r)r

1 + r − p
= r.

Q(π) ≥
r−(p−r)

(
r−(1+r−p)

)
1 + r − p

=
p(1−p+r)

1 + r − p
= p.

The lemma is thus proved. �
We then define L(π, π∗) as the time needed for belief value

of a user to exceed π∗ from below, starting from initial value

π. Formally,

L(π, π∗) = min
t
{Qt(π) > π∗}

Using Lemma 3 and expression (10), L(π, π∗) can be
calculated as follows.

• Positive correlation (p > r)

L(π, π∗) =


0 if π > π∗

⌊logp−r
r−(1+r−p)π∗

r−(1+r−p)π ⌋+1 if π≤π∗<π0

∞ if π≤π∗ and π∗≥π0

• Negative correlation (p ≤ r)

L(π, π∗) =


0 if π > π∗;

1 if π ≤ π∗ and Q(π) > π∗,
∞ if π ≤ π∗ and Q(π) ≤ π∗.

We shall refer to the ‘active set’ as the set of belief values
for which the optimal decision is to transmit. The ‘idle set’
denotes the set of belief values for which the optimal decision
is to stay idle. We proceed to derive the value functions Vω(p)
and Vω(r) based on the value of π∗(ω).

(1) Positive correlation (p > r).

• When π∗(ω) ≥ p, the belief value p is thus in the ‘idle
set’. From Lemma 3(ii), if π[0] = p, the system stays idle.
Hence the reward function is expressed as

Vω(p) = ω + βω + β2ω + · · · = ω

1− β
.

• When π∗(ω) < p, the belief value p is then in the ‘active
set’. Hence from the Bellman equation in (5),

Vω(p) = R(p) + β
(
pVω(p) + (1− p)Vω(r)

)
.

Rearranging the terms yields,

Vω(p) =
R(p) + β(1− p)Vω(r)

1− βp
.

• When π∗(ω) < r, the value r is then in ‘active set’. From
Lemma 3(ii), regardless of the scheduling decision, the belief
values π[t], starting from π[0] = r, stays in the ‘active set’.
Therefore

Vω(r) =
∞∑
t=0

βtR(Qt(r)) =
∞∑
t=0

βtR
(r−(p−r)t+1r

1+r−p

)
.

• When π∗(ω) ≥ π0, since π0 ≥ r, the belief value r is
in ‘idle set’. From Lemma 3(i), the belief values π[t], starting
from π[0] = r, stays in ‘idle set’. Hence

Vω(r) = ω + βω + β2ω + · · · = ω

1− β
.

• When r < π∗(ω) < π0, the belief value r is therefore
in ‘idle set’. Since the channel is positively correlated, from
Lemma 3, starting from π[0] = r, the user remains idle for a
duration of L(r, π∗(ω)) slots. Therefore

Vω(r)=
1−βL(r,π∗(ω))

1− β
ω+βL(r,π∗(ω))V 1

ω

(
QL(r,π∗(ω))(r)

)
. (11)
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where

V 1
ω

(
QL(r,π∗(ω))(r)

)
= R

(
QL(r,π∗(ω))(r)

)
+

β
(
QL(r,π∗(ω))(r)Vω(p) + (1−QL(r,π∗(ω))(r))Vω(r)

)
Substituting the above expression in (11), we can obtain

Vω(r) = Θ as given in expression (9) in the lemma.

(2) Negative correlation (p ≤ r).
The derivation of Vω(p) and Vω(r) for negative correlation

case follows an approach similar to that for the case of positive
correlation. Details are, therefore, omitted here. �

Note that the expressions of the value functions Vω(p) and
Vω(r) in Lemma 2 are not in closed form. However, the closed
form expressions for Vω(p) and Vω(r) can be easily calculated
based on the expressions in Lemma 2, recorded below.

Case (1) Positive correlation (p > r). First we give the closed
form expression of Vω(p).

• If π∗(ω) < π0,

Vω(p) =
∞∑
t=0

βtR
(r+(p−r)t+1(1−p)

1+r−p

)
.

• If π0 ≤ π∗(ω) < p,

Vω(p) =
β(1− p)ω + (1− β)R(p)

(1− β)(1− βp)
.

• If π∗(ω) ≥ p, Vω(p) = ω/(1− β).

We proceed to give the closed form expression of Vω(r).
• If π∗(ω) < r,

Vω(r) =
∞∑
t=0

βtR
(r − (p− r)t+1r

1 + r − p

)
.

• If r≤π∗(ω)<π0, Vω(r) is given in equation (12).
• If π∗(ω) ≥ π0, Vω(r) = ω/(1− β).

Case (2) Negative correlation (p ≤ r). In this case, the closed
form expression of Vω(r) is given as follows.

• If π∗(ω) ≥ r, then Vω(r) = ω/(1− β).
• If Q(p) ≤ π∗(ω) < r, then

Vω(r) =
βrω + (1− β)R(r)

(1− β)(1− β(1− r))
.

• If p ≤ π∗(ω) < Q(p), we have

Vω(r) =
βrω + β2rR(Q(p)) + (1− β2Q(p))R(r)

(1− β(1− r))(1−β2Q(p))− β3r(1−Q(p))
.

• If π∗(ω) < p, then

Vω(r) =

∞∑
t=0

βtR
(r − (p− r)t+1r

1 + r − p

)
.

Then we give the closed form expression of Vω(p).

• If π∗(ω) < p, then

Vω(p) =

∞∑
t=0

βtR
(r + (p− r)t+1(1− p)

1 + r − p

)
.

• If p≤π∗(ω) < Q(p), we have

Vω(p)=

(
1−β(1−r)

)[
ω+βR

(
Q(p)

)]
+β2

(
1−Q(p)

)
R(r)(

1− β(1− r)
)(
1− β2Q(p)

)
− β3r

(
1−Q(p)

) .

• If π∗(ω)≥Q(p), then Vω(p) = ω/(1− β).

APPENDIX B
PROOF OF PROPOSITION 3

We prove that the problem is Whittle indexable by showing
that π∗(ω) monotonically increases with ω. It is clear from
Proposition 2 that π∗(ω) = κ for ω ∈ [0, δ). So it suffices to
show that π∗(ω) is strictly increasing for ω ∈ [δ, 1]. The proof
technique follows along the lines of [18] and is presented next.
We first proceed with the following lemma.

Lemma 4. If for all ω ∈ [δ, 1], we have

dV 1
ω (π)

dω

∣∣
π=π∗(ω)

<
dV 0

ω (π)

dω

∣∣
π=π∗(ω)

, (13)

then π = π∗(ω) is strictly increasing with ω for ω ∈ [δ, 1].

Proof: The lemma is proven by contradiction. Suppose there
exists ω0 ∈ [δ, 1], such that π∗(ω) is decreasing (i.e., non-
increasing) at ω0, hence it is decreasing in a neighborhood
of ω0, say, [ω0, ω0 +△ω]. Since V 1

ω0+△ω

(
π∗(ω0 +△ω)

)
=

V 0
ω0+△ω

(
π∗(ω0+△ω)

)
and π∗(ω) is decreasing at ω0, π∗(ω0)

is within the ‘active set’ for the (ω0 +△ω)-subsidy problem.
Therefore we have V 1

ω0+△ω

(
π∗(ω0)

)
≥ V 0

ω0+△ω

(
π∗(ω0)

)
.

Besides, from the definition of threshold value π∗(ω0),
V 1
ω0

(
π∗(ω0)

)
= V 0

ω0

(
π∗(ω0)

)
. Therefore,

dV 1
ω (π)

dω

∣∣
π=π∗(ω)

= lim
△ω→0

V 1
ω0+△ω

(
π∗(ω0)

)
−V 1

ω0

(
π∗(ω0)

)
△ω

≥ lim
△ω→0

V 0
ω0+△ω

(
π∗(ω0)

)
−V 0

ω0

(
π∗(ω0)

)
△ω

=
dV 0

ω (π)

dω

∣∣
π=π∗(ω)

,

which contradicts with the assumption. �

Therefore, to establish indexability, it suffices to prove the
inequality (13), i.e., dV 1

ω (π)
dω

∣∣
π=π∗(ω)

<
dV 0

ω (π)
dω

∣∣
π=π∗(ω)

. Let
Dω(π) be the discounted time the ω-subsidy process, with
initial belief π, is made passive, i.e.,

Dω(π) =
∞∑
t=0

βt
1(a[t] = 0).

Vω(r) =
(1−βL(r,π∗(ω)))ω+(1−β)βL(r,π∗(ω))

[
R(QL(r,π∗(ω))(r))+βQL(r,π∗(ω))(r)

∑∞
t=0 β

tR
( r+(p−r)t+1(1−p)

1+r−p

)]
(1− β)

[
1− βL(r,π∗(ω))+1(1−QL(r,π∗(ω))(r))

] (12)
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It follows from [14] that Dω(π) =
dVω(π)

dω . Taking derivative
of both sides of the Bellman equation in (5) with respect to
ω, the objective (13) now becomes

β
(
π∗(ω)Dω(p)+(1−π∗(ω))Dω(r)

)
<1+βDω

(
Q(π∗(ω))

)
.

(14)

Case (1) If 0 ≤ π∗(ω) < min{p, r}, from Lemma 3(ii),
starting from the initial belief value π[0] = r or π[0] = p,
the believe value π[t] never evolves below π∗(ω), hence the
project is active at all times under optimal control. Therefore
Dω(p) = Dω(r) = Dω(Q(π∗(ω))) = 0. Equation (14) thus
holds.

Case (2) If π0 ≤ π∗(ω) ≤ 1, starting from initial belief π[0] =
Q(π∗(ω)), the belief value π[t] always stays within the ‘idle
set’, i.e., Dω(Q(π∗(ω))) = 1

1−β . Equation (14) holds since
Dω(p) ≤ 1+β+β2+· · · = 1

1−β and, similarly, Dω(r) ≤ 1
1−β .

Case (3) If min{p, r} ≤ π∗(ω) ≤ π0, from Lemma 3(ii),
Q(π∗(ω)) is in ‘active set’. Since

Vω(Q(π∗(ω)))

=R(Q(π∗(ω)) + β[Q(π∗(ω))Vω(p) + (1−Q(π∗(ω)))Vω(r)],

we have

Dω(Q(π∗(ω)))

=β[Q(π∗(ω))Dω(p) + (1−Q(π∗(ω)))Dω(r)]. (15)

We then discuss Equation (15) separately for negatively and
positively correlated channels.

• Negatively correlated channel (p ≤ r). Since r > π0 >
π∗(ω), the belief value r is in the ‘active set’, hence

Vω(r) = R(r) + β(rVω(p) + (1− r)Vω(r)).

Therefore, we have

Dω(r) = β(rDω(p) + (1− r)Dω(r)). (16)

Substituting equation (15) and (16) in (14), we get

β

1− β(1− r)
Dω(p)(1− β)(βr + π∗(ω)− βQ(π∗(ω))) < 1.

Following the same technique as in [18], the above inequal-
ity can be verified by substituting π∗(ω) by π0 and Dω(p) by
1

1−β .
• Positively correlated channel (p > r). In this case, p is in

the ‘active set’, hence

Vω(p) = R(p) + β
(
pVω(p) + (1− p)Vω(r)

)
.

Taking derivative with respect to ω we have,

Dω(p) = β
(
pDω(p) + (1− p)Dω(r)

)
. (17)

Substituting equations (15) and (17) in (14), we have

βDω(p)(1− β)(1− π∗(ω)− βQ(π∗(ω))

1− βp
) < 1.

By applying the same technique as in [18], it can be checked
that the above inequality indeed holds.

Therefore the inequality (14) is justified and hence indexa-
bility holds. �

APPENDIX C
PROOF OF PROPOSITION 4

For ω-subsidy problem of user i, from indexability, we know
that π∗

i (ω) strictly increases from 0 to 1 as ω increases from
δi to 1. Hence the index value, from its definition in (8), is
the subsidy value for which the active and idle decisions are
equally attractive. We can hence derive index value Wi(πi) by
equating V 1

i,ω(πi) and V 0
i,ω(πi) and solve for ω as a function

of πi, i.e.,

Wi(πi) + βVi,Wi(πi)(Qi(πi))

=R(πi) + β[πiVi,Wi(πi)(pi) + (1− πi)Vi,Wi(πi)(ri)]. (18)

Note that the expressions of Vi,ω(pi) and Vi,ω(ri) have been
given by Lemma 2. Substituting in (18) the values of Vi,ω(pi)
and Vi,ω(ri), we obtain the index value expressions, explained
in the following.

Case (1). Positively correlation (pi > ri).

• If πi ≥ pi, the belief value Qi(πi), pi, ri are in the
‘idle set’ and, starting from initial belief πi[0] = Qi(πi) or
πi[0] = pi, or πi[0] = ri, πi[t] will stay in the ‘idle set’.
Hence

Vi,ω(Qi(πi)) = Vi,ω(pi) = Vi,ω(ri) =
ω

1− β
.

Substituting the above expressions in (18) we obtain that
Wi(πi) = R(πi).

• If π0
i ≤ πi < pi, then pi is in ‘active set’, and starting

from initial belief πi[0] = ri or πi[0] = Qi(πi), πi[t] stays
within ‘idle set’ at all times. Hence

Vi,ω(Qi(πi)) = Vi,ω(ri) =
ω

1− β
.

Substituting the above expressions and the expression of
Vi,ω(pi) (given in Lemma 2) in equation (18), we get

Wi(πi) =
βπiR(pi) + (1− βpi)R(πi)

1 + βπi − βpi
.

• If πi < π0
i , then the value Qi(πi) is in the ‘active set’.

Therefore,

Vi,ω

(
Qi(πi)

)
=R(Qi(πi))+

β[Qi(πi)Vi,ω(pi) + (1−Qi(πi))Vi,ω(ri)].

Again, substituting the expression of Vi,ω

(
Qi(πi)

)
in equa-

tion (18), we have

Wi(πi) =[R(πi)−βR(Qi(πi))]+β[πi−βQi(πi)]Vi,Wi(πi)(pi)

+β[(1− πi)−β(1−Qi(πi))]Vi,Wi(πi)(ri).

Case (2). Negative correlation (ri ≥ pi).
Using the similar approach as in the positive correlation

case, the expressions of the index value can be derived
for the case of negative correlation, which are given in the
Proposition 4. Details are, therefore, omitted here. �

Note that the expressions given in Proposition 4 are not
in closed form. However, the closed form expression for the
index value Wi(πi) can be easily calculated based on these
expressions provided in Proposition 4, recorded as follows.
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Case (1). Positively correlated channel (pi > ri).

• If πi ≥ pi, then the index value Wi(πi) = Ri(πi).
• If π0

i ≤ πi < pi, then

Wi(πi) =
βπiRi(pi) + (1− βpi)Ri(πi)

1 + βπi − βpi

• If ri ≤ πi < π0
i , Wi(πi) is given in equation (19), where

Γi = (1− β)
[
1− βL(ri,πi)+1

(
1−Q

L(ri,πi)
i (ri)

)]
,

Λi = (1−β)βL(ri,π)
[
Ri(Q

L(ri,πi)
i (ri))+

βQL(ri,πi)(ri)
∞∑
t=0

βtR
(ri+(pi−ri)

t+1(1−pi)

1+ri−pi

)]
.

• If πi < ri, the index value Wi(πi) is given in equa-
tion (20).

Case (2). Negatively correlated channel (pi ≤ ri.)

• If πi ≥ ri, we have Wi(πi) = Ri(πi).
• If Qi(pi)≤πi<ri, then

Wi(πi)=
(1−β)[1−β(1−ri)]R(πi)+β(1−β)(1−πi)R(ri)

[1− βπi][1− β(1− ri)]− β2(1− πi)ri
.

• If π0
i≤πi<Qi(pi), the index value is expressed as

Wi(πi)=
(1−β)R(πi)∆i+β(1−β)πiΩi+β(1−β)(1−πi)Υi

∆i−β(1−β)(1−β(1−ri))πi−(1−β)β2ri(1−πi)
,

where

∆i=
(
1−β(1−ri)

)(
1−β2Qi(pi)

)
−β3ri

(
1−Qi(pi)

)
, (21)

Ωi=β
(
1−β(1−ri)

)
Ri(Qi(pi))+β2

(
1−Qi(pi)

)
Ri(ri), (22)

Υi = β2riRi(Qi(pi)) + (1− β2Qi(pi))Ri(ri). (23)

• If pi ≤ πi < π0
i , Wi(πi) is given in equation (24), where

∆i, Ωi and Υi are given by (21)-(23), respectively.

• If πi < pi, the index value Wi(πi) is given in equa-
tion (25).
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