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Optimal Dynamic Coding-Window Selection for Serving
Deadline-Constrained Traffic over Time-Varying Channels

Ruogu Li, Harsha Gangammanavar and Atilla Eryilmaz

Abstract—We formulate and solve the problem of optimal
channel coding and flow-rate control for serving deadline-
constrained traffic with average delivery ratio requirements
(typical of multi-media streaming and interactive real-time ap-
plications) over time-varying channels. To that end, we first
characterize the largest set of arrival processes (rather than rates)
whose deadline and delivery ratio requirements can be satisfied.
Then, we propose a dynamic (channel) coding algorithm that
provably satisfies the requirements of any arrival process in this
region. This optimal dynamic algorithm evolves through simple
iterations to utilize a combination of pricing and finite-horizon
dynamic programming operations. Next, we proposed two low-
complexity approximations of the algorithm that has provable
performance. We also extend the setup to allow for a flow
controller that adjusts the incoming flow rates to satisfy their
delivery ratio constraints when the arrival process is unknown
but controllable. We propose a joint dynamic coding and rate
control algorithm to solve this problem, and prove its stability
under the stochastic system operation. We also apply these
general results to an important wireless down-link broadcast
scenario with and without random network coding capabilities.
Our theoretical work is supported by extensive numerical studies,
which also reveal that our dynamic coding strategy outperforms
any static coding strategy by opportunistically exploiting the
statistical variations in the arrival and channel processes.

Index Terms—Delay-aware dynamic coding, stochastic control,
network coding, deadline-constrained throughput optimization.

I. INTRODUCTION

While the traditional performance measure of a commu-
nication system is throughput, many real-world applications
also have a range of delay-sensitivities and Quality-of-Service
(QoS) requirements that are typically not accounted for. In par-
ticular, real-time media broadcasting or two-way voice/video
communication applications possess requirements at different
timescales: stringent deadline constraints in the short-term;
and differing tolerance levels to long-term fraction of dropped
bits. Such multi-timescale requirements prevent the application
of earlier approaches that are based on optimizing long-
term average metrics. Moreover, different flows entering the
system may have different degrees of importance, necessitating
prioritization of certain flows over the others. Also, these flows
may need to be transmitted over randomly changing channels,
as is the case in wireless communications.

Information theory reveals that there is a fundamental
relationship between the reliable transmission rate and the
coding block (also called the coding window) size used to map

R. Li, H. Gangammanavar and A. Eryilmaz are with The Ohio State
University, Emails: {lir, gangammh, eryilmaz}@ece.osu.edu.

An earlier version of this work appeared in Information Theory Proceedings
(ISIT), 2010 International Symposium on.

The work of Ruogu Li is supported by QNRF grant number NPRP 09-1168-
2-455 and DTRA grant HDTRA 1-08-1-0016. The work of Atilla Eryilmaz
is supported by NSF grants: CAREER-CNS-0953515 and CCF-0916664.

messages into transmission signals. In particular, the reliable
transmission rate may be increased towards the capacity of the
channel by increasing the coding window size ([4]). However,
increasing the coding window size also causes larger delay and
in the presence of the aforementioned deadline-constrained
traffic, becomes unacceptable beyond a level. Thus, a radically
different coding strategy must be employed by the transmitter
to maximize the delay-sensitive applications’ performance
under the time-varying conditions of the channels. Since the
channel and application characteristics are often stochastic, the
solution must be able to adapt to their randomness.

Queueing systems under impatient customers have been
studied in the literature (e.g. [2], [16], [23]) for various cases
of preemption, arrival/service rate distributions, etc. Yet, these
works do not model the priorities and tolerance levels of ap-
plications, and do not account for possible coding parameters,
and hence are not applicable to our problem. Also, recent
works ([9], [10], [12]) have studied the congestion-control
and scheduling problem for similar deadline constrained traffic
with reliability constraints. However, they also do not allow
for coding flexibilities, which fundamentally changes the shape
of the achievable rate region and calls for a dynamic strategy
for optimizing over coding decisions. Other related works that
deal with deadline-constrained traffic include [19], [17], which
focus on single-flow scenarios and hence do not apply to the
above multi-flow scenario.

Motivated by these, in this work, we study the basic scenario
of a single transmitter serving multiple delay-sensitive flows
under randomly varying channel conditions. Since the trans-
mission time and rates are functions of the coding window size
and content, they must be carefully chosen to meet the multi-
timescale QoS requirements of the flows. To capture the effects
of channel randomness and coding decisions, we model the
random transmission time of a coding window over the fading
channel by a completion time distribution1. In this setup, we
aim to find an optimal rate-control and coding strategy for
serving the aforementioned deadline-constrained flows with
diverse reliability requirements (in terms of delivery ratios)
and heterogenous priorities. A list of our contributions are:
• We provide a generic communication system model (in
Section II) with a multi-timescale operation that accounts
for the heterogenous priorities and the multi-timescale delay
sensitivities of the incoming traffic. This model is general
enough to cover different block coding strategies and channel
variation models.

1We note that this is an alternative description of the coding performance
to the traditional one that describes the probability of decoding error for a
fixed transmission duration. We find that this alternative model is more useful
for our design and analysis.
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Fig. 1. Block diagram of the generic communication system for broadcasting deadline-constrained flows with varying reliability requirements and priorities.

• We address the dynamic coding problem for systems with
fixed arrival statistics (in Section III). To that end, we first
characterize the maximal set of arrival processes whose
requirement can be satisfied by any stationary policy. Then,
we propose and prove the optimality of a dynamic coding
algorithm operating at different timescales: it uses dynamic
pricing at a slow timescale to monitor the violation of the
reliability requirements; and it uses finite-horizon dynamic
programming at a fast timescale to determine the coding
block size and its content.

• We develop two low-complexity approximations to our
dynamic coding algorithm (in Section IV-A). The first is
based on the descretization of the state space, and have
provably asymptotic optimality, while the second is a greedy
algorithm. Both algorithms avoid solving the finite-horizon
dynamic programming problem online thus greatly reduce
the computational complexity.

• We extend our algorithm (in Section IV-B) to incorporate a
flow controller that aims to satisfy their long-term reliability
requirements when the arrival process is unknown. Our
joint rate control and dynamic coding algorithm utilizes a
primal-dual update rule rather than the more common dual
update rule since the latter requires the solution of a large
linear program in every iteration. We rigorously prove the
stability of the joint algorithm for the stochastic system under
appropriate step-size choices.

• We apply (in Section V) the developed algorithm to an
important application in cellular down-link scenario whereby
a base station broadcasts multiple streaming deadline-
constrained flows to N receivers over randomly varying
erasure channels. We further study (in Section VI) the
performance of different network coding strategies with our
dynamic coding algorithm, and compare the performance of
our dynamic coding algorithm to a static one to see strict
improvements, even for small scenarios.

We note that this work extends our preliminary work [8]
in various aspects: we characterize the set of arrival processes
whose requirement can be satisfied by any stationary policy;
we establish the optimality of our dynamic coding algorithm
under the stochastic system operation rather than through a
heuristic fluid-limit argument; we discuss and propose two
low-complexity approximation algorithms of the dynamic cod-

ing algorithm; we extend the numerical results to study a
larger and more realistic range of systems and requirement
parameters for a deeper understanding.

II. SYSTEM MODEL

We study the general communication system depicted in
Fig. 1, whereby a transmitter serves a set F of flows, whose
packets have a deadline of τ time-slots after their arrival, over
unreliable wireless channel(s). The arrivals of each flow f
occur every τ time-slots, and a fraction of (1 − qf ) packets
are required to be delivered within their deadlines. Our work
concerns the optimal design of the flow-rate controller and the
dynamic channel encoder-decoder pair that operate at different
time scales. Next, we describe the system components, their
operational constraints and the application requirements in
detail.
Multi-timescale Operation: We setup a multi-timescale sys-
tem operation whereby the flow-rate controller is allowed to
operate in the slower timescale of flow-level deadline con-
straints than the fast timescale of channel variations at which
the dynamic channel encoder/decoder operate. Accordingly,
we use time-slots as the smallest time unit in which channel
variations occur, and in which the channel encoder/decoder
operate. In comparison, the flow-level deadline constraints are
at a slower time-scale which we call a frame of τ times-
slots, within which each incoming packet is either successfully
delivered to the destinations or otherwise dropped (see Fig. 2).
Arrival Process: We first assume the arrival process is a
fixed discrete stochastic process to focus on the design of
the dynamic coding scheme in Section III, and then extend
it to a dynamic controllable process for joint rate control and
dynamic coding in Section IV-B.

The fixed arrival process is assumed to be stationary and
ergodic. In particular, at the beginning of frame t, the number
of arrivals for flow f is denoted by Af [t], where Af [t]
is non-negative integer-valued, independently and identically
distributed (i.i.d.) over time, and has a finite upper-bound
Amax such that P (Af [t] ≤ Amax) = 1 for all frames t and
flows f . We use the vector A[t] , {Af [t]}f to denote the
arrival vector to all flows in frame t.
Dynamic Channel Encoding/Decoding: The arrivals A[t] in
frame t enter the Dynamic Channel Encoder (see Fig. 1) that
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Fig. 2. Operation of the communication system of Fig. 1 over time.

performs block coding for reliable transmission. In particular,
the encoder collects the available packets into groups, called
coding windows or simply blocks for sequential transmission
over the channel.

Let the column vector Ki[t] , {Kf,i[t]}f denote the
composition of the ith coding window in frame t, whose
indices Kf,i[t] gives the number of flow f packets in the
ith coding window. Also, let Ki[t] ,

∑
f Kf,i[t] denote the

total number of packets in the ith block. The blocks are
constructed and transmitted sequentially such that the (i+1)st

block is constructed and transmitted only after the ith block
is successfully decoded by all the intended receiver(s). The
successful decoding of each block is indicated through a single
bit ACK signal by the intended receiver(s) (see Fig. 1).

We emphasize that the amount of time required for the
successful decoding of a coding block of size K, henceforth
called the completion time, is a random variable that depends
on K, the channel statistics, and the coding strategy employed
by the encoder. It consists of the amount of time for all
users to receive enough packets to decode a block, as well
as the time for decoding that block2. Without restricting to
any particular channel or scheme, we capture this randomness
by letting Z(K) denote the completion time (in time-slots) of
a block of size K that is generated independently according to
a given distribution function FZ(K)(z). In Section V, we shall
provide examples of such distribution functions in a down-
link broadcast setup over erasure channels, but our current
construction is applicable to any distribution.

We also note that the encoder only knows the statistics of
Z(K) at the outset of its block construction, and can deduce
the realization of earlier block completion times through the
acknowledgements it receives. To distinguish the two, we let
z(K) denote the realization of the random completion time
Z(K) with the convention that z(K) = ∞ if the frame
ends before the block completion. Then, the time left in

2We note that one can also model the feedback delay (which we assume
to be 0) as part of the completion time (thus changing the completion time
distribution). Our proposed algorithms operate unmodified under this new
definition of the completion time. However, we can not claim optimality when
there is feedback delay, since if we have some statistics of the feedback delay,
it is possible to start the transmission of the next coding block before receiving
all the feedbacks to improve performance.

frame t at the beginning of the ith block transmission is
denoted as τi , τ −

∑i−1
j=1 z(Kj [t]). Similarly, the vector

Ai[t] , {Af [t] −
∑i−1

j=1 Kf,j [t]}f denotes the remaining
packets of each flow at the beginning of the ith coding
window construction within frame t (see Fig. 2). Thus, the
construction of Ki[t] depends on the remaining time τi in
the frame, the remaining packets Ai[t] awaiting service, and
the distribution of Z(K) that conveniently encapsulates the
channel and coding capabilities in it.

For notational convenience, we use the matrix

K[t] , [K1[t],K2[t], · · · ,Kb[t],E[t]]

to compactly refer to the sequence of such coding window
decisions made in frame t, where E[t] , {Ef [t]}f is the
vector of number of packets of each flow that never get a
chance to start their transmission before the end of frame t,
and b is the number of blocks constructed in frame t. Note that,
since the construction of the blocks is limited by the available
number of packets in that frame, we must have

b∑
i=1

Ki[t] +E[t] = A[t].

We use K(A[t]) to denote the set of all possible matrices K[t]
that satisfies the above equation when the arrival vector is
A[t].

The process of block construction in frame t can be in-
terpreted equivalently as choosing one of the controls K[t]
from the set K(A[t]), regardless of how the actual system
chooses the coding blocks. In this sense, we will refer to K[t]
as a control or a coding block matrix decision interchangeably.
We further denote the set of all possible coding block matrix
choices as

K , {K(a) : a is a possible arrival vector}. (1)

We note that, since the arrival process A[t] has a finite support,
|K(a)| is bounded for all a, and hence |K| is also finite.
Measure of Transmission Success or Failure: If the frame
ends before the completion of a block decoding, we consider
all the packets in that block lost. The number of lost packets
for each flow in frame t is captured by L[t] , {Lf [t]}f .
Hence, together with the expiries, the total number of dropped
packets D[t] , {Df [t]}f in frame t equals to (E[t] + L[t])
(see Fig. 1 and 2).

We denote the number of successfully decoded packets in
frame t by M [t] , {Mf [t]}f , which is a function of the
chosen coding block K[t] ∈ K(A[t]) and realized completion
times for those coding selections. Since the completion time
is random, M [t] is also a random vector and can be described
by

M [t] =
b∑

i=1

Kf,i[t]1

 i∑
j=1

Z(Kj [t]) ≤ τ

 (2)

where 1(·) is the indicator function3. To emphasize that
M [t] depends on both the coding block choices K[t] and the

3Note that by definition, we have A[t] = M [t] +D[t] for each frame t.
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corresponding channel variation Z(K[t]), we may also write
M [t] = M(K[t],Z).
Multi-Timescale Requirements of the Applications: Each
flow f also imposes a long-term reliability requirement that on
average, at most qf ∈ (0, 1) fraction of its packets are dropped.
Alternatively, we call (1− qf ) the delivery ratio requirement
for flow f . In other words, we must guarantee that

lim inf
T→∞

∑T
t=1 E[Mf [t]]∑T
t=1 E[Af [t]]

≥ (1− qf ), ∀f. (3)

We use q , {qf}f to denote the vector of qf , and refer to it as
the requirement vector. The requirement gets more stringent
as qf decreases towards 0. Real-time applications such as
voice/video transfers that can tolerate a certain fraction of
packet losses typically have such delivery ratio requirements.
This traffic modeling follows that of [9], [10], [11], [12], and is
attractive for both practical modeling and theoretical analysis
purposes.

With the aforementioned system model, our paper stud-
ies two problems. First, in Section III, we characterize the
maximal Satisfiable Requirement Region achievable by any
stationary policy for fixed arrival processes. Building on this
characterization, we propose an Optimal Dynamic Coding
Strategy that is guaranteed to support all arrival processes that
lie strictly within the maximal requirement region. Then, in
Section IV-A, we develop low-complexity approximations of
the dynamic coding algorithm, and in Section IV-B, we extend
our result to the case where a rate controller is implemented
to control the arrival rate when the arrival process is unknown.

III. OPTIMAL DYNAMIC CODING STRATEGY

In this section, we assume fixed (uncontrollable) arrival
processes associated with the flows and aim to design a dy-
namic coding strategy that guarantees the long-term reliability
requirements imposed by the requirement vector q of the
flows given in (3) for the packets that have a fixed deadline
of τ time-slots. To that end, we first formulate a stochastic
control problem for a fixed arrival process in Section III-A,
and propose a practical dynamic coding algorithm that utilizes
a combination of iterative pricing and finite-horizon dynamic
programming, and prove its stochastic optimality.

A. Problem Formulation

Our Dynamic Coding Problem (DCP) is defined as the
follows.

Definition 1 (∞−Horizon Dynamic Coding Problem):

(DCP): Maximize
{A[t],K[t]}t≥1

1

subject to Kf [t] ≤ Af [t], ∀f,∀t ≥ 1, (4)
λf (1− qf ) ≤ µ

f
, ∀f, (5)

M [t] = M(K[t],Z), ∀t ≥ 1, (6)

where

λf = lim sup
T→∞

1

T

T∑
t=1

E[Af (t)],

µ
f

= lim inf
T→∞

1

T

T∑
t=1

E[Mf (t)],

where the expectations are over the randomness of the arrival
processes and the channel variation.

In the above DCP formulation, (4) assures that the coding
is limited to packets available in that frame, (5) assures that
long-term delivery ratio requirements are satisfied, and (6)
indicates that the successful packet transmissions are random
as a function of the completion-time distributions and coding
decisions.

Note that the DCP is maximizing a constant subject to the
long-term reliability requirement and the channel variation
constraints. When solving DCP, we have no control on the
arrival process, but the solution to this problem will satisfy
these constraints. The problem which incorporates the rate
control is discussed in Section IV-B.

Also, we emphasize that solving DCP through standard
control theoretic methods is extremely difficult, and likely
impossible. Not only is it an infinite-horizon problem, but
also it contains instantaneous constraints (4) and channel
randomness (6), as well as long-term average requirements
(5).

Instead, motivated by earlier works in stochastic control
literature (see, for example, [14], [9], [11]), we introduce
a time-varying price vector X[t] = {Xf [t]}f , where Xf [t]
evolves as

Xf [t+ 1] = (Xf [t] + β(Df [t]− qfAf [t]))
+
, (7)

where (y)+ = max(0, y), and β > 0 is a small step-
size. The value of Xf [t] measures the experienced reliability
requirement violation for flow f , and it can be viewed as
a fictitious queue with the arrival βDf [t] and the service
βqfAf [t]. It can be seen that the evolution of (A[t],X[t])
forms a Markov chain, and that, if X[t] is guaranteed to
be stable, i.e., it is positive recurrent and the corresponding
stationary distribution has E[Xf [t]] < ∞ for all f , then all the
long-term reliability requirements in (5) are met (see Theorem
2.5 and 2.8 in [13]).

Before we can present a solution to DCP, we first need to
characterize the region in which the requirement vector can
be satisfied. This region is described next for the class of all
stationary policies.

B. Satisfiable Requirement Region Characterization

As described in Section II, the process of choosing coding
window size in a frame is equivalent to choosing a control K
from the set K defined in (1). Each control K will result in
a random service M(K,Z) due to channel variations. Then,
we can characterize a necessary condition for the satisfiability
of a given requirement vector q by any stationary policy as
follows.



5

Lemma 1: Consider the class of stationary policies G that
observe (A[t],X[t]) in each frame t and choose a control
Kj[t] ∈ K. If there is a policy G0 ∈ G that can stabilize the
price vector X[t], then there exists {αk(a)}k such that

αk(a) ≥ 0, ∀k,
∑

Kk∈K(a)

αk(a) = 1, ∀a, (8)

∑
a

P (a)
∑

Kk∈K(a)

αk(a)E[Mf (Kk,Z)] > (1− qf )λf

∀f ∈ F , (9)

where P (a) = P{A[t] = a} is the probability of the arrival
vector is a.

Proof: The detailed proof is provided in Appendix A.
Lemma 1 characterizes the necessary condition for the

arrival process A[t] to be feasible under the given requirement
vector q and the underlying channel variation model Z(K).
Note that this condition is on the whole distribution of the
arrival process rather than its limited statistics, such as its mean
and variance.

We define the set of Requirement Satisfying Arrival Pro-
cesses of the system for a given requirement vector q as
follows:

Definition 2: The Requirement Satisfying Arrival Processes
A(q) for a requirement vector q is defined as

A(q) ,
{

(A) : There exists {αk(a)}k,
s.t. (8) and (9) are satisfied

}
. (10)

As a related concept, we define the Satisfiable Requirement
Region Q(A) for a given arrival process A[t] as

Q(A) ,
{

(q) : There exists {αk(a)}k,
s.t. (8) and (9) are satisfied

}
. (11)

According to the above definition, it follows that if A[t] ∈
A(q) for some requirement vector q, then q ∈ Q(A[t]). Both
sets characterizes the complicated relationship between the
arrival process A[t] and the requirement vector q. Different
from the similar concept of Capacity or Stability Region in the
previous works (see [21], [15] for example), both the above
sets depends on the distribution of the arrival process, rather
than just the mean. An example of the satisfiable requirement
region is shown in Section VI-A as part of our numerical
results, showing the complex dependence of the regions on
the distribution of the arrival processes.

C. The Dynamic Coding Strategy

Based on the observation that if X[t] is guaranteed to be
stable, then all the long-term reliability requirements are met,
we propose our dynamic coding scheme which tries to stabilize
the X[t], and use a finite-horizon dynamic programming
strategy to solve the DCP. Our dynamic coding strategy uses
X[t] to determine the composition K[t] of the coding window
selection in frame t.

Definition 3 (Dynamic Coding Algorithm): For a given set
F of τ -deadline-constrained flows and their requirement vec-
tor q = {qf}f , the dynamic coding algorithm performs the
following operations in each frame t:
I Price Update: We maintain a price variable X[t] =
(Xf [t])f , where Xf [t] for each f is initiated at Xf [0] = 0 and
is updated at each frame according to (7). We recall that Af [t]
and Df [t] denotes the number of arrived and dropped flow-f
packets in frame t, and hence are known at the beginning of
frame t+ 1.
I Dynamic Coding Strategy: The coding strategy is based on
the following Finite-Horizon Dynamic Programming construc-
tion: For any non-negative valued price vector X, we define
the optimal reward-to-go function J⋆

X(B, s) as the maximum
value of the X-weighted total mean success rates when there
is a vector of B = {Bf}f packets waiting for transmission
and when there are s ∈ {0, · · · , τ} slots left until the end of
the frame. Then, J⋆

X(B, s) satisfies Bellman’s equation ([1]):

J⋆
X(B, s) = max

{K1:Kf,1≤Bf ,∀f}
{E[J⋆

X((B −K1), (s− Z(K1)))

+(
∑
f

Kf,1Xf ) · 1(Z(K1) ≤ s)]}.

This is solved through backward recursion with the initial
conditions: J⋆

X(B, s) = 0, for all B and all s ≤ 0.
Recall that Ai[t] = {Af,i[t]}f and τi[t] respectively denote

the vector of remaining packets and the number of remaining
time slots in frame t at the beginning of the ith block
construction (see Figure 2). Then, the ith block of frame t
for i = 1, 2, · · · is selected as follows until the frame ends:

Ki[t]

= argmax
{K̂i≥0:K̂f,i≤Af,i[t], ∀f}

E[J⋆
X[t](Ai[t]− K̂i, τi − Z(K̂i))

+(
∑
f

K̂f,iXf [t]) · 1(Z(K̂i) ≤ τi)]. (12)

The above coding strategy in each frame weighs the success-
ful service rates of flows with their existing prices, {Xf [t]}f ,
therefore effectively prioritizing the service of those flows
whose reliability requirement has, so far, been violated more
severely.

Note that in the perspective of our block construction model,
the choice of the control (or coding block matrix) K can be
either done once at the beginning of the frame (e.g., fixed
block size), or dynamically chosen as in our proposed scheme.
Either way the controller will eventually choose some control
(or coding block matrix) K in the set K, and the number of
served packets will be affected by the channel variation Z(K).
Thus, we can equivalently express the dynamic coding part
of our algorithm as: in each frame t, given (X[t],A[t]), the
dynamic encoder chooses the control Kj∗[t] ∈ K as

Kj∗[t] ∈ argmax
Kj∈K

∑
f∈F

Xf [t]E[Mf (Kj ,Z)]. (13)

With this equivalence in mind, we have the following
lemma characterizing the performance of the dynamic coding
algorithm.
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Lemma 2: For any arrival process A[t] that lies strictly
within A(q), the dynamic coding strategy satisfies the long-
term delivery ratio requirements (3) of all flows.

Proof: The detailed proof is provided in Appendix B.
Combining the necessity and sufficiency results of Lemmas

1 and 2, respectively, we have the following optimality of the
dynamic coding algorithm.

Proposition 1: The dynamic coding algorithm is optimal
in the sense that if a reliability requirement vector q for
a given arrival process vector A[t] can be satisfied by any
stationary policy, then it can be satisfied by the dynamic coding
algorithm. In other words, if the dynamic coding algorithm
cannot satisfy the reliability requirement vector, then it is not
satisfiable by any other stationary policy.

Next, we make a few observations on the above dynamic
coding algorithm that will motivate the extensions in the next
section.

In the dynamic coding algorithm, the controller solves
the maximization problem (12) using dynamic programming.
In each frame t, the number of possible combinations for
the coding block choice and the remaining time is τA

|F|
max.

The value of the reward function JX(A[t], τ) of all these
combinations need to be calculated and stored. This results
in an order of O(τA

|F|
max) computational complexity in each

frame, with a storage complexity of order O(τA
|F|
max). This

computational overhead in each frame may become unaccept-
able when the number of flows increases, which motivates us
to develop approximation algorithms with lower computational
complexity in Section IV-A.

Proposition 1 shows that the dynamic coding algorithm can
support all fixed arrival processes whose reliability require-
ments can be satisfied. However, in the likely case where the
full distribution of arrival process is unknown but its mean
may be adjustable via admission or congestion control, we
would need a rate controller that adjusts the incoming rates
so that the reliability requirements can be satisfied for all
flows. This motivates an extension to our dynamic coding
algorithm to include a rate controller, which we accomplish
in Section IV-B.

IV. EXTENSION OF THE DYNAMIC CODING ALGORITHM

In this section, we extend our dynamic coding algorithm in
two important directions: we first provide two low-complexity
approximations of the dynamic coding algorithm, where the
computational complexity in each frame is greatly reduced;
we then develop a rate controller for the flows so that the
reliability requirements can be satisfied for all flows when the
arrival process is unknown.

A. Low Complexity Approximation Algorithms

In this subsection, we develop two approximation algo-
rithms with significantly lower computational complexity. The
first one is based on the discretization of the space where X[t]
lies, and possesses asymptotical optimality characteristics; and
the second one is a greedy algorithm with significantly less
computational and storage complexity, which is still guaran-
teed to outperform any fixed coding window size choice.

Grid Approximation
In the operation of the dynamic coding algorithm, the

controller needs to solve for the maximum value of the
expected reward function J∗

X(A[t], τ), which is a function
of the deficit counter values X[t]. The solution for the past
frames cannot be used in the current frame since X[t] lies in
the space R|F| of uncountably many values, and hence they
must be recomputed in each frame.

Note that the dynamic programming is essentially solving
the maximization in (13), thus for the deficit counter values
X[t] and cX[t], where c is any positive constant, the solutions
are the same. Inspired by this observation, we use W discrete
directions of {X̃1, . . . , X̃W } to approximate the directions
that X[t] can take. Although there are many possible way
to select such set of directions, in the following algorithm we
use a particular choice, namely choosing the points from an
integer grid.

Definition 4 (Grid Approximation Algorithm): For a given
set F of τ -deadline-constrained flows and their requirement
vector q = {qf}f , the grid approximation algorithm performs:
I Initialization and Storage:

• Consider an |F|-dimensional cube [0, w]|F|, where w is
some positive integer. Choose all vectors with integer
coordinates on all |F| surfaces that share the common
vertex (w,w, . . . , w) of this cube. These vectors have
at least one of their coordinates equals to w. Such
vectors form the set of vectors {X̃1, . . . , X̃W }, where
W = w|F|−1(w − 1).

• For each X̃w ∈ {X̃1, . . . , X̃W }, calculate and tabulate
the optimal coding block choices K(X̃w,A, t) for all
possible arrival vector A and all possible remaining time
t = {1, 2, . . . , τ} using dynamic programming.

I In each frame t:
• Approximate the direction of X[t] by X̃w∗ , where w∗ is

chosen as

w∗ = argmax
w∈{1,2,...,W}

⟨X[t], X̃w⟩
|X[t]||X̃w|

,

where ⟨·, ·⟩ is the inner product of two vectors.
• The ith coding block in this frame is chosen as Ki[t] =

K(X̃w∗ ,Ai[t], τi).

In this grid approximation algorithm, the computational
heavy dynamic programming is done off-line, but only for
finitely many choices in the set of {X̃1, . . . , X̃W }. In each
frame t, the controller choose X̃w∗ which has the small-
est angle with X[t] by performing inner product, and the
choice of the coding block is done by table look-up. Thus,
the computational complexity in a frame reduces to O(W ),
and it requires a storage space of O(τWA

|F|
max). Thus, the

grid approximation algorithm trades storage complexity with
computational complexity.

We also note that as W goes to infinity, the set
{X̃1, . . . , X̃W } provides better and better approximation to
the direction of X[t]. Based on the optimality of the dynamic
coding algorithm, the performance of the grid approximation
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algorithm is asymptotically optimal as W goes to infinity in
the sense that if a reliability requirement vector q for a given
arrival process vector A[t] can be satisfied by any stationary
policy, then it can be satisfied by the grid approximation
algorithm.

Although the asymptotic optimality holds when W → ∞, as
we shall see in the numerical results presented in Section VI-B,
even with a relative low value of W , the grid approximation
algorithm can perform very close to the dynamic coding
algorithm.

The grid approximation algorithm greatly reduces the com-
putational complexity in each frame. However, when W is
large, the space complexity may still become unacceptable.
This motivates us to develop an even simpler algorithm that is
guaranteed to outperform any static coding block size choice.

Greedy Algorithm
Both the original dynamic coding and the grid approxima-

tion strategies perform a joint optimization of the window
size and content decisions. In the following approximation,
we consider a decoupling of these decisions to first decide
on the window size only based on the remaining time in the
frame, and then fill in the selected window with the content
of available flows with the largest deficit counter values. The
details of this process are given next.

Definition 5 (Greedy Algorithm): For a given set F of τ -
deadline-constrained flows and their requirement vector q =
{qf}f , the greedy algorithm operates as:
I Initialization:

• For each possible remaining time x ∈ {1, 2, . . . , τ}, find
and store

K∗(x) = argmax
K≥1

KP (Z(K) ≤ x),

which gives the block size achieving the maximum ex-
pected throughput when the remaining time is x.

I In each frame t:
• Set size of the ith coding block in frame t as

Ki[t] = K∗(τi),

where we recall that τi is the remaining time to the end
of frame at the decision time of the ith block.

• The content of the ith coding block is chosen to be the
solution of the following maximization:

max
0≤Kf,i≤Af,i[t]

∑
f

Xf [t]Kf,i

s.t.
∑
f

Kf,i ≤ Ki[t].

The last maximization in the above greedy algorithm can
be simply solved by assigning as much as possible packets
for each flow without violating the constraints, in the order
of decreasing Xf [t]. The greedy algorithm has O(1) compu-
tational complexity and O(τ) space complexity. Moreover, its
performance is at least as good as any static coding block
choice since it chooses the block size that can achieve the

highest expected throughput in the given remaining time (also
see our numerical result in Section VI-B).

Comparison of the Complexity and Performance
In Table I, we summarize and compare the complexity

and performance of the algorithms we proposed: the dynamic
coding algorithm (DCA), the grid approximation algorithm
(Grid), and the greedy algorithm (Greedy).

TABLE I
COMPARISON OF THE COMPLEXITY AND PERFORMANCE

Computational Storage Optimality
complexity complexity

DCA O(τA
|F|
max) O(τA

|F|
max) Optimal

Grid O(W ) O(τWA
|F|
max)

Asymptotically
optimal as W → ∞

Greedy O(1) O(τ)
Suboptimal, but better
than any static coding
window size choice

The tradeoffs of the algorithms can be observed from
Table I. While the dynamic coding algorithm is optimal,
its computational and storage complexity are relatively high.
The grid approximation algorithm trades storage complexity
for better computational complexity, and it is asymptotically
optimal as the number of grids W goes to infinity. The greedy
algorithm has the best computational and storage complexity
at the cost of optimality. Yet, it is guaranteed to outperform
any static coding window size choice (see Section VI-B for
more discussion).

B. Joint Rate Control and Coding Algorithm

So far, our focus has been the optimal coding operation
under a given arrival process vector that lies within the
requirement satisfiable region. Yet, in may scenarios, it is
more favorable to have a rate controller to stabilize the system
when the arrival process is unknown. In this section, we
consider such scenarios to extend the algorithm proposed in
Section III to accommodate a flow controller to adjust the
arrival rates for all flows to satisfy the reliability requirements.
In particular, we formulate this problem in a form of utility
maximization and assume each flow f has a utility function
Uf (λf ) associated to it, where λf is the controllable arrival
rate of flow f .

As characterized in Definition 2 and illustrated by the
numerical result in Fig. 5 in Section VI-A, the set of require-
ment satisfying arrival processes A(q) is tightly related to
the distribution of the arrival process and challenging to be
precisely characterized. Thus, an ideal flow controller in this
case may need to have full control of the distribution of the
arrival process. However, such a flow controller is complicated
to model and analyze, and can be unrealistic in practice. Thus,
we consider a class of arrival process whose full distribution
can be determined by its mean, and its realization lies in
the interval [Amin, Amax] with probability 1. Examples of
such arrivals can be deterministic process, the sum of a
deterministic process and a zero-mean random variable and
etc. We aim to adjust its mean dynamically to guarantee all
the delivery ratio requirements are satisfied.
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Problem Formulation
For the generic communication system of Fig. 1, we aim to

design a joint rate controller and dynamic coding strategy that
stabilize the system. The associated stochastic optimization
problem is provided next.

Definition 6 (∞−Horizon Utility Maximization Problem):

(UMP): Maximize
{A[t],K[t]}t≥1

∑
f Uf (λf ) (14)

subject to constraints (4), (5), and (6);

Amin ≤ Af [t] ≤ Amax, ∀f, t (15)

where we assume Amin > 0 is a lower bound for the number
of arrivals in each frame, hence it is a lower bound for arrival
rate, and

λf = lim
T→∞

1

T

T∑
t=1

λf [t].

For feasibility, we assume that Amin is small enough such that
when λf [t] = Amin for all f and t, the corresponding arrival
process lies within the set A(q).

We also impose the following assumptions on the utility
functions Uf (·):

Assumption 1: Uf (·) is a twice differentiable, nondecreas-
ing, strictly concave function of the flow rate λf .

Assumption 2: For all 0 < m < M < ∞, there exists
constants 0 < c̃ < C̃ < ∞ such that

c̃ ≤ − 1

U ′′
f (x)

≤ C̃, ∀x ∈ [m,M ]. (16)

We note that these conditions are not restrictive, and they
hold for the following class of utility functions.

Uf (x) = βf
x1−αf

1− αf
.

This type of utility functions is well-known to characterize
fairness concepts (please refer to [18] and the references
therein).

Motivated by the dynamic coding algorithm, we solve (14)
using a primal-dual algorithm described below.

Joint Rate Control and Dynamic Coding Algorithm
Similarly to Section III-C, we use the vector X[t] to

measure the experienced reliability requirement violation for
the flows. Yet, to capture the presence of the flow controller in
this case, we will slightly change its evolution equation below.
The dynamic rate controller uses X[t] to determine the arrival
rate for each flow to satisfy the reliability constraint.

As revealed in Section III-C, the set of requirement sat-
isfying arrival processes characterized in (10) imposes com-
plicated linear constraints on the rate update rule, even in
the case of a deterministic arrival. As a result, the dual
algorithms which directly solve for the optimal rate (see [6][3]
for example) involve solving a difficult linear program in each
iteration are no longer viable. This forces us to develop a
primal-dual algorithm inspired by [7] for subsequent price and

rate allocation updates. This algorithm will later be shown to
slowly steer the rate vector to a requirement satisfying arrival
rate.

Definition 7 (Joint Rate Control and Coding Algorithm):
For a given set F of τ -deadline-constrained flows and their
requirement vector q = {qf}f , the joint dynamic algorithm
performs the following operations in each frame t:
I Price Update: We maintain a price variable X[t] =
(Xf [t])f , where Xf [t] for each flow f is initiated at Xf [0] = 0
and is updated at each frame according to:

Xf [t+ 1] = (Xf [t] + (1− qf )Af [t]−Mf [t])
+
, (17)

where (y)+ = max(0, y). We recall that Af [t] and Mf [t]
denotes the number of arrived and dropped flow-f packets in
frame t, and hence are known at the beginning of frame t+1.
I Rate Control: Given X[t], the rate controller updates the
rate vector λ[t] = {λf [t]}f for each flow f in frame t as:

λf [t+ 1] =[
λf [t] + α(RU ′

f (λf [t])− (1− qf )Xf [t])
]Amax

Amin
,(18)

where [x]Amax

Amin
is the projection of x to the interval

[Amin, Amax], α > 0 is a step-size parameter and R > 0 is
a design parameter. Then, the arrival vector A[t] is generated
according to its mean λ[t]. Note that Af [t] ∈ [Amin, Amax]
by our assumption on the arrival process.
I Dynamic Coding Strategy: Given X[t], the dynamic
coding is performed exactly as in Definition 3 of Section III-C.

As it will be revealed later, the choice of the design
parameter R limits the selection of the step-size parameter,
α, and determines the distance of the achieved average rates
of the algorithm to the optimal solution of (14).

Performance Analysis
The following result establishes the asymptotic boundedness

of the vector X[t] under the stochastic operation of the
system, which implies the requirement satisfying nature of the
algorithm.

Proposition 2: There exists a constant c(α,R) < ∞ which
depends on the step-size α and the design parameter R such
that

lim sup
t→∞

E

∑
f

X2
f [t]

 ≤ c(α,R).

Furthermore, when α is chosen to be 1/R2, c(α,R) = O(R2),
i.e., lim supR→∞ c(1/R2, R)/R2 = C < ∞.

Proof: The detailed proof is provided in Appendix C.

V. APPLICATION: CELLULAR DOWN-LINK SCENARIO

The generic model of the communication system can be
used for lots of specific communication scenarios and coding
strategies. In this section, we describe an important example of
such scenarios whereby a base station (BS) is serving multiple
flows by broadcasting their incoming packets to N receivers
over time varying erasure channels (see Fig. 3). We assume
that each packet is an element of a finite field Fd of size d.
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Fig. 3. Cellular down-link model for broadcasting deadline-constrained flows
to N users over erasure channels.

The components of the particular system follow the descrip-
tions in Section II. To precisely formulate the completion time
Z(K), we assume the channel state Cn[t; s] of the nth receiver
in the s ∈ {1, · · · , τ} time-slot of the tth frame to be an
independent Bernoulli process with mean

cn = P (Cn[t; s] = 1) = 1− P (Cn[t; s] = 0).

We also assume that the channel variations are also inde-
pendently but not necessarily identically distributed between
different receivers. If Cn[t; s] = 1, then the channel can
transmit 1 packet successfully to receiver n in time-slot s
of frame t. The base station is assumed to know {cn}n but
not the realizations before its transmissions. Although not
necessary for the theory, for ease of exposition, we assume in
our following calculations that the channels are also identical,
i.e., cn = c for all n. Also, we assume a block is decoded
immediately when the receiver receives enough packets, and
an ACK is sent back to the transmitter immediately. With these
assumptions, we can precisely characterize the distribution
of the completion time Z(K) for a coding block of size
K for different coding strategies. In particular, we study
the following two coding strategies as in [5]: Randomized
Broadcast Coding (RBC) and Round Robin Scheduling (RR).

Definition 8 (Randomized Broadcast Coding (RBC)): A
network coding strategy over a block of K packets where
in a slot, say s; any linear combination of the K packets
in the file can be transmitted. Specifically if P (s) denote
the packet chosen for transmission in slot s, we have
P [s] =

∑K
k=1 αk[s]Pk, where {αk[s]}k chosen uniformly at

random from the field Fd\{0} for every time-slot s. Each
receiver sends an ACK back to the transmitter after it receives
K linearly independent copies of the packets.

It has been shown in [5] that RBC is an optimal coding
strategy as the field size d → ∞. Since for RBC, the
transmission of a block of size K is completed when all
users successfully receive K packets, the distribution of the
completion time FZRBC(K)(x) = P (ZRBC(K) ≤ x) is

FZRBC(K)(x) =

(
x∑

n=K

(
n− 1

K − 1

)
cK(1− c)n−K

)N

for x ≥ K, and 0 otherwise.

Definition 9 (Round Robin Scheduling (RR)): For a given
block of packets of size K, the BS at any given slot broadcasts
a single packet from the current coding window. Thus, we
have P (s) ∈ {Pk}{k=1,··· ,K}. Each receiver sends an ACK
back to the transmitter after it receives the whole block. In
the optimal Round Robin Scheduling (see [5] for proof of
optimality under channel symmetry), Packet k is transmitted
in time-slots (rK + k) for r = 0, 1, · · · until all the receivers
receive the whole block.4

The completion time distribution FZRR(K)(x) for the round
robin strategy can be expressed as follows, with c̄ = (1− c) :

FZRR(K)(x) =
x∑

y=0

((
1− c̄r+1

)N(k−1)
(1− c̄r)

N(K−k)

·
N∑

n=1

(
N

n

)
(1− c̄r)

N−n
(c̄rc)

n

)
,

where r = ⌊y/K⌋, k = y mod (K) if y mod (K) ̸= 0, and
r = y/K−1, k = K if y mod (K) = 0 such that y = rK+k
for k ∈ {1, 2, · · · ,K}. The derivation of this distribution is
presented in Appendix D.
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Fig. 4. Download completion time distribution for RBC and RR

Fig. 4 illustrates the download completion time distributions
of RBC and RR strategies. It can be observed that the
completion time of RBC is more “concentrated” around its
mean. It is known (see [5]) that the expected completion
time for RBC strategy is lower than that for RR strategy and
the difference grows as the number of receivers N and the
block size K increase. Within our framework, our dynamic
coding strategy and rate controller can be used together with
these coding strategies to guarantee the delivery requirements
(3) that are not considered for these coding strategies in the
previous works.

VI. NUMERICAL RESULTS

In this section, we provide numerical results to complement
the analysis in the previous sections and to develop our

4Note that for both RBC and RR coding scheme, one ACK is sent from
each user for a coding block.
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intuition of the system operation under the multi-timescale
quality-of-service requirements of streaming applications. The
simulations are presented for the cellular down-link network
described in Section V, with our dynamic coding combined
with RBC or RR coding strategies, unless otherwise stated. In
all simulations we assume there are 2 flows in the system.

A. Example of the Satisfiable Requirement Region, Q(A)

In this sub-section, we illustrate the satisfiable requirement
region defined in Definition 2. Unlike the set of requirement
satisfying arrival processes A(q) which lies in the high dimen-
sion space of stochastic processes, we can plot the satisfiable
requirement region which lies in R|F| that allows for better
illustration.

We look at the satisfiable requirement region for 2 inde-
pendent flows with identical arrival distributions. In an actual
system such as the cellular down-link network, the size of the
set K of coding matrices may grow exponentially with the
number of possible arrivals. Instead, we choose to use a small
set of K that does not strictly follow its definition in Section II,
but still exhibits aspects of the satisfiable requirement region.

Fig. 5 shows the satisfiable requirement pair (q1, q2) for
different arrival distributions. For this simulation, we use five
different arrival statistics to demonstrate the effect of the whole
distribution on the satisfiable requirement:

• A deterministic arrival of 4 packets per frame, i.e., an
integer valued uniform distribution with mean 4 and
variance 0 (Uniform(4,0));

• An integer valued uniform distribution with mean 4 and
variance 2 (Uniform(4,2));

• An integer valued uniform distribution with mean 4 and
variance 4 (Uniform(4,4));

• A Poisson distribution with rate 4 thus variance 4 (Pois-
son(4,4));

• A two point distribution with P (A = 2) = P (A = 6) =
0.5, which has a mean of 4 and a variance of 4 (Two
Point(4,4)).
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Fig. 5. The satisfiable requirement pair (q1, q2) for different arrival
processes.

It can be observed in Fig. 5 that the first 3 arrival processes
which share the same mean but have increasing variance
have gradually shrinking satisfiable requirement regions. This
implies that increasing variance hurts the supportable delivery
ratio requirements in a non-trivial manner. Also, Uniform(4,4),
Poisson(4,4) and two point(4,4) distributions that have the
same mean and variance but different overall distributions
achieve different satisfiable requirement regions. This observa-
tion confirms that the satisfiable requirement region is tightly
related with the whole distribution of the arrival process, rather
than its limited statistics, such as its mean and variance. Also,
these suggest that when the arrival process is deterministic,
we can achieve better performance than when the arrival is
random.

B. Performance Comparison of Proposed Algorithms

In this sub-section, we study the effect of using dynamic
block sizes over fixed ones that do not vary over time. To
that end, we compare the achieved delivery rate of the RBC
strategy without dynamic coding, to the performance achieved
by the dynamic coding algorithm together with its low-
complexity approximations. The arrival process is assumed to
be an integer valued uniform distribution in [0, 2λf ] where
λ1 = λ2 = 5, and the other parameters are shown in Fig. 6.
For a fair comparison, we let the coding strategy with fixed
block size choose the content of the coding block of length k
to maximize∑

f∈F

Xf [t]E[Mf |X[t],A[t],K = k],

by using a similar dynamic programming technique as in our
dynamic coding algorithm.

Fig. 6(a)(b) show the comparison of the performance of
RBC with fixed block size to RBC with dynamic coding
algorithm and its low-complexity approximations in different
scenarios. The curves show the relative delivery rate ratio
achieved by the different algorithms with respect to the
dynamic coding algorithm. It can be observed that the dy-
namic coding algorithm, together with its both low-complexity
variants, outperforms all fixed window size strategies by a
non-negligible fraction. Also, it is observable that the op-
timal choice of the fixed window size is highly nontrivial,
and hence practically infeasible. Instead, the dynamic policy
automatically adapts to the conditions to achieve the optimal
performance. In Fig. 6(a) and (b), the channel reliability,
thus the completion time distribution, is different. It can be
observed that in both cases the grid approximation algorithm
performs almost the same as the dynamic coding algorithm,
but the performance of the greedy algorithm varies. Also,
we note that the number of the discrete directions for the
grid approximation algorithm we used in these simulations
is W = 5, which shows even with a relatively small W value,
the grid approximation algorithm can perform close to the
dynamic coding algorithm.

The dynamic nature of our coding algorithm is observable
from the bars in Fig. 6, where the blue bars show the fraction
of time that the dynamic coding algorithm chooses a particular
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Fig. 6. The performance for fixed coding window compared to dynamic coding algorithm and its approximations. The lines represent the relative achieved
throughput by different algorithms with respect to the dynamic coding algorithm. The bars show the fraction of time that a particular block size is chosen by
the algorithms.

block size, that the block size of 1 and 6 is chosen more
frequently. These more favorable block sizes have relatively
better performance in the case of fixed block sizes. Yet, no
fixed choice can achieve the performance of the dynamic
coding algorithm that can adaptively choose a larger block
size (such as 6 or 5) when there is sufficient time-to-go in the
frame, and a smaller block size (such as 1 or 2) if the time
to the end-of-frame is short at the decision time. This allows
the dynamic algorithm to better utilize the remaining time-
slots in the frame which are otherwise under-utilized under a
small coding window size selection, or wasted under a large
coding window size selection by the fixed block size strategy.
Similar observations can be made for its two low-complexity
approximation algorithms.

C. The Set of Requirement Satisfying Arrival Processes, A(q)

While it is impossible to plot the set of arrival distributions
for more general cases, by restricting the arrival process to
be deterministic, we can illustrate the requirement satisfying
arrival rate region by using our joint rate control and dynamic
coding algorithm.

Fig. 7 shows the achieved delivery rate pairs (µ1, µ2) for
two flows under the cellular system model introduced in
Section V. The deterministic nature of the arrival processes
results in these triangle-shaped rate regions. We observed that
the requirement satisfying rate region is smaller when using
a less reliable channel, or choosing the RR coding strategy,
since both of these actions results a larger mean completion
time. We can also observe that RBC using a fixed block
size of 6 packets achieves a smaller region than RBC with
dynamic coding algorithm, clearly showing the advantage of
the dynamic coding algorithm.

D. Satisfiable Requirement Region for Fixed Arrivals
By slightly modifying our joint rate control and dynamic

coding algorithm, we can dynamically update the requirement
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Fig. 7. The requirement satisfiable rate pair (µ1, µ2) under deterministic
arrivals.

vector q which enables us to get the maximum satisfiable
requirement region for a fixed arrival process.

Fig. 8 illustrates the satisfiable requirement region for
different arrival processes and coding strategies in the cellular
system. All arrival processes have their means equal to 6, but
with different distributions:

• A deterministic arrival of 6 packets per frame, i.e., an
integer valued uniform distribution with mean 6 and
variance 0 (Unif(6,0));

• An uniform distribution on integers {0, 1, . . . , 12}, which
has a mean of 6 and variance of 14 (Unif(6,14));

• A two point distribution with P (A = 3) = P (A =
9) = 0.5, which has a mean of 6 and a variance of 13.5
(TP(6,13.5)).

Similarly as in Fig. 5, the satisfiable requirement region varies
for different arrival processes. It also shows that deterministic
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Fig. 8. The satisfiable requirement region under different arrival processes.

arrivals achieve the largest satisfiable requirement region. It
can also be observed that the RBC achieves better performance
than the RR, due to its shorter average completion time.

VII. CONCLUSION

In this paper, we studied the problem of serving deadline-
constrained traffic with reliability requirements over time vary-
ing wireless channels. We used a general model that captures
the multi-timescale QoS requirements of the flows and the
operation of the system. We first developed a dynamic coding
algorithm that adaptively determines the coding block sizes
and contents for fixed arrival stochastic based on a pricing and
finite-horizon dynamic programming mechanism. We proved
the optimality of this algorithm in the sense that it satisfies
the requirements of all arrivals that can be satisfied by any
stationary policy. Then, we extended this algorithm in two
directions: first, we developed two low-complexity approxima-
tion algorithms to reduce the computational complexity of the
dynamic coding algorithm; then, we added a flow controller
to adjust the rate of all flows to guarantee the reliability
requirements. The stochastic stability of our joint rate control
and dynamic coding algorithm is established. Also, we applied
our theoretical results to the important scenario of a cellular
down-link network that serves multiple streaming flows over
fading broadcast channels. Finally, we provided extensive
numerical results to corroborate our analytical results, and
observed the advantage of dynamic channel coding over any
static choice for serving such deadline-constrained traffic.

APPENDIX A
PROOF OF LEMMA 1

We note the similarity of the proof technique to the one in
[20] and [22]. However, those works focus on characterizing
the set of mean arrival rates to achieve long-term network
stability under fading conditions. In comparison, the short-
term nature of the deadline constraints in our setup requires
us to characterize the set of arrival processes to guarantee the
satisfaction of the traffic requirements.

We look at the steady-state operation of policy G0, i.e.,
the Markov chain (A[t],X[t]) is in its steady-state. Let Kj[t]

be the control selected by G0, i.e., j[t] : (A[t],X[t]) 7−→ K.
Then the expected drop rate is given by E[A[t]−M(Kj[t],Z)].
Since the system is stabilized by G0, we must have for any
f ∈ F , the arrival rate to the price Xf [t] is less than the
service rate, i.e.,

E[Af [t]−Mf (Kj[t],Z)] < qfE[Af [t]], ∀f ∈ F ,

which can be further simplified as

E[Mf (Kj[t],Z)] > (1− qf )λf , ∀f ∈ F . (19)

In the following equations, the time index t is omitted for
brevity. The left hand side of Equation (19) can be calculated
as

E[Mf (Kj[t],Z)]

= E[E[Mf (Kj(X,A),Z)|X,A]

=
∑
x,a

P (X = x,A = a)E[Mf (Kj(x,a),Z)] (20)

Note that the joint distribution of X[t] and A[t] in (20) is well
defined since X[t] has a steady state distribution and A[t] has
a finite support.

(20) =
∑
a

P (A = a)
∑
x

P (X = x|A = a)

E[Mf (Kj(x,a),Z)

=
∑
a

P (A = a)
∑
x

P (X = x|A = a)∑
Kk∈K(a)

1{j(a,x) = k}E[Mf (Kk,Z)] (21)

where 1(·) is the indicator function. By switching the order
of summation, we have

(21) =
∑
a

P (A = a)
∑

Kk∈K(a)

E[Mf (Kk,Z)]

∑
x

P (X = x|A = a)1{j(a,x) = k}

,
∑
a

P (A = a)
∑

Kk∈K(a)

αk(a)E[Mf (Kk,Z)],

where αk(a) ,
∑

x P (X = x|A = a)1{j(a,x) = k}.
Combined with Equation (19), the lemma is proved.

APPENDIX B
PROOF OF LEMMA 2

Note that the evolution of X[t] forms a Markov chain. We
proof this result by defining a Lyapunov function of the form

V (X) =
1

2β

∑
f∈F

X2
f



13

and study its expected drift. The time index t is omitted in the
following equations for brevity when there is no ambiguity.

△V (x)

=
1

2β

∑
f∈F

E
[
X2

f [t+ 1]−X2
f [t]|X[t] = x

]
≤ 1

2β

∑
f∈F

E

[
E
[(

xf + β(Af −Mf (Kj∗(A),Z))

−qfAf

)2
− x2

f

∣∣∣∣A = a

]]
=

∑
f∈F

∑
a

P (a)
(
(1− qf )af − E[Mf (Kj∗(a),Z)]

)
xf

+
β

2

∑
f∈F

E
[(

(1− qf )Af − E[Mf (Kj∗(A),Z)]
)2]

(22)

where Kj∗(a) denotes the control that our policy chooses when
the arrival vector is given by a. Note that the second order
expectation (22) is finite since Af [t] has finite support and the
fact that the service Mf [t] is no more than the arrival Af [t].
Hence (22) can be bounded by some positive constant B. Also
note that the arrivals A is independent of x, thus we have

△V [t]

≤
∑
f∈F

(1− qf )λfxf (23)

−
∑
a

P (a)
∑
f∈F

xfE[Mf (Kj∗(a),Z)] +B (24)

Since the arrival process lies strictly within A(q) as defined
in (10), there exists ϵ > 0, independent of x, such that for each
f ∈ F , we have

(1− qf )λf ≤
∑
a

P (a)
∑
Kj∈K

αj(a)E[Mf (Kj ,Z)]− ϵ

for some {αj(a)}j . Substitute into (24),

△V (x)

≤
∑
f∈F

∑
a

P (a)
∑
Kj∈K

αj(a)E[Mf (Kj(a),Z)]xf

−
∑
a

P (a)
∑
f∈F

xfE[Mf (Kj∗(a),Z)]

+B − ϵ
∑
f∈F

xf

=
∑
a

P (a)
∑
Kj∈K

αj(a)
∑
f∈F

xfE[Mf (Kj(a),Z)]

−
∑
a

P (a)
∑
Kj∈K

αj(a)
∑
f∈F

xfE[Mf (Kj∗(a),Z)]

+B − ϵ
∑
f∈F

xf

Our dynamic coding strategy chooses the control Kj[t] ∈ K

as in (13), thus∑
a

P (a)
∑
Kj∈K

αj(a)
∑
f∈F

xfE[Mf (Kj(a),Z)]

≤
∑
a

P (a)
∑
Kj∈K

αj(a)
∑
f∈F

xfE[Mf (Kj∗(a),Z)].

Thus we have

△V (x) ≤ B − ϵ
∑
f∈F

xf .

Taking the expectation over X , and sum the expected drift
over t = 0 through T − 1, we have

1

2β

∑
f

E
[
X2

f [T ]−X2
f [0]
]
≤ TB − ϵ

T∑
t=0

∑
f

E [Xf [t]] .

Thus, by rearranging terms, we get

1

T

T∑
t=0

∑
f

E [Xf [t]] ≤
B

ϵ
+

1

2ϵβT

∑
f

E
[
X2

f [0]
]
.

Taking the limit as T goes to infinity yields:

lim sup
T→∞

1

T

T∑
t=0

∑
f

E [Xf [t]] ≤
B

ϵ
.

Since Xf [t] only takes on non-negative values, thus the above
equation implies for each f , we have

lim sup
T→∞

1

T

T∑
t=0

E [Xf [t]] ≤
B

ϵ
,

i.e., all deficit counters are stable.

APPENDIX C
PROOF OF PROPOSITION 2

We define the Lyapunov function

L(X) =
1

2

∑
f

X2
f ,

and study its expected drift given by

△L(X, t)

= E [L(X[t+ 1])− L(X[t])|X[t] = x,λ[t] = λ]

≤ E

[∑
f

(
Xf [t] + (1− qf )Af [t]−Mf [t]

)2

−
∑
f

X2
f [t]

∣∣∣∣∣X[t],λ[t]

]
.

In the following derivation, we omit the frame index t for
brevity. Note that Xf [t] and λf [t] can be pulled out of the
conditional expectation.

△L(X, t)

≤
∑
f

Xf

(
(1− qf )λf − E[Mf |X,λ]

)
+
1

2

∑
f

(
(1− qf )λf − E[Mf |X,λ]

)2
≤

∑
f

Xf

(
(1− qf )λf − E[Mf |X,λ]

)
+B1,
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where B1 < ∞ is a finite constant that is a function of Amax.
Note that by our feasibility assumption, the arrival process

A[t] = {Amin}f lies within the set A(q), i.e., there exists a
stationary policy such that all deficit counters can be stabilized.
We assume that such a stationary policy under the arrival
vector A[t] = {Amin}f yields an average service vector
µ̃ = {µ̃}f , such that µ̃f > (1 − pf )Amin for all flows. By
adding and subtracting the term

∑
f Xf µ̃f , we get

△L(X, t)

≤ B1 +
∑
f

[(1− qf )λf − µ̃f ]Xf

+
∑
f

Xf µ̃f −
∑
f

XfE[Mf |X,λ] (25)

We have (25) ≤ 0 since when the arrival vector λ[t] =
{Amin}f , our policy maximizes

∑
f XfE[Mf |X, {Amin}f ],

thus
∑

f Xf µ̃f ≤
∑

f XfE[Mf |X, {Amin}f ]. When the ar-
rival vector has λf [t] > Amin for any f ,

∑
f XfE[Mf |X,λ]

is at least
∑

f XfE[Mf |X, {Amin}f ]. Thus
∑

f Xf µ̃f ≤∑
f XfE[Mf |X,λ] for all arrival vectors. Thus we have

△L(X, t) ≤ B1 +
∑
f

[(1− qf )λf − µ̃f ]Xf (26)

To see the boundedness of
∑

f [(1 − qf )λf − µ̃f ]Xf , we
first show the following lemma:

Lemma 3: Let qmax = maxf qf . Define

r , 1

1− qmax

(
Amax

αR2
+max

f
U ′
f (Amin)

)
,

if Xf [t] > R(r + Amax) for any f and t ≥ R, then λf [t] =
Amin

Proof: Since the arrival in a frame is upper-bounded by
Amax, we must have Xf [t] ≤ Xf [t−1]+Amax. Thus, Xf [t] >
R(r+Amax) implies Xf [i] > Rr for all i ∈ {t−R+1, · · · , t}.
Therefore, for all flow f and each frame i ∈ {t−R+1, · · · , t},
we have

λf [i]− λf [i− 1]

≤ α(RU ′
f (λf [i− 1])− (1− qf )Xf [i− 1])

(a)

≤ αRU ′
f (Amin)− α(1− qmax)rR

= αRU ′
f (Amin)− αR

(
Amax

αR2
+max

f
U ′
f (Amin)

)
≤ −Amax

R
,

where (a) holds because U ′
f (·) is a decreasing function and

λf [·] ≥ Amin. This implies that for each i ∈ {t−R+1, · · · , t},
the rate λf [i] will decrease by at least Amax/R in each frame
until it hits its minimum possible value of Amin, and stays at
Amin until frame t. Thus, even if λf [t − R] = Amax, at the
end of the subsequent R frames, the flow rate will for sure
decrease to λf [t] = Amin.

Based on Lemma 3, we let

g(α,R) , R(r +Amax),

then we have∑
f

[(1− qf )λf [t]− µ̃f ]Xf [t]

=
∑

Xf [t]>g(α,R)

[(1− qf )λf [t]− µ̃f ]Xf [t]

+
∑

Xf [t]≤g(α,R)

[(1− qf )λf [t]− µ̃f ]Xf [t]

≤
∑

Xf [t]>g(α,R)

[(1− qf )Amin − µ̃f ]Xf [t]

+|F|g(α,R)Amax.

To bound the remaining term, note that we have (1 −
qf )Amin − µ̃f ≤ −ϵ for some ϵ > 0 for all flows f by our
feasibility assumption. Then we have∑

f

[(1− qf )λf [t]− µ̃f ]Xf [t]

≤ −ϵ

∑
f

Xf [t]−
∑

Xf [t]≤g(α,R)

Xf [t]


+|F|g(α,R)Amax

≤ −ϵ
∑
f

Xf [t] + |F|g(α,R)(Amax + ϵ).

We define B2(α,R) = |F|g(α,R)(Amax + ϵ). Substitute the
above into (26), we have

△L(X, t) ≤ −ϵ
∑
f

Xf [t] +B1 +B2(α,R).

This implies that if
∑

f Xf [t] ≥ (B1 + B2(α,R) + δ)/ϵ for
some δ > 0, then △L(X, t) ≤ −δ.

Also note that, we have∑
f

Xf [t]

2

≥
∑
f

X2
f [t] = 2L(X, t),

thus, if L(X, t) ≥ 1
2 [(B1 +B2(α,R) + δ)/ϵ]

2, then
△L(X, t) ≤ −δ. Further, △L(X, t) ≤ B1 + B2(α,R)
otherwise. These facts imply that as t → ∞,

E[L(X, t)] ≤
(
B1 +B2(α,R) + δ√

2ϵ

)2

+B1 +B2(α,R).

Defining the right-hand side of the above inequality to be
c(α,R) gives the desired result.

APPENDIX D
DERIVATION OF FZRR(K)(x)

We first derive the probability P (ZRR(K) = y) that the
transmission to N users finishes in exactly y = rK + k time-
slots, where r = ⌊y/K⌋, k = y mod (K) if y mod (K) ̸=
0, and r = y/K − 1, k = K if y mod (K) = 0 such that
y = rK + k for k ∈ {1, 2, · · · ,K}.

Note that for packets {1, 2, · · · , k}, they get a total of r+1
transmission opportunities up to the yth slot, while for the
rest of the packets {k + 1, k + 2, · · · ,K}, they receive r
transmission opportunities in the total y time-slots. Also, the
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packet k is being transmitted by the base station in time-slot
y. Thus, the event of {ZRR(K) = y} = E1 ∩E2 ∩E3, where
E1, E2 and E3 are independent events as described below:

• E1 ={The packets {1, · · · , k − 1} are received success-
fully by all N users in the previous r + 1 transmission
opportunities}. P (E1) =

(
1− c̄r+1

)N(k−1).
• E2 ={The packets {k + 1, · · · ,K} are received suc-

cessfully by all N users in the previous r transmission
opportunities}. P (E2) = (1− c̄r)

N(K−k).
• E3 ={n ∈ {1, 2, · · · , N} users receive packet k suc-

cessfully for the first time in time-slot y (i.e., the
(r + 1)st transmission of packet k) and the remaining
N −n users have successfully received it in the previous
r transmissions opportunities of packet k}. P (E3) =∑N

n=1

(
N
n

)
(1− c̄r)

N−n
(c̄rc)

n

The production of the probability of the above 3 events
gives P (ZRR(K) = y). Then, we get FZRR(K)(x) =
P (ZRR(K) ≤ x) by summing up P (ZRR(K) = y) for all
0 ≤ y ≤ x.
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