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Asynchronous CSMA Policies in Multihop Wireless
Networks with Primary Interference Constraints

Peter Marbach, Atilla Eryilmaz, and Asu Ozdaglar

Abstract—We analyze Asynchronous Carrier Sense Multiple
Access (CSMA) policies for scheduling packet transmissions in
multihop wireless networks subject to collisions under primary
interference constraints. While the (asymptotic) achievable rate
region of CSMA policies for single-hop networks has been well-
known, their analysis for general multihop networks has been
an open problem due to the complexity of complex interactions
among coupled interference constraints. Our work resolvesthis
problem for networks with primary interference constraint s by
introducing a novel fixed-point formulation that approxima tes
the link service rates of CSMA policies.

This formulation allows us to derive an explicit characteriza-
tion of the achievable rate region of CSMA policies for a limiting
regime of large networks with a small sensing period. Our anal-
ysis also reveals the rate at which CSMA achievable rate region
approaches the asymptotic capacity region of such networks.
Moreover, our approach enables the computation of approximate
CSMA link transmission attempt probabilities to support any
given arrival vector within the achievable rate region. As part of
our analysis, we show that both of these approximations become
(asymptotically) accurate for large networks with a small sensing
period. Our numerical case studies further suggest that these
approximations are accurate even for moderately sized networks.

Index Terms—Asymptotic Capacity Region of Wireless Net-
works, Carrier-Sense Multiple Access, Fixed-Point Approxima-
tion, Throughput-Optimal Scheduling.

I. I NTRODUCTION

The design of efficient resource allocation algorithms for
wireless networks has been an active area of research for
decades. The seminal work [38] of Tassiulas and Ephremides
has pioneered in a new thread of resource allocation mech-
anisms that arethroughput-optimal in the sense that the
algorithm stabilizes the network queues for flow rates that
are stabilizable by any other algorithm. This and subsequent
works (e.g. [36], [1], [10], [34], [32], [26], [11]) have proposed
schemes that use queue-lengths to dynamically perform variety
of resource allocation decisions, including medium access,
routing, power control, and scheduling.

Scheduling (or medium access) has traditionally been the
most computationally heavy and complex component of re-
source allocation strategies due to the interference-limited
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nature of the wireless medium. The queue-length-based poli-
cies typically have scheduling rules that use the queue-length
information to avoid collisions while prioritizing the service
of more heavily loaded nodes. However, due to the coupling
between the interference constraints of nearby transmissions,
such scheduling decisions can require highly complex and
centralized decisions. This observation has motivated high
research activity in the recent years for the development of
distributed and low-complexity implementations of queue-
length-based schemes (e.g. [37], [13], [7], [25], [8], [30],
[41], [9], [42], [19]). Also, random access strategies havebeen
investigated in a number of works (e.g. [22], [24], [39], [6],
[16], [14], [35]) that achieve a fraction of the capacity region.
In the case of primary interference model and general network
topology that we consider, this fraction is1/2 and is tight (i.e.
there exist networks for which no rate outside half of the ca-
pacity region can be supported). These results have suggested
that a significant portion of the capacity region may need
to be sacrificed to achieve distributed implementation with
random access strategies. Besides performance degradation,
the practical implementation of existing resource allocation
policies are also complicated by several factors: they usually
rely on global synchronization of transmissions and require a
fair amount of information sharing (typically in the form of
queue-lengths) between nodes to perform decisions.

In this work, we consider an alternative class of random
access strategies with favorable complexity and practicalim-
plementability characteristics. In particular, we investigate Car-
rier Sense Multiple Access (CSMA) policies in which nodes
operate asynchronously and sense the wireless channel before
making an attempt to transmit a packet, which may result in
collisions. We analyze such asynchronous CSMA policies for
scheduling packet transmissions in multihop wireless networks
subject to collisions under primary interference constraints.
For a limiting regime of large networks with a small sensing
period, we derive an explicit characterization of the achievable
rate region of CSMA policies. While an explicit characteri-
zation of the (asymptotic) achievable rate region of CSMA
policies has been established in the special case of single-
hop networks, their analysis for general multihop networkshas
been an open problem due to the complexity of the interactions
among coupled interference constraints. Our work resolvesthis
problem for networks with primary interference constraints
through the introduction of a novel fixed point formulation
that approximates the link service rates of CSMA policies.
The main contributions of the paper are as follows.

• We provide an analytical fixed-point formulation to ap-
proximate the performance of asynchronous CSMA poli-



cies operating in multi-hop networks subject to collisions
with primary interference constraints. Our formulation
makes interesting connections to work by Hajek and
Krishna on the accuracy of the Erlang fixed point for
stochastic loss networks [17], [20]. While our technical
development focuses on the primary interference model,
we note that it suggests a general approach that can be
used to handle higher-order interference models.

• We rigorously show that our fixed point formulation to
approximate the performance of asynchronous CSMA
policies is asymptotic accurate under an appropriate
limiting regime where the network size becomes large.
We also demonstrate through simulation results that such
accuracy is achieved for moderately sized network. This
is especially important since it suggests that the approx-
imation will be useful even in realistic networks.

• We utilize the fixed-point formulation to characterize the
achievable rate region of our CSMA policies, and further
provide a constructive method to find the transmission
attempt probabilities of a CSMA policy that can stably
support a given network load in the achievable rate
region. To the best of our knowledge, this constitutes the
first such characterization of CSMA achievable rate re-
gion in multi-hop networks with the explicit incorporation
of collisions.

• We show that for large networks with a balanced traffic
load, the CSMA achievable rate region takes an extremely
simple form that simply limits the individual load on
each node to1, which is the maximum supportable
load. This result together with the previous shows that
the capacity region of large multi-hop wireless networks
(asymptotically) takes on a very simple form.

The rest of the paper is organized as follows. We start by
noting several relevant works in the context of CSMA policies
in Section II. In Section III, we define our system model, and
in Section IV we describe the class of CSMA policies we
consider in this paper. In Section V we provide a summary
and discussion of our main result, as well as an overview of
the analysis. We provide our fixed point formulation and prove
its asymptotic accuracy in Sections VI and VIII, respectively.
Then, in Section VII and IX, we provide a characterization of
the achievable rate region of the class of CSMA policies, and
show that it is asymptotically capacity achieving. We end with
concluding remarks in Section X.

II. RELATED WORK

In this section, we provide a summary of the work on CSMA
policies for single-hop and multihop networks that is most
relevant to the analysis presented in this paper, and note the
key differences of our work in this paper.

For single-hop networks where all nodes are within trans-
mission range of each other, the performance of CSMA
policies is well-understood [3]. Furthermore, the well-known
“infinite node” approximations provides a simple characteri-
zation for the throughput of a given CSMA policy, as well as
the achievable rate region of CSMA policies, in the case of
a single-hop networks [3]. This approximation has been in-
strumental in the understanding of the performance of CSMA

policies, as well as for the design of practical protocols for
wireless local area networks. For the case where nodes are
saturated and always have a packet to sent, the achievable rate
region of CSMA policies is easily obtained [5]. For the case
where nodes only make a transmission attempt when they have
a packet to transmit has also recently been studied [5], [28].

For general multihop networks, results for CSMA policies
are available for idealized situation of instantaneous channel
feedback. This assumption of instantaneous channel feedback
allows the elimination of collisions, which significantly sim-
plifies the analysis, and allows the use of Markov chains
to model system operation. Under such an instant feedback
assumption, an early work [4] has shown that the stationary
distribution of the associated Markov chain takes a product
form. A more recent work [18] has utilized such a product-
form to derive a dynamic CSMA policy that, combined with
rate control, achieves throughput-optimality while satisfying a
given fairness criterion. Similar results with the same instanta-
neous feedback assumption have been independently derived
in [33] in the context of optical networks and later extend
to wireless networks [29]. Another relevant recent work [27]
suggests a way of handling collisions under the synchronous
CSMA operation.

Our approach differs from much of this literature in that we
do not assume instantaneous feedback or time synchronization,
and explicitly consider collisions, which are unavoidablein a
real implementation. The incorporation of possible collisions
require the development of a completely different modeling
of the CSMA performance than the continuous-time Markov
chain model used for the aforementioned idealized setup.
Instead, we develop a novel fixed-point approximation for a
specific interference model, and show its asymptotic accuracy.

An important byproduct of this development is the quantifi-
cation of the proximity of the CSMA achievable rate region
to the limiting capacity region as a function of the sensing
period level. Such information will be extremely helpful in
determining how small the sensing period should be to achieve
a desired fraction of the capacity region.

Clearly, a non-zero sensing period, however small, must be
considered in the CSMA operation to account for the propa-
gation delay associated with transmissions. Yet, the inclusion
of such a factor creates non-zero probabilities of collisions.
Thus, in order to keep the collision level at a small level,
the aggressiveness of the CSMA policy must depend on the
particular value of the sensing period for the given system.
In our development, we explicitly determine this connection
and provide a constructive method to determine the CSMA
parameters as a function of the sensing period. Moreover, in
this paper we consider a completely asynchronous CSMA op-
eration, which relaxes any synchronism assumptions amongst
the nodes that will facilitate its practical implementation. Such
a relaxation creates many technical challenges, which are
resolved in this paper.

III. SYSTEM MODEL

Network Model: We consider a fixed wireless network com-
posed of a setN of nodes with cardinalityN, and a setL of
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directed links with cardinalityL. A directed link (i, j) ∈ L
indicates that nodei is able to send data packets to nodej. We
assume that the rate of transmission is the same for all links
and all packets are of a fixed length. Throughout the paper we
rescale time such that the time it takes to transmit one packet
is equal to one time unit.

For a given nodei ∈ N , let Ui := {j ∈ N : (j, i) ∈ L} be
the set of upstream nodes, i.e. the set containing all nodes from
which i can receive packets. Similarly, letDi := {j ∈ N :
(i, j) ∈ L} be set of downstream nodes, i.e. the set containing
all nodesj which can receive packets fromi. Collectively, we
denote the set of all the neighbors of nodei asNi := Ui∪Di.
Also, we letLi := {(i, j) : j ∈ Di} be the set of outgoing
links from nodei, i.e. the set of all links from nodei to its
downstream nodesDi (see Fig. 1 for an example).

Fig. 1. Example of a network where two routesf and g
given by Rf = {(sf , i), (i, j), (j, v), (v, w), (w, df )} and Rg =
{(sg , k), (k, i), (i, j), (j, n), (n, dg)}. In this network: the set of upstream
neighbors of nodej is given by Uj = {i, v}; the set of downstream
neighbors of nodej is given by Dj = {i, sg, n, v}; the set of out-
going links of nodej is given by Lj = {(j, i), (j, sg), (j, v), (j, n)};
the set of links that interfere with(i, j) is given by I(i,j) =
{(j, i), (sf , i), (i, k), (k, i), (j, sg), (j, v), (v, j), (j, n)}; the mean rate on
link (i, j) is given by λ(i,j) = λf + λg; and the load on nodei is
Λi = 2λf + 2λg .

Throughout the paper, we assume thatUi = Di, for all
i ∈ N so that we haveUi = Di = Ni, for eachi ∈ N . This
assumption simplifies the notation as we can use a single set
Ni to represent bothDi andUi. Our analysis can be extended
to the more general case requiring only notational changes.
Thus, henceforth we will describe a network by the tuple
(N ,L).
Interference Model: We focus on networks under the well-
known primary interference, or node exclusive interference,
model [21], [40], defined next.

Definition 1 (Primary Interference Model). A packet trans-
mission over link(i, j) ∈ Li is successful if only if within the
transmission duration1 there exists no other activity over any
other link (m,n) ∈ L which shares a node with(i, j). For
each linkl ∈ L, we useIl denote the set of linksl′ ∈ L that
interfere with linkl, i.e. the set of all linksl′ ∈ L that have a
node in common with linkl. ⋄

The primary interference model applies, for example, to
wireless systems where multiple frequencies/codes are avail-

1Notice that our definition of interference model does not require a
time slotted operation of the communication attempts, and hence applies to
asynchronous network operation.

able (using FDMA or CDMA) to avoid interference, but each
node has only a single transceiver and hence can only send to
or receive from one other node at any time (see [31], [7] for
additional discussion).
Traffic Model: We characterize the network traffic by a rate
vectorλ := {λr}r∈R whereR is the set of routes used by the
traffic, andλr, λr ≥ 0, is the mean rate in packets per unit
time along router ∈ R. For a given router ∈ R, let sr be
its source node anddr be its destination node, and let

Rr = {(sr, i), (i, j), · · · , (v, w), (w, dr)} ⊂ L

be the set of links traversed by the route. We allow several
routes to be defined for a given source and destination pair
(s, d), s, d ∈ N .

Given the rate vectorλ = {λr}r∈R, we let

λ(i,j) :=
∑

r:(i,j)∈Rr

λr, (i, j) ∈ L, (1)

be the mean packet arrival rate to link(i, j). Similarly, we let

Λi(λ) :=
∑

j∈Ni

[

λ(i,j) + λ(j,i)

]

, i ∈ N . (2)

be the mean packet arrival rate to nodei ∈ N (see Figure 1
for an example).

To keep the notation light, we will in the following at times
use the notationΛi instead ofΛi(λ).

IV. POLICY SPACE AND CSMA POLICY DESCRIPTION

In this section, we introduce the space of scheduling policies
that we are interested in, and provide the description of
CSMA policies that we consider. We also define the notions
of stability and achievable rate region that we use for our
analysis.

A. Scheduling Policies and Capacity Region

Consider a fixed network(N ,L) with traffic vectorλ =
{λr}r∈R. A schedulingpolicyπ then defines the rules that are
used to schedule packet transmissions on each link(i, j) ∈ L.
In the following, we focus on policiesπ that have well-defined
link service rates as a function of the rate vectorλ = {λr}r∈R.

Definition 2 (Service Rate). For a given network(N ,L),
the offered service rateµπ

(i,j)(λ) for link l = (i, j) ∈ L
under policyπ and traffic vectorλ = {λr}r∈R is equal to
the fraction of time that policyπ allocates for successfully
transmitting packets on linkl = (i, j) under the primary
interference model, i.e. the fraction of time nodei can send
packets on linkl = (i, j) that will not experience interference
from any linkl′ ∈ Il.

Let P be the class of all policiesπ that have well-defined
link service rates. Note that this class contains a broad range of
scheduling policies, including dynamic policies such as queue-
length-based policies that are variations of the MaxWeight
policy [38], as well as noncausal policies that know the
future arrival of the flows. We then define network stability
as follows.
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Definition 3 (Stability). For a given network(N ,L), let
µπ(λ) = {µπ

(i,j)(λ)}(i,j)∈L be the vector of link service rates
of policyπ, π ∈ P , for the rate vectorλ = {λr}r∈R. We say
that policyπ stabilizes the network forλ if λ(i,j) < µπ

(i,j)(λ),
(i, j) ∈ L.

This commonly used stability criteria [38] requires that for
each link(i, j) the link service rateµπ

(i,j)(λ) is larger than the
arrival rateλ(i,j). The capacity region of a network(N ,L) is
then defined as follows.

Definition 4 (Capacity Region). For a given network(N ,L),
the capacity regionC is equal to the set of all traffic vectors
λ = {λr}r∈R such that there exists a policyπ ∈ P that
stabilizes the network forλ, i.e. we have

C = {λ ≥ 0 : ∃π ∈ P with λ(i,j) < µπ
(i,j)(λ), ∀(i, j) ∈ L}.

B. CSMA Policies

In this paper, we are interested in characterizing the perfor-
mance of CSMA policies that operate by actively sensing the
channel activity and, when idle, performing random transmis-
sion attempts according to the parameters of the particular
CSMA policy. Before we describe the details of CSMA
policy operation in Definition 6, we present our modeling of
heterogeneous channel sensing delay that must exist in the
real-world implementation of such policies.

Definition 5 (Sensing Delay{βl(l
′)}). Consider a given link

l = (i, j) ∈ L. When a linkl′ in the interference regionIl

of a link l becomes idle (or busy), then transmitting nodei of
link l will not be able to detect this instantaneously, but only
after some delay, to which we refer to as thesensing delay2

βl(l
′). ⋄

We note that the sensing delay given in the above definition
is lower-bounded by the propagation delay between nodei and
i′. The exact length of the sensing delay will depend on the
specifics of the sensing mechanism deployed. In Appendix A,
we describe two possible approaches to how channel sensing
could be performed for networks with primary interference
constraints.

While the sensing delay of different node-link pairs may
differ, throughout this work, we make the assumption that all
sensing delays are bounded by a constantβ measured with
respect to the normalized packet transmission duration. We
refer to this upper boundβ as thesensing (or idle)period of
a CSMA policy.

Assumption 1. There exists a constantβ to which we refer
to as the sensing (or idle) period of a CSMA policy such that
for all links l ∈ L, we have that

βl(l
′) ≤ β, l′ ∈ Il.

Recall that throughout the paper we rescale the time such
that the time it takes to transmit one packet is equal to one

2In our subsequent discussion, for ease of exposition we willtypically refer
to links as performing sensing or scheduling a packet transmission. This must
be understood as the transmitting node of the (directed) link performing the
action.

time unit. Hence, the duration of an idle periodβ is measured
relative to the length of one packet transmission, i.e. if the
length of an idle period isLi seconds and the length of a
packet transmission isLp seconds, then we haveβ = Li/Lp.
For a fixedLi, the duration of an idle periodβ will become
small if we increase the packet lengths. Hence, we can control
the value ofβ by modifyingLp for a fixedLi.

Definition 6 (CSMA(p, β) Policy). A CSMA policy is given by
a transmission attempt probability vectorp = (p(i,j))(i,j)∈L ∈
[0, 1]L and a sensing period (or idle period)β > 0, that
satisfies Assumption 1.

Givenp andβ, the policy works as follows: each node, say
i, senses the activity on its outgoing linksl ∈ Li. We say that
i has sensed link(i, j) ∈ Li to be idle for a duration of an
idle periodβ if for the duration ofβ time units we have that
(a) nodei has not sent or received a packet and (b) nodei
has sensed that nodej has not sent or received a packet. If
node i has sensed link(i, j) ∈ Li to be idle for a duration
of an idle periodβ, then i starts a transmission of a single
packet on link(i, j) with probabilityp(i,j), independent of all
other events in the network. If nodei does not start a packet
transmission, then link(i, j) has to remain idle for another
period ofβ time units beforei again has the chance to start
a packet transmission. Thus, the epochs at which nodei has
the chance to transmit a packet on link(i, j) are separated
by periods of lengthβ during which link(i, j) is idle, and the
probability thati starts a transmission on link(i, j) after the
link has been idle forβ time units is equal top(i,j).

In the event that the idle periods of two linksl and l′

that both originate at nodei end at the same time, we use
the following mechanism to prevent the possibility that node
i starts in this case a transmission on both linksl and l′

simultaneously (leading to sure collision): lettinĝLi(t) denote
the set of links inLi for which an idle period ends at time
t, for each link l = (i, j) ∈ L̂i(t) the probability that
node i starts a transmission on linkl at time t is given
by
(

p(i,j)

)

/
(

∑

{j′:(i,j′)∈L̂i(t)}
p(i,j′)

)

, independently of all
other attempts by any node in the network.

Finally, we assume that packet transmission attempts are
made according to above description regardless of the avail-
ability of packets at the transmitter. In the event of the
absence of a data packet, the transmitting node transmits a
dummypacket, which is discarded at the receiving end of the
transmission (see also our discussion in Section X), but is
counted in the service rate provided to that link. ⋄

We note that while all the nodes use the same sensing time
β to detect whether a given link is idle, the actual time that
it takes a node to detect that another node has stopped (or
started) transmitting a packet is determined by its individual
sensing delay as given in Definition 5, which can be different
for different nodes. Different sensing delays will lead to an
asynchronous operation of the network where the sensing and
packet transmission periods of different nodes are not aligned.

Also note that, under our CSMA policy, links make a
transmission attempt with a fixed probability after the channel
has been sensed to be idle, independent of the current backlog
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of the link. This may seem to be an unreasonable scenario as
it implies that a link might make a transmission attempt even
if there is no packet to be transmitted. However, there are at
least two reasons why this situation is of interest. First, such a
policy could indeed be implemented (where links send dummy
packets once in a while) Second, and more importantly, being
able to characterize the throughput of such a policy opens
up the possibility of studying more complex, dynamic CSMA
policies where the attempt probabilities depend on the current
backlog. In particular, the results of our analysis can be used to
formulate a fluid-flow model for backlog-dependent policies,
where the instantaneous throughput at a given state (backlog
vector) is given by the expected throughput obtained in our
analysis. Such policies are of interest as they might allow for
dynamic adaptation of the traffic load in the network (e.g. see
[23]).

Given the length of an idle periodβ, in the following we
will simply use p to refer to the CSMA(p, β) policy. Next,
we define the achievable rate region of a CSMA policy.

C. Achievable Rate Region of CSMA Policies

We show in Appendix C-F that a CSMA policyp has a well-
defined link service rate vector to which we refer asµ(p) =
{µ(i,j)(p)}(i,j)∈L, i.e. CSMA policies are contained in the set
P . Note that for a givenβ, the link service rate under a CSMA
policy depends only on the transmission attempt probability
vectorp, and not on the arrival ratesλ. The achievable rate
region of CSMA policies is then given as follows.

Definition 7 (Achievable Rate Region of CSMA Policies).
For a given network(N ,L) and a given sensing periodβ,
the achievable rate region of CSMA policiesis given by the
set of rate vectorsλ = {λr}r∈R for which there exists a
CSMA policyp that stabilizes the network forλ, i.e. we have
that λ(i,j) < µ(i,j)(p), (i, j) ∈ L.

V. OVERVIEW OF THE MAIN RESULTS AND ANALYSIS

This section provides an overview of the main results of
this work along with an outline of the analysis.

In Section IX, we derive an approximationΓ(β) for the
achievable rate region of CSMA policies for a given network
and a given sensing periodβ, and show that in the limit as
the sensing periodβ approaches 0 we have that

lim
β↓0

Γ(β) = {λ ≥ 0 : Λi(λ) < 1, for all i ∈ N}.

Since it is impossible for any policy to stabilize the network
if for a nodei we have thatΛi(λ) ≥ 1, this result suggest that
in the limiting regime asβ becomes small, the capacity region
for scheduling policies in wireless networks with primary
interference constraints includes all rate vectorsλ such that

Λi(λ) < 1, i ∈ N . (3)

We verify this intuition for large networks with many small
flows, i.e. we show that asymptotic achievable rate region of
CSMA policies under the limiting regime large networks with
many small flows and a small sensing is of the above form.

We will provide a precise description of the limiting regime
that we consider in Section IX.

The result that the achievable rate region of CSMA policies
is asymptotically such that it can support any rate vectorλ
satisfying (3) may seem very surprising and counter-intuitive
at first. And indeed, it is important to stress that our resultdoes
not state that the achievable rate region of CSMA policies
is always of the form as given by (3), but only under the
conditions that (a)β becomes small and (b) the network
resources are shared by many small flows. Let us briefly
comment on these two conditions.

The fact thatβ needs to be small in order to obtain a large
achievable rate region is rather intuitive; clearly ifβ is large
(let’s say close to 1) then the above result will not be true. The
fact that we need the assumption of many small flows in order
to obtain our result is illustrated by the following example.

Fig. 2. The pentagon network with flowsr1, · · · , r5 on each link, and
the five possible simultaneous transmissions that can occurunder the primary
interference model. The rateλri

= (1 − ǫ)/2, i = 1, · · · , 5, for any ǫ ∈
(0, 0.1] is not achievable by any policy for this scenario.

Example 1. For the pentagon network of Figure 2, letǫ ∈
(0, 0.1] and λri

= (1 − ǫ)/2 for each r = 1, · · · , 5. Then,
the load on each node is given byΛi = (1 − ǫ) for each
i ∈ N . Although the resulting traffic vectorλ satisfies Eq.(3),
no scheduling policy can stabilize the network forλ. This
can be seen by noting that at most two links out of five can
transmit successfully at a given time, as shown in the figure.
Hence, even an optimal centralized controller cannot achieve
a maximum symmetric node activity of more than2/5, and
clearly, our result cannot hold for this network. ⋄

The reason that in the pentagon network a node cannot
achieve a throughput of more than2/5 is that under each
“maximal” schedule given in Figure 2, if one of the neigh-
boring nodes of a given nodei is busy transmitting, then
node i has to wait for a duration of1 time unit to get a
chance to make a transmission attempt. However, if we have a
network where each nodei has many neighbors with which it
exchanges data packets (many flows), then nodes will typically
have to wait for much less than 1 time unit before they get the
chance to start a packet transmissions. Intuitively, the larger
the number of neighbors of a node, the shorter a node has
to wait until it gets a chance to start a packet transmission.
In addition to having many flows, we need the assumption
that each flow is small in order to avoid the situation where
the dynamics at each node is basically determined by a small
number of large flows, essentially leading to a similar behavior
as in the case where each node has only a small numbers
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of neighbors. Note however that these assumptions aren’t
sufficient in order to obtain our result; we also need to show
that there exists a CSMA policy under which nodes (a) do not
wait too long before making a transmission attempt (and hence
waste bandwidth), (b) are not too aggressive such that a large
fraction of packet transmissions result in collisions, and(c)
share the available network resources such that the resulting
link service rates indeed support a given traffic vectorλ that
satisfies Eq. (3).

Below, we provide a brief description of the different
steps taken in our analysis. Our first step is to derive a
tractable formulation to characterize the link service rates for
a given CSMA policy. Specifically, inspired by the reduced
load approximations utilized in the loss network analysis [20],
in Section VI-B we propose a novelfixed point formulation
to model the performance of a CSMA policyp. Similar to
the reduced load approximation in loss networks, the fixed
point equation is based on an independence assumption. We
show that the fixed point is well-defined, i.e., there exists a
unique fixed point. Our second step is to use the CSMA fixed
point to characterize theapproximate achievable rate region
in Section VII, and show that this characterization suggests
that CSMA policies are throughput-optimal in the limit as the
sensing timeβ becomes small. In our third step, we show that
the formulatedCSMA fixed point is asymptotically accuratein
the sense that it accurately characterizes the link servicerates
of a CSMA policy asβ becomes small for large networks with
many small flows. A technical issue that requires care in the
proof is the scaling with which the sensing delayβ decays
as a function of the network sizeN . We identify a proper
scaling, as given in Assumption 2 of Section VIII, that yields
the asymptotic accuracy result. Moreover, in the derivation
of the achievable rate region using the CSMA fixed point, we
obtain an algorithm that allows the constructive computation of
the CSMA policy parameters that stabilize the network for any
given rate vectorλ within the achievable rate region. Finally,
in Section IX, we derive the asymptotic achievable rate region
of CSMA policies for the limiting regime of large networks
with many small flows and a small sensing period. This result
shows that in this asymptote the CSMA achievable rate region
can be described by a condition in the form of (3).

VI. A PPROXIMATE CSMA FIXED POINT FORMULATION

In the first part of our analysis, we introduce a fixed point
approximation, called the CSMA fixed point, to characterize
the link service rates under a CSMA policyp. The fixed
point approximation extends the well-known infinite node
approximation for single-hop networks (see for example [3])
to multihop networks which we briefly review below.

In the following we will useτ to denote the services rates
obtained under our analytical formulations that we use to
approximate the actual service ratesµ(p) under a CSMA
policy p as defined in Section IV-C.

A. Infinite Node Approximation for Single-Hop Networks

Consider a single-hop network whereN nodes share a
single communication channel, i.e. where nodes are all within

transmission range of each other. In this case, a CSMA policy
is given by the vectorp = (p1, · · · , pN ) ∈ [0, 1]N wherepn

is the probability that noden starts a packet transmission after
an idle period of lengthβ [3].

Suppose that the single-hop network is synchronized, i.e.
the sensing delay is the same for all node pairsn, n′ ∈ N and
we have that

βi(j) = βk(l), i, j, k, l ∈ N .

Then the network throughput, i.e. the fraction of time the
channel is used to transmit packets that do not experience a
collision, can then be approximated by (see for example [3])

τ(G(p)) =
G(p)e−G(p)

β + 1 − e−G(p)
(4)

whereG(p) =
∑N

n=1 pn. Note thatG(p) captures the ex-
pected number of transmissions attempt after an idle period
under a CSMA policyp.

This well-known approximation is based on the assumption
that a large (infinite) number of nodes share the communica-
tion channel. It is asymptotically accurate as the number of
nodesN becomes large and each node makes a transmission
attempt with a probabilitypn, n ∈ N that approaches zero
while the offered loadG =

∑N
n=1 pn stays constant (see for

example [3]).
The following results are well-known. Forβ > 0, one can

show that

τ(G) < 1, G ≥ 0, (5)

and forG+(β) =
√

2β, β > 0, we have that

lim
β↓0

τ(G+(β)) = 1. (6)

Using (4), the service rateµn(p) of noden under a given
CSMA policy p can be approximated by

τn(p) =
pne

−G(p)

1 + β − e−G(p)
, n = 1, ..., N. (7)

In the above expression,pn is the probability that noden
tries to capture the channel after an idle period ande−G(p)

characterizes the probability that this attempt is successful,
i.e. the attempt does not collide with an attempt by any other
node.

Similarly, the fraction of time that the channel is idle can
be approximated by

ρ(p) = ρ(G(p)) =
β

β + 1 − e−G(p)
, (8)

where we have thatlimβ↓0 ρ(G
+(β)) = 0.

B. CSMA Fixed Point Approximation for Multihop Networks

We extend the above approximation for single-hop networks
to multihop networks that operate in an asynchronous manner
as described in Section IV-B as follows.

For a given a sensing periodβ, we approximate the fraction
of time ρi(p) that nodei is idle under the CSMA policyp
by the following fixed point equation,

ρi(p) =
β

(β + 1 − e−Gi(p))
, i = 1, · · · , N, (9)
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where

Gi(p) =
∑

j∈Ni

[

p(i,j) + p(j,i)

]

ρj(p), i = 1, · · · , N. (10)

Note that the fixed point equation can be given both in terms
of the fraction of idle timesρ by substituting (10) in (9) or
in terms of the transmission attempt ratesG by substituting
(9) in (10). Given this equivalence, we refer to either one
as theCSMA fixed point equation. We further letρ(p) =
(ρ1(p), · · · , ρN (p)) and G(p) = (G1(p), · · · , GN (p)) de-
note particularCSMA fixed points, andR(p) andG (p) denote
the set of all fixed pointsof (9) and (10), respectively.

The intuition behind the CSMA fixed point equation (9)
and (10) is as follows: suppose that the fraction of time
that nodei is idle under the CSMA policyp is equal to
ρi(p), and suppose that the times when nodei is idle are
independent of the processes at all other nodes. If nodei has
been idle forβ time units, i.e. nodei has not received or
transmitted a packet forβ time units, then nodei can start
a transmission attempt on link(i, j), j ∈ Ni, only if nodej
also has been idle for an idle period ofβ time units. Under
the above independence assumption, this will be (roughly) the
case with probabilityρj(p), and the probability that nodei
start a packet transmission on the link(i, j), j ∈ Ni, given
that it has been idle forβ time units is (roughly) equal to
p(i,j)ρj(p). Similarly, the probability that nodej ∈ Ni starts a
packet transmission on the link(j, i) after nodei has been idle
for β time units is (roughly) equal top(j,i)ρj(p). Hence, the
expected number of transmission attempts that nodei makes
or receives, after it has been idle forβ time units is (roughly)
given by (10). Using (8) of Section VI-A, the fraction of time
that nodei is idle underp can then be approximated by (9).

There are two important questions regarding the CSMA
fixed point approximation. First, one needs to show that
the CSMA fixed point is well-defined, i.e. that there always
exists a unique CSMA fixed point. In the above notation this
corresponds to proving that the setsR(p) and G (p) have a
single element for any feasiblep. To that end, the following
result, proven in Appendix B, establishes the uniqueness ofa
fixed point solution for all suchp.

Theorem 1. For every CSMA policyp ∈ (0, 1)L, each of
the set of fixed point solutionsR(p) and G (p) has a single
element, denoted henceforth byρ(p) andG(p), respectively.

Second, we need to check the accuracy of the above CSMA
fixed point approximation. This is postponed to Section VIII,
where we show that the CSMA fixed point approximation
is asymptotically accurate for large networks with a small
sensing periodβ and appropriately decreasing link attempt
probabilities. In what follows, we focus on the CSMA achiev-
able rate region characterization based on the above fixed point
approximation.

VII. A PPROXIMATE CSMA ACHIEVABLE RATE REGION

In this section, we use the CSMA fixed point approximation
(9) and (10) to characterize an approximate achievable rate
region of CSMA policies. In Section IX, we will show that this

characterization is asymptotically accurate for large networks
with many small flows and a small sensing time,β.

We start by noting that, for a given sensing periodβ, we can
use the CSMA fixed pointG(p) for a policyp to approximate
the actual link service rateµ(i,j)(p) under the CSMA policy
p by τ(i,j)(p) that satisfies

τ(i,j)(p) =
p(i,j)ρj(p)e−(GR

i (p)+Gj(p))

1 + β − e−Gi(p)
(11)

where
GR

i (p) ,
∑

j∈Ni

p(j,i)ρj(p)

represents the rate at which nodei receives transmission
attempts by its neighbors, and hence its difference fromGi(p).

Note that the above equation is similar to (7) where
p(i,j)ρj(p) captures the probability that nodei makes an
attempt to capture link(i, j) if it has been idle forβ time
units, andexp

[

−(GR
i (p) +Gj(p))

]

is the probability that
this attempt is successful, i.e. the attempt does not overlap
with an attempt by another link that shares a node with(i, j).
Note that

τ(i,j)(p) ≥ p(i,j)βe
−(Gi(p)+Gj(p))

(

1 + β − e−Gi(p)
) (

1 + β − e−Gj(p)
) (12)

asGi(p) ≥ GR
i (p).

The next result provides an approximate achievable rate
region of the CSMA policy based on the CSMA fixed point ap-
proximation and the approximate service rates(τ(i,j)(p))(i,j)
given in (11).

Theorem 2. Given a network(N ,L) with sensing periodβ >
0, let Γ(β) be given by

Γ(β) ,

{

λ ≥ 0|Λi(λ) < τ(G+(β))e−(G+(β)), ∀i ∈ N
}

, (13)

whereG+(β) ,
√

2β, τ(G+(β)) is as defined in (4), and
Λi(λ) ,

∑

j∈Ni

[

λ(i,j) + λ(j,i)

]

, for eachi ∈ N .

Then, for everyλ ∈ Γ(β), we can explicitly find (cf.
Equation (14)) a CSMA policy parameterp for which the
corresponding CSMA fixed point approximation yields

λ(i,j) < τ(i,j)(p), (i, j) ∈ L,
where τ(i,j)(p) is as defined in (11). In other words, by a
proper selection ofp, the approximate service rates can be
made to exceed the traffic load on each link as long asλ ∈
Γ(β).

Proof: For brevity, we will denoteΛi(λ) as Λi, which,
by definition, satisfiesΛi < τ(G+(β))e−G+(β) for all i ∈ N .
For each nodei = 1, ..., N , chooseGi ∈ [0, G+(β)) such that

e(Gi−G+(β))τ(Gi)e
−G+(β) = Λi

and let
ρi =

β

β + 1 − e−Gi
.

Such aGi exists since the function

f(Gi) = e(Gi−G+(β))τ(Gi)e
−G+(β)
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is continuous inGi with f(0) = 0 and

f(G+(β)) = τ(G+(β))e−G+(β) > Λi.

Using ρi for i = 1, ..., N as defined above, consider the
CSMA policy p given by

p(i,j) =
λ(i,j)

ρiρj
βe2G+(β), (i, j) ∈ L. (14)

By applying the above definitions, at every nodei = 1, ..., N
we have that
∑

j∈Ni

[p(i,j) + p(j,i)]ρj =
∑

j∈Ni

λ(i,j) + λ(j,i)

ρiρj
βe2G+(β)ρj

=
βe2G+(β)

ρi

∑

j∈Ni

[λ(i,j) + λ(j,i)] =
βe2G+(β)

ρi
Λi

=
βe2G+(β)

ρi
e(Gi−G+(β))τ(Gi)e

−G+(β) = β
eGi

ρi
τ(Gi)

= β
β + 1 − e−Gi

β
eGi

Gie
−Gi

β + 1 − e−Gi
= Gi.

This implies that the above choices ofG = (G1, · · · , GN )
and ρ = (ρ1, · · · , ρN ) define the CSMA fixed point of the
static CSMA policy given by (14), i.e. we have that

ρ(p) = ρ and G(p) = G.

Using (12), the service rateτ(i,j)(p) on link (i, j) underp
is then given by

τ(i,j)(p) ≥ p(i,j)ρj(p)e−(Gi(p)+Gj(p))

1 + β − e−Gi(p)

= p(i,j)
ρje

−(Gi+Gj)

1 + β − e−Gi
=
λ(i,j)

ρiρj
βe2G+(β) ρje

−(Gi+Gj)

1 + β − e−Gi

= λ(i,j)
β

ρi(1 + β − e−Gi)
e2G+(β)−(Gi+Gj)

= λ(i,j)e
2G+(β)−(Gi+Gj) > λ(i,j),

where we used in the last inequality the fact that by construc-
tion we haveGi, Gj < G+(β). The proposition then follows.

The proof of Theorem 2 is constructive in the sense that
given a rate vectorλ ∈ Γ(β), we construct (cf. Equation (14))
a CSMA policy p such thatλ(i,j) < τ(i,j)(p), (i, j) ∈ L.
We will use this construction for our numerical results in
Section IX-C. Theorem 2 also leads to the following inter-
esting corollary, which indicates the capacity achieving nature
of CSMA policies in the small sensing delay regime.

Corollary 1. In the small sensing delay regime, i.e. asβ ↓ 0,
the approximate achievable rate regionΓ(β) converges to the
following simple set

lim
β↓0

Γ(β) = {λ ≥ 0 | Λi(λ) < 1, i = 1, · · · , N} .

Proof: The proof follows immediately from the def-
inition of Γ(β) once we recall from Section VI-A that
limβ↓0G

+(β) = 0, and limβ↓0 τ(G
+(β)) = 1.

Since any rate vectorλ for which there exists a nodei
with Λi ≥ 1 cannot be stabilized by any policy, Corollary 1

establishes that for networks with a small sensing time, the
approximate achievable rate region of static CSMA policies
get arbitrarily close to the above limiting rate region described
purely in terms of per node traffic load. As we noted in
Example 1, such a rate region is not achievable for all
networks. In Section IX, we show that the capacity region
does take on the above simple form for large networks with
many small flows and a small sensing periodβ.

To that end, in the next section, we first establish conditions
on the network and CSMA parameters for which CSMA fixed
point approximation becomes accurate.

VIII. A SYMPTOTIC CSMA FIXED POINT ACCURACY

In this section, we study the accuracy of the CSMA fixed
point approximation proposed in Section VI (cf. Equations
(9) and (10)) in capturing the service rate and idle fraction
performance of the actual CSMA policy (cf. Definition 6).
Our analysis establishes a large network and small sensing
delay regime in which the approximation becomes arbitrarily
accurate.

More precisely, we consider a sequence of networks for
which the number of nodesN increases to infinity, and let
L(N) andN (N)

i respectively denote the set of all links and
the set of neighbors of nodei for the network withN
nodes. Similarly, asN increases, we consider a corresponding
sequence of CSMA policies{p(N)}N≥1 with a sequence of
sensing periods{β(N)}N≥1, where(p(N), β(N)) defines the
CSMA policy for the network withN nodes as described
in Definition 6. We make the following assumptions on the
parameters of the CSMA policy.

Assumption 2. For the sequences{p(N)}N≥1 and
{β(N)}N≥1 introduced above:

(a) lim
N→∞

Nβ(N) = 0.

(b) Letting p(N)
max , max

(i,j)∈L(N)
p
(N)
(i,j), we have lim

N→∞

p
(N)
max

β(N)
=

0.
(c) There exists a positive constantχ and a finite integerN0,

such that for allN ≥ N0 we have

∑

j∈N
(N)
i

[p
(N)
(i,j) + p

(N)
(j,i)]

β(N)
≤ χ, i = 1, · · · , N. (15)

These technical assumptions have the following interpre-
tation: Assumption 2(a) characterizes a small sensing delay
regime by specifying how fastβ(N) decreases to zero as
the network sizeN increases; Assumption 2(b) implies that
the attempt probability of each link becomes small asN
becomes large, assuring that no single link dominates the
service provided by its transmitting node; and Assumption 2(c)
states that the total rate (given on the left of (15) by the
expected number of transmission attempts per sensing period
β(N)) with which links incident to a given nodei start a packet
transmission, is upper-bounded by a positive constant.

Below we provide two examples of networks that satisfy
Assumption 2.
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Example 2. Consider anN×N switch (depicted in Figure 3)
with traffic flowing from the set,N (N)

S = {1, · · · , N}, of input
(or sender) ports to the set,N (N)

R = {N + 1, · · · , 2N}, of
output (or receiver) ports. For this setup where the degree of
each node isN, we can select the CSMA policy parameters
as follows to satisfy the Assumption 2:

β(N) = 1/(Nlog(N)), and

p(i,j) = χβ(N)/(2N), ∀(i, j) ∈ N (N)
S ×N (N)

R . (16)

Example 3. Consider a network consisting ofN nodes and
assume that each node communicates withlog(N) neighbor-
ing nodes. This setup resembles randomly generated dense
network within a unit area, where the nodes within the com-
munication range of each other are connected. Such a model
is widely studied in earlier works (e.g. [15]) that establish
that if the communication radius is optimally selected for
connectivity, the degree of each node scales asΘ(log(N))
for a network withN nodes.

The following parameters as a function of the network size
N will satisfy Assumption 2:

β(N) = 1/(Nlog(N)), and

p(i,j) ≤ χβ(N)/(log(N)) ∀(i, j) ∈ L(N). (17)

Next, we analyze the accuracy of the CSMA fixed point
approximation for the limiting regime given by Assumption 2,
i.e. we let ρ(p(N)) = (ρ1(p

(N)), · · · , ρN (p(N))) be the
CSMA fixed point for the network of sizeN , and letσi(p

(N))
be the actual fraction of time that nodei is idle under the
CSMA(p(N)) operation. Then, we use the following metric to
measure the discrepancy of the two:

δ(N)
ρ , max

i=1,··· ,N
|ρi(p

(N)) − σi(p
(N))|,

which quantifies the maximum approximation error of the
CSMA fixed point across the network. Similarly, we let
τ(i,j)(p

(N)) be the approximate CSMA service rate for link
(i, j) defined in (11), and letµ(i,j)(p

(N)) be the actual CSMA
service rate for link(i, j). Then, we define the following
metric to measure the discrepancy between the two:

δ(N)
τ , max

(i,j)∈L(N)

∣

∣

∣

∣

∣

1 − τ(i,j)(p
(N))

µ(i,j)(p(N))

∣

∣

∣

∣

∣

,

which quantifies the maximum relative approximation error
of the link service rates under the CSMA fixed point. Note
that under Assumption 2 the link service rateµ(i,j)(p

(N)) will
approach zero asN increases and the error term|τ(i,j)(p(N))−
µ(i,j)(p

(N))| will trivially vanish; this is the reason why we
consider therelative error when studying the accuracy of the
CSMA fixed point equation for the link service rates.

The following result, proven in Appendix C, establishes
that in the limit asN approaches infinity, the fixed point
approximation for CSMA polices with the above scaling
becomes asymptotically accurate.

Theorem 3. Under the CSMA policy scaling of Assumption 2,
we have that

lim
N→∞

δ(N)
ρ = 0, and lim

N→∞
δ(N)
τ = 0,

i.e., the fixed point approximation becomes asymptotically
accurate both in terms of idle fraction and service rate
approximations.

A. Numerical Results

In this section, we illustrate Theorem 3 using numerical
results obtained for theN × N switch network discussed in
Example 3 and depicted in Figure 3. The switch topology is
selected for numerical comparison since such a topology is
the simplest non-trivial one that also leads to an analytically
tractable fixed point solution under symmetric conditions.Yet,
we emphasize that Theorem 3 applies to any large network
as long as CSMA policy satisfies Assumption 2. Besides
confirming the asymptotic accuracy of the approximations, our
results also indicate that the accuracy is observed even for
relatively small networks.

. . .

. . .

N+11

2

N 2N

N+2

Fig. 3. Network topology for our numerical results consistsof a set ofN
sender nodesN (N)

S
= {1, ..., N}, and a set ofN receiver nodesN (N)

R
=

{N + 1, ..., 2N}. The set of linksL(N) consists of all directed links(i, j)
from a senderi ∈ NS to a receiverj ∈ NR.

For this network, we consider a sequence of CSMA policies
p(N) = (p

(N)
(i,j))(i,j)∈L(N) and the corresponding sequence of

sensing periodsβ(N) as in (16) by settingχ = 10. Recall that
a CSMA policy with parameters(p(N), β(N)) determines the
link probabilitiesp(N)

(i,j) with which senderi ∈ N (N)
S starts a

transmission of a packet to receiverj ∈ N (N)
R after link (i, j)

has been sensed to be idle for sensing period ofβ(N) time
units. Given a sensing periodβ(N), the CSMA fixed point for
a policyp(N) is then given by

ρi(p
(N)) =

β(N)

(β(N) + 1 − e−Gi(p(N)))
, i = 1, · · · , 2N,

where

Gi(p
(N)) =

∑

j∈N
(N)
R

p
(N)
(i,j)ρj(p

(N)), i ∈ N (N)
S , and

Gj(p
(N)) =

∑

i∈N
(N)
S

p
(N)
(i,j)ρi(p

(N)), j ∈ N (N)
R .

Then, due the symmetry of the network topology as well as of
the constructed CSMA policiesp(N), the CSMA fixed point
ρ(p(N)) is uniform and satisfies

ρi(p
(N)) = ρj(p

(N)), i, j ∈ N (N) , N (N)
S ∪ N (N)

R .

In Figures 4 and 5, we evaluate the performance of the above
sequence of CSMA policies for varying sizeN of the sender
set NS . In particular, Figure 4 depicts the measured mean
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Fig. 4. Comparison of the actual fraction of idle time under the CSMA
policy and the predicted values based on the fixed point formulation.

2 4 6 8 10 12 14 16 18 20 22 24
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Number of sender nodes, N

M
ax

im
um

 e
rr

or
 in

 id
le

 fr
ac

tio
n,

   
δ ρ(N

)

4 6 8 10 12 14 16 18 20 22 24
0.06

0.08

0.1

0.12

0.14

0.16

0.18

Number of sender nodes, N

M
ax

im
um

 E
rr

or
 in

 r
at

es
,  

 
δ τ(N

)

Fig. 5. Error terms of Theorem 3 for different values ofN .

fraction of times that nodes are idle and mean node throughput
under the actual CSMA policy operation, compared with the
performance predicted by the CSMA fixed point. Figure 5
shows the error terms of Theorem 3 for the approximation
error in the fraction of time that nodes are idle, and the link
service rates.

Note that the above numerical results not only confirm
the asymptotic claims of Theorem 3 but also indicate that
the CSMA fixed point approximation is remarkably accurate
even for smaller values ofN . This suggests that the CSMA
fixed point approximation may be used to characterize the
performance for moderate-size networks where each nodes
has a relatively small number of neighbors. An extensive
investigation of this implication in more general network
topologies is of practical interest and is left to future research.

IX. A SYMPTOTIC CAPACITY REGION C∞
In this section, we derive the asymptotic achievable rate

region for CSMA for a limiting regime of large networks with

many small flows and a small sensing period that is formally
defined in Section IX-A.

A. Many Small Flows Asymptotic

In Section VIII, we introduced a sequence of networks for
which the number of nodesN increases to infinity, and let
L(N) be the set of all links in the network withN nodes, and
N (N)

i be the set of neighbors of nodei in the network withN
nodes. In this section, we introduce a similar scaling for the
traffic arrival rate vectors to assure that the load on any link
do not dominate the load in its neighborhood. To that end,
we use the notationλ(N) = {λ(N)

r }r∈R(N) for the arrival rate
vector for the network withN nodes. Furthermore,

λ
(N)
(i,j) =

∑

r∈R(N):(i,j)∈r

λ(N)
r , (i, j) ∈ L(N), and

Λ
(N)
i =

∑

j∈N
(N)
i

[

λ
(N)
(i,j) + λ

(N)
(j,i)

]

, i ∈ N (N),

respectively, denotes the mean packet arrival rate on link(i, j)
and the mean packet arrival rate at nodei.

Definition 8 (Many Small Flows Asymptotic). Given a se-
quence of networks{N (N),L(N)}N≥1, we defineA as the
set of all rate vector sequences{λ(N)}N≥1 such that

lim sup
N→∞

(

max
(i,j)∈L(N)

λ
(N)
(i,j)

)

= 0.

We say that{λ(N)}N≥1 satisfies themany small flows asymp-
totic if it belongs toA.

The above definition characterizes the limiting regime where
the mean arrival of each flow becomes small as the network
size scales, i.e. the network traffic consists ofmany small
flows. It is important to note that, while the load on each link
vanishes under the many small flows asymptote, the total load
on a node may be non-vanishing if the number of neighbors
also increases. We shall see that this key characteristic of
the many small flows regime will allow CSMA policies
to achieve maximal per node loads under large and well-
connected network topologies. Before we establish this main
result, we define the asymptotic achievable rate region of
CSMA policies under the many small flows asymptotic as
follows.

Definition 9 (Asymptotic CSMA Achievable Rate Region).
Theasymptotic achievable rate region of static CSMA policies
under the many flow limitis the set of flow rate sequences
{λ(N)}N≥1 ∈ A for which there exists a sequence of CSMA
scheduling policies(p(N), β(N))N≥1 such that

lim inf
N→∞



 min
(i,j)∈L(N)

µ(i,j)(p
(N))

λ
(N)
(i,j)



 > 1.

Thus, every flow rate sequence{λ(N)}N≥1 in the asymptotic
CSMA rate region can be stabilized by the sequence of CSMA
policies(p(N), β(N))N≥1 for large enoughN.
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Note that a sequence{λ(N)}N≥1 ∈ A for which there exists
a nodei with

lim
N→∞

Λ
(N)
i ≥ 1

cannot be stabilized by any policy as service rate at each node
is bounded by1. Hence, the achievable region under the many
flow limit is contained in the set

C∞ ,

{

{λ(N)}N ∈ A| lim sup
N→∞

(

max
i=1,...,N

Λ
(N)
i

)

< 1

}

. (18)

We refer toC∞ as the capacity region under the many small
flows asymptotic.

B. Asymptotic CSMA Achievable Rate Region

In this subsection, we characterize the asymptotic achievable
rate region of CSMA policies under the many small flows
asymptotic for networks with a small sensing period. To
do this, we again consider a sequence of sensing periods
{β(N)}N≥1 that satisfies Assumption 2(a). The next theorem,
proven in Appendix D, shows that in this case the achievable
rate region of CSMA policies converges to the capacity region
under the many small flows asymptoticC∞.

Theorem 4. Given a sequence of networks
{N (N),L(N)}N≥1, a sequence of sensing periods{β(N)}N≥1

satisfying Assumption 2(a), and a sequence of flow rates
{λ(N)}N≥1 ∈ C∞, we can explicitly find a sequence of CSMA
policy attempt rates{p(N)}N≥1 that asymptotically stabilizes
the network, i.e., that satisfies

lim inf
N→∞



 min
(i,j)∈L(N)

µ(i,j)(p
(N))

λ
(N)
(i,j)



 > 1.

It is interesting to note that the proof of Theorem 4 in
Appendix D is constructive in that sense that it provides
explicit expressions for the link transmission attempt probabil-
ities that stabilize the network for a given rate vector sequence
{λ(N)}N≥1 in C∞.

C. Numerical Results

In this section, we verify the statement of Theorem 4
using the same switch topology we used for the numerical
results in Section VIII-A (see also Figure 3). As the net-
work size increases, we consider a sequence of idle periods
{β(N)}N≥1 = 0.1/(Nlog(N)) and traffic vectors{λ(N)}N≥1

with

λ
(N)
(i,j) =

0.95

N
e−G+(β(N))τ(G+(β(N))), i ∈ NS , j ∈ NR.

Notice that{λ(N)}N≥1 satisfies the many small flows asymp-
totic (cf. Definition 8) and that the per node load satisfies

Λ
(N)
i = 0.95 · e−G+(β(N))τ(G+(β(N))), i ∈ N (N),

which is non-vanishing. Also note that the selected rate vector
λ(N) is within that approximate CSMA achievable rate region
Γ(β(N)) (cf. Equation 13) for eachN.

In the proof for Theorem 2 we derive an explicit construc-
tion for obtaining a policyp(N) that supports a given traffic

vectorλ ∈ Γ(β(N)). Following this construction for the above
choice of flow rates, we chooseG(N) ∈ [0, G+(β(N))) such
that

e(G
(N)−G+(β(N)))τ(G(N))e−G+(β(N))

= 0.95 · e−G+(β(N))τ(G+(β(N))),

which is shown to exist in the proof. Then, letting

ρ(N) ,
β(N)

β(N) + 1 − e−G(N)
,

we construct a sequence of CSMA policy parametersp(N)

satisfying

p
(N)
(i,j) ,

λ
(N)
(i,j)

(ρ(N))2
β(N)e2G+(β(N)), (i, j) ∈ L(N).

Theorem 4 then states that for such constructed sequence of
CSMA policies we have, for a large enoughN, thatµ(N)

(i,j) >

λ
(N)
(i,j), for all (i, j) ∈ L(N). Also, noting thatlimN→∞ Λ

(N)
i =

0.95 for the above choice of flow rates, we have

lim
N→∞

∑

j∈N
(N)
R

µ
(N)
(i,j) > 0.95, i ∈ N (N)

S , and

lim
N→∞

∑

i∈N
(N)
S

µ
(N)
(i,j) > 0.95, j ∈ N (N)

R .

To confirm these asymptotic claims and to investigate their
correctness for moderate values ofN we simulate the above
network to measure the true link service rates for increasingN .
Figure 6 shows the average node throughput that we obtained.
Note that the average node throughput indeed is above the
value Λ(N) for which we designed the CSMA policyp(N).
Furthermore, asN increases the average node throughput
becomes larger then0.95 as predicted by our theoretical result.
Moreover, these results indicate that the results are quite
accurate even for small network sizes and that CSMA policies
can be close to capacity achieving even if the number of
neighbors of each node is relatively small.

Figure 6 shows the distribution of the ratio of link service
rates to link loads. We know from Theorem 4 that this ratio
will eventually exceed1 for all links asN tends to infinity.
We observe in Figure 6 that already at a moderate value of
N = 20, more than95% of the links exceed1 and the rest of
the links achieve rates close to1.

X. CONCLUSIONS

In this work, we provided an extensive analysis of asyn-
chronous CSMA policies operating in multi-hop wireless
networks subject to collisions with primary interference con-
straints. To that end, we first introduced a CSMA fixed-
point formulation to:(a) approximate the performance of such
CSMA policies; (b) approximate their achievable rate region;
and (c) provide a constructive method for determining the
transmission attempt probabilities of the CSMA policy that
can support a given rate vector in the achievable rate region.

We then showed that the CSMA fixed point formulation
becomes asymptotically accurate for an appropriate limiting
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Fig. 6. Performance of the CSMA policy for the network in Figure 3 with
symmetric load. The graph on the left shows that the policy achieves rates
close to the aimed value of0.95 per sender node even for moderate values of
N. The graph on the right shows the distribution of the ratio of achieved rates
to load on each link amongst400 existing links in the network in Figure 3
with N = 20.

regime where the network size increases and the sensing
delay decreases. Using this result we established that for large
networks with a balanced traffic load, the CSMA achievable
rate region takes an extremely simple form that simply limits
the individual load on each node to1, which is the maximum
supportable load by any other scheduling policy. This result
has proven not only that the class of asynchronous CSMA
policies is asymptotically throughput-optimal, but also that
the capacity region of such large networks takes an extremely
simple form, describable by per node loads.

Despite the asymptotic nature of our theoretical results, our
simulation results have indicated that the CSMA fixed point
approximate is remarkably accurate even for moderately sized
network, which suggests that the approximation is useful for
realistic network topologies.
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APPENDIX A
EXAMPLE CHANNEL SENSING MECHANISMS

In this section, we discuss two specific channel sensing
mechanisms that operate under heterogeneous sensing delay
characteristics. We note that our model is flexible enough to
allow other mechanism designs.
Mechanism 1: Suppose that each nodei ∈ N is assigned a
channelci over which it receivesdata packets, and suppose
that the sensing radius and transmission radius of the nodes
are different. The channelci could either be a frequency
range, or a code, if a FDMA-based, or a CDMA-based,
approach respectively is used to obtain a network with primary
interference constraints (see also our discussion in Section III).
Nodes that are within the transmission radius of a node can
successfully receive its packet transmission if there are no
collisions by another transmission within the transmission
radius of the receiver. Nodes that are within the sensing
radius of the transmitting node can only detect the presenceor
absence of activity together with its destination. The activity
within the sensing radius does not cause collisions, but it
signals the presence of activity. In this setting, a nodej ∈ Ni

can sense whether nodei is currently sending a packet by
scanning the channelsck used by nodei for transmission on
its outgoing links(i, k) ∈ Li. Furthermore, if the sensing
radius is at least twice the transmission radius, then a node
j ∈ Ni can sense whether nodei is currently receiving a
packet by scanning channelci. Note that the time (measured
in seconds) that it takes a node to detect whether a neighboring
node is busy, will increase as the number of neighbors of a
node increases; however, the sensing delayβl(l

′) measured
relative to the time it takes to transmit a packet can still kept
low by increasing the size of a packet, and hence increase the
time Lp it takes to transmit a packet.
Mechanism 2: Again, suppose that each nodei ∈ N is as-
signed a communication channelci over which itreceivesdata

Fig. 7. Nodesm, i, j, and k are connected as shown on the left. Node
i starts a packet transmission to nodej at t0, which is overheard starting
at t1 by nodem. Thus, the sensing delayβm(i, j) is equal to(t1 − t0).
Node j starts reception of the packet att2 (hence its sensing delay satisfies
βj(i, j) = (t2 − t0)) and generates a signal over its control channelc̄j to
indicate the activity of link(i, j). Nodek senses the control signal of nodej
at timet3 (hence its sensing delay isβk(i, j) = (t3−t0). The transmission of
the packet ends at timet4 which equals(t0+1) since the packet transmission
duration is normalized to one. Nodesm, j, andk sense the end of the activity
at t5, t6, and t7 , respectively.

packets, and that in addition it is assigned a control channel
c̄i, where the bandwidth of the communication channelci is
much larger than the one of the control channelc̄i. Then,
if node i is currently receiving a packet transmission on its
communication channelci, then it can send out a busy signal
on the control channel̄ci. In this setting, a nodej ∈ Ni

can sense whether nodei is currently sending a packet by
scanning the channelsck used by nodei for transmission on
its outgoing links(i, k) ∈ Li. Furthermore, a nodej ∈ Ni

can sense whether nodei is currently receiving a packet by
scanning the control channelc̄i. Again, the time (measured in
seconds) that it takes a node to detect whether a neighboring
node is busy, will increase as the number of neighbors of a
node increases; but the sensing delayβl(l

′) measured relative
to the time it takes to transmit a packet can still kept low by
increasing the size of a packet. Figure 7 gives a timing-diagram
for this case.

APPENDIX B
EXISTENCE AND UNIQUENESS OFCSMA FIXED POINTS

In this section, we prove Theorem 1 which states that for
each choice ofp ∈ (0, 1)L there exists a unique CSMA fixed
point. We first establish the existence of a CSMA fixed point.

Lemma 1. For every CSMA policyp ∈ [0, 1]L, there exists
a CSMA fixed pointρ(p) andG(p), i.e., the setsR(p) and
G (p) are non-empty.

Proof: The proof uses the continuity properties of the
fixed point equation given (9), and is a straightforward appli-
cation of the Brouwer’s fixed point theorem.
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We next establish the uniqueness of the CSMA fixed point
for any p ∈ (0, 1)L. Unlike standard methods in establishing
the uniqueness of a fixed point, our proof method does not
require additional assumptions on the fixed point mapping,
therefore may be of independent interest. The proof followsa
number of steps, which is outlined here for clarity: Propo-
sition 1 shows the existence of a unique solution to the
fixed point equation for a particular choice ofp̂ ∈ (0, 1)L,
i.e., that G (p) = {Ĝ} for some Ĝ; Proposition 2 proves
the upper-semicontinuity of the correspondenceG (p) given
by (10); Proposition 3 proves that for any CSMA policyp
and G ∈ G (p), (p, G(p)) is uniquely defined in an open
neighborhood of(p, G(p)); finally Theorem 1 combines the
preceding results to establish the global uniqueness of the
CSMA fixed point for anyp ∈ (0, 1)L.

Proposition 1. For any network topology and anyβ > 0,
there exists âp ∈ (0, 1)L for which there is a unique point
Ĝ ∈ G (p̂) that solves the fixed point equation described in
(9) and (10).

Proof: We restrict our choice of̂p to the symmetric case
of p̂(i,j) = θ̂/2 for all (i, j) ∈ L and setθ̂ to any value
in the non-empty range(0, ζ β

dmax
), wheredmax denotes the

maximum degree of the network andζ is any positive constant
strictly less than1. For this symmetric choice of link attempt
probabilities, the fixed point equation (10) becomes:

Gi(p̂) =
∑

j∈Ni

θ̂β

1 + β − e−Gj(p̂)
, T̂i(G(p̂)), i = 1, · · · , N,

which also introduces the mappinĝTi : R
N → R of G(p̂)

to Gi(p̂) that must hold for anyG(p̂) ∈ G (p̂). More
compactly, we can define the mappinĝT : R

N → R
N

as T̂ (G) , (T̂1(G), T̂2(G), · · · , T̂N(G)) and write the fixed
point equation asG(p̂) = T̂ (G(p̂)).

Next, we will show that the mappinĝT (·) is a contraction
mapping under thel1 norm: ‖x − y‖1 =

∑N
i=1 |xi − yi| for

x,y ∈ R
N , which directly implies that the fixed point of the

mapping is unique. For any two feasible vectorsG1 andG2

with non-negative entries, we have
‖T̂ (G1) − T̂ (G2)‖1

=
N
∑

i=1

∣

∣

∣

∣

∣

∣

∑

j∈Ni

(

θ̂β

1 + β − e−G1
j

− θ̂β

1 + β − e−G2
j

)

∣

∣

∣

∣

∣

∣

≤
N
∑

i=1

∑

j∈Ni

∣

∣

∣

∣

∣

θ̂β

1 + β − e−G1
j

− θ̂β

1 + β − e−G2
j

∣

∣

∣

∣

∣

(a)

≤ θ̂

β

N
∑

i=1

∑

j∈Ni

|G1
j −G2

j |

(b)

≤ θ̂dmax

β

N
∑

i=1

|G1
j −G2

j |

(c)

≤ ζ‖G1 −G2‖1,

which establishes that̂T is a contraction mapping, and there-
fore has a unique fixed point. To complete the proof, we

justify the inequalities (a)-(c) in the above derivation. To get
inequality (a), we note that the arising real functionh(z) ,

θ̂β
1+β−e−z is a decreasing convex function withh′(0) = −θ̂/β,

and hence satisfies|h(z1) − h(z2)| ≤ θ̂
β |z1 − z2| for all

z1, z2 ≥ 0. Inequality (b) follows from the fact that for each
i, the difference|G1

i − G2
i | appears at mostdmax times in

the previous double summation. Finally, inequality (c) follows
from the assumption that̂θ ∈ (0, ζ β

dmax
).

We note that the proof of Proposition 1 can be slightly mod-
ified to establish that, as long as the link attempt probabilities
are chosen sufficiently small, the fixed point equation has a
unique solution. However, we shall take a different direction
to show a stronger result that the uniqueness holds for any
p ∈ (0, 1)L, not only for sufficiently small values. To that
end, we next study the continuity properties ofG (p). The
proof uses the continuity of the mapping

fi(G,p) = Gi −
∑

j∈Ni

β
[

p(i,j) + p(j,i)

]

(1 + β − e−Gj)
, i = 1, . . . , N.

(19)
Note that for f(G,p) = [fi(G,p)]i=1,...,N we have that
f(G(p),p) = 0.

Proposition 2. The correspondenceG : [0, 1]L 7→ R
N
+ is

upper-semicontinuous; i.e.,G (p) has a closed graph.

Proof: Note that for allp ∈ [0, 1]L, G (p) is given by

G (p) = {G ∈ R
N
+ | fi(G,p) = 0, i = 1, . . . , N}. (20)

We will show that G has a closed graph. Let{(pk, Gk)}
be a sequence which satisfiesGk ∈ G (pk) for all k and
converges to some(p̄, Ḡ). Assume to arrive at a contradiction
that Ḡ /∈ G (p̄). By (20), this implies that there exists some
i ∈ {1, . . . , N} such thatfi(Ḡ, p̄) 6= 0. Assume without loss
of generality that there exists someǫ > 0 such that

fi(Ḡ, p̄) > 2ǫ. (21)

By the continuity of the functionsfi, we have

lim
k→∞

fi(Gk,pk) = fi(Ḡ, p̄),

which implies the existence of somēK such that
∣

∣

∣fi(Ḡ, p̄) − fi(Gk,pk)
∣

∣

∣ ≤ ǫ, ∀ k ≥ K̄.

Combined with (21), this yields

fi(Gk,pk) ≥ fi(Ḡ, p̄) − ǫ > ǫ,

contradicting the fact thatGk ∈ G (pk) [cf. (20)].
Recall the definition of the mappingf(G,p) =

[fi(G,p)]i=1,...,N given by (19). The next proposition estab-
lishes the local uniqueness of the correspondenceG (p).

Proposition 3. For all CSMA policiesp ∈ (0, 1)L and all
CSMA fixed pointsG ∈ G (p), there exist open neighborhoods
U ⊂ R

N
+ ofG andV ⊂ (0, 1)L of p such that for each̃p ∈ V

the equationf(G̃, p̃) = 0 has a unique solutionG̃ ∈ U .
Moreover, this solution can be given by a functionG̃ = φ(p̃)
whereφ is continuously differentiable onV .
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Proof: We prove this statement by using the implicit
function theorem (see, e.g., [2]). For nodei ∈ N we have

∂fi

∂Gj
=







1 i = j,
0 j /∈ Ni,
ψ(i,j)ϕj j ∈ Ni,

with

ψ(i,j) ,
[

p(i,j) + p(j,i)

] β

β + (1 − e−Gj)
, ∀(i, j) ∈ L;

ϕj ,
e−Gj

β + (1 − e−Gj)
∀j ∈ Ni.

Note that the functionf is continuously differentiable.
Therefore, in order to use the implicit function theorem we
need to show that the matrix

[

∂fi

∂Gj
|G=G(p)

]

(22)

has linearly independent rows. Before we proceed, we note
that this matrix is a non-negative matrix.

Suppose that the rows are not linearly independent, then
there exists a coefficient vectorx = (x1, ..., xN ) 6= 0 such
that

N
∑

j=1

xj

(

∂fj(p)

∂Gi

)

= 0, for all i ∈ {1, . . . , N}.

Using the special structure of the Jacobian matrix, we obtain

xi + ϕi

∑

j∈Ni

ψ(j,i)xj = 0, for all i ∈ {1, . . . , N}

and

xi = −ϕi

∑

j∈Ni

ψ(j,i)xj , for all i ∈ {1, . . . , N}.

Consider nodei∗ such that for alli = 1, ..., N we have
∣

∣xi∗ [β + (1 − e−Gi∗ )]
∣

∣ ≥
∣

∣xj [β + (1 − e−Gj)]
∣

∣. (23)

Then,

1 = −ϕi∗

∑

j∈Ni∗

ψ(j,i∗)
xj

xi∗

≤ ϕi∗

∑

j∈Ni∗

[

p(i∗,j) + p(j,i∗)

] β

β + (1 − e−Gi∗ )
· ...

... ·
∣

∣xj [β + (1 − e−Gj)]
∣

∣

∣

∣xi∗ [β + (1 − e−Gj )]
∣

∣

(a)

≤ ϕi∗

∑

j∈Ni∗

[

p(i∗,j) + p(j,i∗)

] β

β + (1 − e−Gj )

(b)
=

Gi∗(p)e−Gi∗ (p)

β + (1 − e−Gi∗(p))

(c)
< 1, (24)

where (a) follows from (23), (b) follows from the fact that
fi∗(G,p) = 0, and (c) follows from (5). This proves that
the Jacobian matrix in (22) is non-singular. The result follows
from the implicit function theorem.

We next combine Propositions 1-3 to complete the proof of
Theorem 1.

Proof of Theorem 1:By Proposition 1, for the choice of̂p
in the proposition, there exists a unique fixed pointG(p̂). For
any given policyp ∈ (0, 1)L define the convex combination
of p̂ andp as

p̄(t) = (1 − t)p̂ + tp, t ∈ [0, 1]. (25)

By Lemma 1, the setG (p̄(t)) is nonempty, i.e., there exists
at least one CSMA fixed point at̄p(t) for eacht ∈ [0, 1]. We
use the following lemma to complete the proof.

Lemma 2. For everyG ∈ G (p), there exists acontinuous
functionh : [0, 1] → R

N
+ that satisfies:h(0) = G(p̂); h(t) ∈

G (p̄(t)), for t ∈ (0, 1), where p̄(t) is defined in (25); and
h(1) = G.

Proof: We define the set of functions

H , {h : [0, 1] → R
N
+ | h(t) ∈ G (p̄(t)), t ∈ [0, 1]; h(1) = G}.

For eachh ∈ H, let Th ∈ [0, 1] denote the set of points at
which h is discontinuous. Clearly, the setTh is either empty,
or non-empty and bounded for eachh ∈ H. To arrive at a
contradiction, supposeTh is nonempty for someh ∈ H, and
define the point̃t ∈ [0, 1] as

t̃ , inf
{t∈ Th}

t.

Note that sinceG(p̄(0)) = G(p̂) is unique (from Proposi-
tion 1) and(p, G(p)) is uniquely defined in a neighborhood of
(p̂, G(p̂) (from Proposition 3), we must havẽt > 0. Moreover,
by the upper-semicontinuity ofG (p) (cf. Proposition 2), the
functionh can be chosen to be right continuous att̃, implying
that h is continuous at allt ≤ t̃. By the definition oft̃, there
exists someδ > 0 such that for allǫ > 0 sufficiently small,

∣

∣

∣h(t̃) −Gǫ

∣

∣

∣ > δ, ∀ Gǫ ∈ G (p̄(t̃− ǫ)).

This contradicts the fact that for all̃p and G̃ ∈ G (p̃),
(p, G(p)) is uniquely defined in a neighborhood of(p̃, G̃) (cf.
Proposition 3). Thus, the functionTh must be empty, implying
that h is a continuous function, as claimed.

Back to the Proof of Theorem 1:Assume, to arrive at a
contradiction, that there existG1 andG2 (G1 6= G2) such
that G1, G2 ∈ G (p). By Lemma 2, it follows that there
exist continuous functions,h1(·) andh2(·), such thath1(0) =
h2(0) = G(p̂); h1(1) = G1 and h2(1) = G2. Then, there
must exist aτ = max{t ∈ [0, 1] : h1(s) = h2(s), 0 ≤ s ≤ t}.
Since we know thatG(p̂) is unique, there must be a bifurcation
of the (p̄(t), G(p̄(t)) as t exceedsτ. But, this contradicts the
local uniquenessresult of Proposition 3. Hence,G (p) [and
thereforeR(p)] has a unique element for allp ∈ (0, 1)L.

Theorem 1 combined with the upper-semicontinuity of
Proposition 2 directly implies the continuity of the unique
fixed point solutionG(p), and hence ofρ(p). This is stated
in the following corollary.

Corollary 2. The unique CSMA fixed pointsG(p) and ρ(p)
are both continuous inp ∈ (0, 1)L.
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APPENDIX C
PROOF OFTHEOREM 3

Recall that Theorem 3 concerns a sequence of networks
for which the number of nodesN increases to infinity. Let
L(N) be the set of all links in the network withN nodes,
and letN (N)

i be the set of neighbors of nodei. Furthermore,
let {p(N)}N≥1 be a sequence of CSMA policies wherep(N)

defines a CSMA policies for the network withN nodes, and let
{β(N)}N≥1 be the corresponding sequence of sensing periods.
By Assumption 2, the following conditions hold.

(a) For the sequence{β(N)}N≥1 we have

lim
N→∞

Nβ(N) = 0.

(b) For p(N)
max = max

(i,j)∈L(N)
p
(N)
(i,j) we have that

lim
N→∞

p
(N)
max

β(N)
= 0.

(c) There exists a constantχ and an integerN0 such that for
all N ≥ N0 we have that

∑

j∈N
(N)
i

[p
(N)
(i,j) + p

(N)
(j,i)] ≤ χβ(N), i = 1, ..., N.

For this setup, Theorem 3 states that

lim
N→∞

δ(N)
ρ = 0, and lim

N→∞
δ(N)
τ = 0,

whereδ(N)
ρ andδ(N)

ρ are as defined in Section VIII.
To prove Theorem 3, we use techniques and results that

were presented by Hajek and Krishna in [17] for their analysis
of blocking probabilities in loss networks. Before we startthe
analysis, we provide in the next section a brief summary of
[17] as it relates to our analysis. In Section C-B, we provide
an overview of the proof.

A. Result by Hajek and Krishna

Here we provide a brief summary of the work by Hajek and
Krishna, we refer to [17] for a more detailed description. Con-
sider a wired (loss) network consisting of a set of undirected
links L, where each linki ∈ L has capacity 1. The network
serves connections (calls) where each connection uses 1 unit
of the capacity at each link it traverses, i.e. when active each
link can accommodate at most 1 connection. Furthermore,
suppose that all connections use routes that consist of exactly
two links. Connection requests arrive according to independent
Poisson processes whereνij = νji denotes the arrival rate
for connections that use linksi and j. Once a connection is
accepted, it stays in the system for an amount of time that is
exponentially distributed with mean one. If a new connection
that uses linksi and j in its route arrives and one of these
links is already serving another connection, then it is blocked
and lost. Then,BE(ν) = (BE

i (ν))i is defined as the solution
of the following Erlang fixed point equation

BE
i

1 −BE
i

=
∑

j∈L

νij(1 −BE
j ), i ∈ N , (26)

whereBE
i approximates the probability that linki is busy, i.e.

the probability of serving an incoming connection. In [17],
Hajek and Krishna obtain the following result:

Proposition 4. Consider a loss network as defined above and
let

rv = max
i,j∈L

νij

and
χ = max

i∈L

∑

j∈L

νij .

Then, the actual steady-state probabilitȳBi, i ∈ L, that link
i is busy satisfies, for alli ∈ N ,

(1 −BE
i )e−χ(rv+r2

v/2) ≤ 1 − B̄i ≤ (1 −BE
i )eχ(rv+r2

v/2),

whereBE
i , i ∈ L, is the solution to the Erlang fixed point

equation given by (26).

The above proposition implies that for smallχ andrv, the
solution to the Erlang fixed point equation approximates well
the actual steady-state probability of a link being busy. Our
analysis follows a similar argument whereby we show that our
CSMA fixed point equation can be closely approximated by
an Erlang fixed point equation, which, in turn, is an accurate
estimate of the actual performance of the CSMA policy in
the asymptotic regime of large networks and small sensing
time. Next section outlines the steps of this argument more
explicitly.

B. Main Steps in the Proof of Theorem 3

In this section, we list the main steps leading to the proof
of Theorem 3, and then provide the proof based on those
results. The proof of the statements of the steps are moved
to subsequent subsections to avoid disruption of the flow.

Step 1) Recall that we previously defined and studied the
equations (9)-(10) as fixed point equations with respect to the
parametersρ(p) or G(p). For this proof, we find it move
convenient to work with a new parameterB = (B1, · · · , BN ),
whereBi , (1 − ρi) for each nodei that approximates the
fraction of busy timeof that node under CSMA policyp.
To that end, in Section C-C, we letν = (νij) with νij ,
p(i,j)+p(j,i)

β , and defineB(ν) as the solution to the CSMA
fixed point equation:

Bi =
(1 −Bi)

β
(1 − exp(−β

∑

j∈Ni

νij(1 −Bj))), i ∈ N . (27)

Then, in Lemma 4, we relate this CSMA fixed point equation
(27) to the following generalized version of the Erlang fixed
point equation (26) whereBGE(ν) solves

BGE
i

1 −BGE
i

=
∑

j∈Ni

νij(1 −BGE
j ), i ∈ N , (28)

where (in contrast to the Erlang fixed point equation) it is not
required thatνij = νji, but it is allowed

νij 6= νji.

Using the generalized Erlang fixed point equation, it is shown
that there exists a nonnegative vectorν̂ = (ν̂ij) close toν,

16



potentially, with ν̂ij 6= ν̂ji that satisfiesB(ν) = BGE(ν̂).
Further, we provide bounds on the proximity ofν̂ values toν
(see Lemma 4 for details).

With this motivation, in Section C-D, we prove the existence
and uniqueness of the generalized Erlang fixed pointBGE(ν̂)
for any nonnegativêν, potentially, with ν̂ij 6= ν̂ji. Then, in
Section C-E, we provide a sensitivity analysis of the fixed
pointBGE(ν̂) to bound the change in the fixed point solution
when ν̂ is locally perturbed.

Using this analysis we obtain Corollary 3 which allows to
tightly bounds the CSMA fixed point solutionB(ν) with the
Erlang fixed point solutionBE(ν̂), i.e. Corollary 3 states that
the CSMA fixed pointB(ν) and the Erlang fixed pointBE(ν)
become (asymptotically) identical for largeN . The generalized
Erlang fixed pointBGE(ν̂) serves in this step as a vehicle to
related that CSMA fixed point to the Erlang fixed point.

Step 2) In this step, we study the characteristics of the
actual asynchronous CSMA policy performance. To that end,
in Section C-F, we first prove that the asynchronous CSMA
policy has well-defined steady-state distribution, and hence
falls within the setP of policies with well-defined link
service ratesµ = (µij) and probabilities of links being
idle σ = (σi)i∈N . Then, in Section C-G, we derive several
properties ofσ which are then used in Section C-H to prove
that the steady-state probabilities of nodes being idle become
asymptotically independent in the large network and small
sensing delay limit.

Step 3) Combining the results from Steps 1 and 2, we
show in Section C-I that under Assumption 2 the solution
to the CSMA fixed point equation is asymptotically accurate.
In particular, we derive the following important result (see
Section C-I for its proof).

Proposition 5. Consider a CSMA policy(p(N), β(N)) for
a wireless network consisting ofN nodes and letp(N)

max =

max
(i,j)∈L

p
(N)
(i,j) and letχ be as defined in Assumption 2(c).

Then, there exist constants positiveκ and κs that do not
depend onN , and an integerN0, such that forN > N0 the
actual steady-state probabilityσi(p

(N)), i ∈ N , that nodei
is idle under the CSMA policy(p(N), β(N)) satisfy,∀i ∈ N ,

ρi(p
(N))e−χ(r+r2/2)e−χ(κβ(N)+(κβ(N))2/2)

≤ σi(p
(N)) ≤ ρi(p

(N))eχ(r+r2/2)eχ(κβ(N)+(κβ(N))2/2),

where ρi(p
(N)) is the solution to the CSMA fixed point

equation forp(N), and

r , 2
[

(2N + 1)(κsβ
(N)) + 2rp

]

, with rp ,
p
(N)
max

β(N)
.

Based on Steps 1-3 and Proposition 5, we can now prove
Theorem 3.

Proof of Theorem 3:Consider a sequence of CSMA
policiesp(N) that satisfies Assumption 2. To keep the notation
light, we use in the following onlyp instead ofp(N), pij in-
stead ofp(N)

(i,j), σi instead ofσi(p
(N)), ρi instead ofρi(p

(N)),

andβ instead ofβ(N). Furthermore, we useµ(i,j) instead of
µ(i,j)(p

(N)) to denote the link service rate for link(i, j) under
the CSMA policyp(N), and τ(i,j) instead ofτ(i,j)(p(N)) to

denote the approximation of link service rate for link(i, j)
under the CSMA fixed point approximation for the CSMA
policy p(N).

We first show that

lim
N→∞

δ(N)
ρ = 0.

This result follows immediately from Proposition 5 which
states that the steady-state probabilities asymptotically con-
verge to the solution of the CSMA fixed point equation if

lim
N→∞

(

(2N + 1)(κsβ) + 2rp
)

= 0,

or

lim
N→∞

Nβ = 0, and lim
N→∞

p
(N)
max

β
= 0.

And indeed, these conditions hold by Assumption 2.
The proof that

lim
N→∞

δ(N)
τ = 0

requires results that we obtain in Section C-G and C-H
(outlined in Step 2 above); we will provide references to these
results in the derivations below.

We are going to use the following convention. We say that
a nodei is idle if node i is currently neither sending, nor
receiving, a data packet. Otherwise, we say that nodei is busy.
Accordingly, we say that a linkl = (i, j) is idle if both node
i andj are idle. Otherwise, we say that link(i, j) is busy.

Let yi be the indicator whether nodei is idle (yi = 0) or
busy (yi = 1), and letP (yi = 0, yj = 0) be the steady-state
probabilities that nodei andj are jointly idle. In Section C-F,
we show this steady-state probability exists. Then, using the
same argument as we give in Section C-G to prove Lemma 20,
we can see that

P (yi = 0, yj = 0)p(i,j)(1 − 4χβ)2

≤ µ(i,j)β ≤ P (yi = 0, yj = 0)p(i,j)

(1 − 4χβ)
,

where (1 − 4χβ) is a lower-bound (see Section C-G) on
the probability that a packet transmission on link(i, j) is
successful, i.e. does not experience a collision.

Also, by Proposition 8 in Section C-H, we have that

1

1 + 2rp

(

1

1 + κsβ

)2N

≤ P (yi = 0, yj = 0)

σiσj

≤ (1 + κsβ)
2N

(1 + 2rp).

Using this result in the previous expression yields

1

1 + 2rp

(

1

1 + κsβ

)2N

σiσjp(i,j)(1 − 4χβ)2

≤ µ(i,j)β ≤ (1 + κsβ)
2N

(1 + 2rp)σiσjp(i,j)
1

1 − 4χβ
.

Combining this result with Proposition 5, we obtain that
(

1

1 + κsβ

)2N
(1 − 4χβ)2

(1 + 2rp)
e−2χ(r+ r2

2 )e−2χ(κβ+ (κβ)2

2 )

≤ µ(i,j)β

ρiρjp(i,j)

≤ (1 + κsβ)
2N (1 + 2rp)

(1 − 4χβ)
e2χ(r+ r2

2 )e2χ(κβ+ (κβ)2

2 ),
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whereρi and ρj are the solutions to the CSMA fixed point
equation (9)-(10) for the CSMA policyp.

As we have that (see Sections VI-B and VII, and Equa-
tions (11) and (12))

ρjp(i,j)e
−2χβ

1 + β − e−Gi(p)
≤ ρjp(i,j)e

−(Gi(p)+Gj(p))

1 + β − e−Gi(p)

≤ τ(i,j) ≤
ρjp(i,j)

1 + β − e−Gi(p)

or
ρiρjp(i,j)e

−2χβ

β
≤ τ(i,j) ≤

ρiρjp(i,j)

β
,

it follows that
(

1

1 + κsβ

)2N
(1 − 4χβ)

(1 + 2rp)
e−2χ(r+ r2

2 )e−2χ(κβ+ (κβ)2

2 )e−2χβ

≤ τ(i,j)

µ(i,j)

≤ (1 + κsβ)
2N (1 + 2rp)

(1 − 4χβ)2
e2χ(r+ r2

2 )e2χ(κβ+ (κβ)2

2 ).

Finally, note that under Assumption 2, we have

lim
N→∞

(1 − 4χβ)e−2χ(r+ r2

2 )e−2χ(κβ+
(κβ)2

2 )e−2χβ

(1 + 2rp)(1 + κsβ)2N
= 1

and

lim
N→∞

(1 + κsβ)
2N

(1 + 2rp)e
2χ(r+ r2

2 )e2χ(κβ+ (κβ)2

2 )

(1 − 4χβ)
= 1.

Therefore, it follows that lim
N→∞

δ(N)
τ = 0. �

C. Alternative Formulation of the CSMA Fixed Point

In this section, we derive an alternative formulation for the
CSMA fixed point for a CSMA policyp, which is then used
to relate the CSMA fixed point to the Erlang fixed point for
loss networks (as outlined in Step 1 of Section C-B). To keep
the notation light, we use in the followingp(i,j) instead of

p
(N)
(i,j , β instead ofβ(N), Gi instead ofG(N)

i , andNi instead

of N (N)
i .

Recall that for a CSMA policyp with sensing periodβ, the
CSMA fixed point equation is given by

ρi =
β

β + 1 − e−Gi
, i = 1, ..., N,

whereGi =
∑

j∈Ni

(p(i,j) + p(j,i))ρj . First we observe that for

largeN the offered loadGi becomes small at all nodes.

Lemma 3. Under Assumption 2, we have

lim
N→∞

Gi = 0, i = 1, ..., N.

Proof: By Assumption 2, we have that

lim
N→∞

Gi = lim
N→∞

∑

j∈Ni

(p(i,j) + p(j,i))ρj

≤ lim
N→∞

∑

j∈Ni

(p(i,j) + p(j,i))

≤ lim
N→∞

χβ

= 0.

Let B(ν) = (Bi(ν))i be the CSMA fixed point as given
by equation (27), i.e.B(ν) is the solution to the fixed point
equation

Bi = 1 − β

β + 1 − e−Gi
, i = 1, ..., N,

whereGi =
∑

j∈Ni

(p(i,j) + p(j,i))(1 − Bj). Note that we can

rewrite the expression forBi as

Bi =
β

β + 1 − e−Gi

1

β
(1 − e−Gi) = ρi

1

β
(1 − e−Gi)

= (1 −Bi)
1

β
(1 − e−Gi), (29)

which is previously posed as (27) in our outline. We then have
the following result.

Lemma 4. Given a CSMA policy(p, β) for a network with
N nodes, let

νij =
p(i,j) + p(j,i)

β
, i, j = 1, ..., N

and let χ be given as in Assumption 2(c). LetB(ν), i =
1, ..., N , be the CSMA fixed point as given by(27). Then, for
β ∈ [0, (2χ)−1] and κ ≥ 2χ we have that

Bi(ν) = (1 −Bi(ν))
∑

j∈Ni

ν̂ij(1 −Bj(ν)), i ∈ N ,

for someν̂ij ≥ 0, potentially, withν̂ij 6= ν̂ji satisfying

1

1 + κβ
≤ ν̂ij

νij
≤ 1 + κβ, (i, j) ∈ L,

and ν̂i,j = 0 if (i, j) /∈ L. More compactly, we haveB(ν̂) =
BGE(ν) whereBGE(ν̂) is defined in equation (28).

Proof: For

Gi =
∑

j∈Ni

(p(i,j) + p(j,i))(1 −Bj(ν))

note that
1 − e−Gi ≤ Gi ≤ Gi(1 + κβ).

Furthermore, we have

Gie
−Gi ≤ 1 − e−Gi.

To see this, note thatlimx→0 xe
−x = limx→0(1 − e−x) = 0

and d
dxxe

−x ≤ d
dx(1 − e−x), for x ≥ 0. Since, by Assump-

tion 2, we haveGi ≤ χβ, it also follows that

Gie
−χβ ≤ Gie

−Gi ≤ 1 − e−Gi .

Furthermore, sincee−χβ ≥ (1 − χβ), it follows that

Gi(1 − χβ) ≤ 1 − e−Gi.

Finally, for κ ≥ χ
1−χβ , we have

1

1 + κβ
≤ 1

1 + χ
1−χββ

= 1 − χβ.
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Combining the above results, it then follows that forβ ∈
[0, (2χ)−1] andκ ≥ 2χ we have

Gi
1

1 + κβ
≤ 1 − e−Gi ≤ Gi(1 + κβ)

and, using (29),

1

1 + κβ

∑

j∈Ni

νij(1 −Bi(ν))(1 −Bj(ν))

≤ Bi(ν) ≤
(1 + κβ)

∑

j∈Ni

νij(1 −Bi(ν))(1 −Bj(ν)), ∀i ∈ N .

The result then immediately follows from continuity and the
fact that for nodei ∈ N the vector (ν̂ij)j∈Ni

, can be
determined independently from the other nodes.

Thus, the above lemma establishes that the CSMA fixed
point B(ν) that solves (27) can alternatively be expressed as
the fixed point that solves the generalized Erlang fixed point
equation (28) where the true transmission ratesνij are replaced
by “approximate transmission rates”ν̂ij .

D. Existence and Uniqueness of a Fixed Point

Consider the generalized Erlang fixed point equation of
Lemma 4 that is given by

BGE
i =

∑

j∈Ni

ν̂ij(1 −BGE
i )(1 −BGE

j ), i ∈ N ,

with
ν̂ij ≥ 0, (i, j) ∈ L,

where we allow that
ν̂ij 6= ν̂ji.

In this section, we will show that there exists a unique fixed
point by using an argument that is similar to the one in
Section B that we used to prove the existence and uniqueness
of the CSMA fixed point.

We first rewrite the above fixed point equation as

BGE
i

1 −BGE
i

=
∑

j∈Ni

ν̂ij(1 −BGE
j ), i ∈ N , (30)

whereν̂ij ≥ 0, (i, j) ∈ L.
Given vectorν̂ = (ν̂ij)(i,j)∈L with ν̂ij ≥ 0, (i, j) ∈ L, let

BGE(ν̂) be the set of fixed points for Eq. (30). Then we have
the following result.

Lemma 5. For all fixed points ¯BGE ∈ BGE(ν̂), there
exist neighborhoodsU ⊂ R

N
+ of ¯BGE and V ⊂ [0, 1]L of

ν̂ such that for eachν ∈ V the equationF (BGE , ν) =
(Fi(B

GE , ν))i∈N = 0 where

Fi(B
GE , ν) =

BGE
i

1 −BGE
i

−
∑

j∈Ni

νij(1 −BGE
j )

has a unique solutionBGE ∈ U . Moreover, this solution can
be given by a functionBGE = φ(ν) whereφ is continuously
differentiable onV .

Proof: For i ∈ N , we have

∂Fi

∂BGE
j

=







1
(1−BGE

i
)2
, i = j,

νij , j ∈ Ni

0, otherwise.

Note that the functionF is continuously differentiable. Next
we show that the Jacobain matrix

[

∂Fi

∂BGE
j

]

has linearly independent rows. Having established this result,
the lemma then follows from the implicit function theorem.
Before we proceed, we note that this matrix has non-negative
entries.

Suppose that the rows are not linearly independent, then
there exists a coefficient vectorx = (x1, ..., xN ) 6= 0 such
that

N
∑

j=1

xj

(

∂Fi(B
GE , ν)

∂BGE
j

)

= 0, for all i ∈ {1, . . . , N}.

Using the special structure of the Jacobian matrix, we obtain
xi

(1 −BGE
i )2

+
∑

j∈Ni

xjνij = 0, i ∈ N ,

or
1 +

∑

j∈Ni

νij
xj

xi
(1 −BGE

i )2 = 0, i ∈ N .

Consider a nodei∗ such that
∣

∣

∣

∣

xi∗

1 −BGE
i∗

∣

∣

∣

∣

≥
∣

∣

∣

∣

xi

1 −BGE
i

∣

∣

∣

∣

, i ∈ N .

Then,

1 = −
∑

j∈Ni∗

νi∗j(1 −BGE
i∗ )(1 −BGE

j )
xj

xi∗

1 −BGE
i∗

1 −BGE
j

≤
∑

j∈Ni∗

νi∗j(1 −BGE
i∗ )(1 −BGE

j )

∣

∣

∣

∣

∣

xj

xi∗

1 −BGE
i∗

1 −BGE
j

∣

∣

∣

∣

∣

≤
∑

j∈Ni∗

νi∗j(1 −BGE
i∗ )(1 −BGE

j ) = BGE
i∗ < 1.

Hence, we obtain a contradiction and the result follows.
We then obtain the following result by the same argument

as given to prove the uniqueness of the CSMA fixed point in
Section B.

Lemma 6. There exists a unique fixed pointBGE(ν̂) to
Eq. (30).

E. Sensitivity Analysis

In this section we show that asymptotically (asN becomes
large) the solution to the CSMA fixed point equation converges
to the solution of the Erlang fixed point equation given by
Eq. (26). To show this, we use a sensitivity analysis for the
generalized Erlang fixed pointBGE(ν̂) that is the same as
given by Hajek and Krishna in Section 4 of [17] with only
minor notational changes. For convenience, we provide below
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the analysis of Hajek and Krishna applied to the generalized
Erlang fixed pointBGE(ν̂).

Given vectorν = (νij)(i,j)∈L with νij ≥ 0, (i, j) ∈ L, let
BGE(ν) = (BGE

1 (ν), ..., BGE
N (ν)) be the fixed point to the

equation

BGE
i

1 −BGE
i

=
∑

j∈Ni

νij(1 −BGE
j ), i ∈ N , (31)

where we allow thatνij 6= νji. Furthermore, let the links
l = (i, j) ∈ L be indexed with numbers1, ..., L.

Consider then F (BGE , v) =
(F1(B

GE , v), ..., FN (BGE , v)) where the function
Fi(B

GE , v) is given by

Fi(B
GE , ν) =

BGE
i

1 −BGE
i

−
∑

j∈Ni

νij(1 − BGE
j ), i ∈ N .

with νij ≥ 0, (i, j) ∈ L.
We then have

∂Fi

∂BGE
j

=
1

(1 −BGE
i )2

Ij=i + νij , i, j ∈ N ,

and
∂Fi

∂νij
= −(1 −BGE

j ), i ∈ L, j ∈ Ni.

Let D be theN ×N diagonal matrix with

Di,i = (1 −BGE
i ).

Furthermore, letR be theN ×N matrix given by

Ri,j =

{

νij , j ∈ Ni,
0, otherwise,

and letT be theN × |L| matrix given by

Ti,l =

{

(1 −BGE
i )(1 −BGE

j ), l = (i, j), j ∈ Ni,
0, otherwise.

Using the above definitions, we then have that

∂F

∂BGE
= D

−2 + R

and
∂F

∂v
= −D

−1
T.

Finally, let
L = (I + DRD)−1

where I is the identity matrix. Then we have the following
result.

Lemma 7. The matrixL is well-defined and
∑

j∈N

|Li,j | ≤
1

1 −BGE
∗

, i ∈ N ,

whereBGE
∗ = maxi∈N BGE

i .

Proof: Recall that

∂F

∂BGE
= D

−2 + R

which we can rewrite as
∂F

∂BGE
= D

−1(I + DRD)D−1.

By Lemma 5, the matrix ∂F
∂BGE is invertible. It follows that

(I + DRD) is invertible andL is well defined.
To show that

∑

j∈N

|Li,j | ≤
1

1 −BGE
∗

, i ∈ N ,

we can use the same argument as given to prove Lemma 1
in [17]. That is, letM = DRD, so the diagonal elements of
Mi,i are all equal to zero and the off-diagonal elements are
given by

Mi,j = (1 −BGE
i )(1 −BGE

j )νij .

Note that the elements ofM are all non-negative and that
∑

j∈N

Mi,j = (1 −BGE
i )

∑

j∈Ni

νij(1 −BGE
j ) = BGE

i .

Let e denote the vector with all elements being equal to 1.
Then we have that

Me ≤ BGE
∗ ,

where the inequality is understood to be coordinate-by-
coordinate. By induction, we obtain forn ≥ 0 that

M
ne ≤ (BGE

∗ )n,

andL is given by the absolute convergent series

L =

∞
∑

n=0

(−1)n
M

n.

Moreover, for the matrix|L| given by

|L|i,j = |Li,j |
we have

|L|e ≤
∞
∑

n=0

M
ne ≤

∞
∑

n=0

(BGE
∗ )ne =

1

1 −BGE
∗

e,

and the lemma follows.
From the proof of Lemma 7, we have that

∂BGE

∂ν
= (D−2 + R)−1

D
−1

T = DLT.

We use this result as follows. LetBGE(s) be the solution to
the fixed point equation

BGE
i

1 −BGE
i

=
∑

j∈Ni

ν̂ij(s)(1 −BGE
j ), i ∈ N , (32)

with

ν̂ij(s) = νij(1 + δijs), − 1

(1 + κβ)
≤ δij ≤ 1.

Note that as we varyδij in the interval[− 1
(1+κβ) , 1] ands in

the interval[0, κβ], ν̂ij will vary in the interval[ 1
(1+κβ) , 1 +

κβ].
Using the fact that

∂BGE

∂ν̂
= DLT
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and the chain rule

dBGE
k

ds
=
∂BGE

k

∂ν̂

dν̂

ds
.

we obtain forBGE
k (s), k = 1, .., N , that

∣

∣

∣

∣

dBGE
k

ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

i∈N

∑

j∈Ni

dBGE
k

dν̂ij
νijδij

∣

∣

∣

∣

∣

∣

≤
∑

i∈N

∑

j∈Ni

∣

∣

∣

∣

dBGE
k

dν̂ij
νijδij

∣

∣

∣

∣

≤ (1 −BGE
k )

∑

i∈N

|Lk,i|
∑

j∈Ni

Ti,(i,j)|νijδji|

= (1 −BGE
k )

∑

i∈N

{

|Lk,i| ·

∑

j∈Ni

(1 −BGE
i )(1 −BGE

j )νij |δij |
}

As we have thatνij = 0 for j /∈ Ni, we obtain that
∣

∣

∣

∣

dBGE
k

ds

∣

∣

∣

∣

≤ (1 −BGE
k )

∑

i∈N

{

|Lk,i| ·

∑

j∈Ni

(1 −BGE
i )(1 −BGE

j )νij |δij |
}

= (1 −BGE
k )

∑

i∈N

{

|Lk,i|(1 −BGE
i ) ·

∑

j∈N

ν̂ij

∣

∣

∣

∣

δij
1 + sδij

∣

∣

∣

∣

(1 −BGE
j ).

}

We then have the following result.

Proposition 6. Let κ = 2χ and letBGE(s) be the solution
to the fixed point equation

BGE
i

1 −BGE
i

=
∑

j∈Ni

ν̂ij(s)(1 −BGE
j ), i ∈ N ,

with

ν̂ij(s) = νij(1 + δijs), −1/(1 + κβ) ≤ δij ≤ 1.

Then for0 ≤ s ≤ κβ, we have that

e−χ(s+s2/2) ≤ (1 −BGE
i (s))

(1 −BGE
i (0))

≤ eχ(s+s2/2), i ∈ N .

Proof: For the proof, we use the same analysis as given
to prove Theorem 2 and Corollary 2 in [17]. That is, fors ∈
[0, κβ] andδij ∈ [−1/(1 + κβ), 1] we have

−1 ≤ δij
1 + sδij

≤ 1.

Combining this bound with the fact thatBj(s) is the solution
to (32), we have that

∑

j∈N

ν̂ij

∣

∣

∣

∣

δij
1 + sδij

∣

∣

∣

∣

(1 −BGE
j ) ≤ BGE

i

1 −BGE
i

.

Combining the above result with Lemma 7, it then follows
that
∣

∣

∣

∣

dBGE
k

ds

∣

∣

∣

∣

≤ (1−BGE
k )

∑

i∈N

|Lk,i|BGE
i ≤ (1−BGE

k )
BGE

∗

1 −BGE
∗

.

(33)
Recall thatBGE

i (s) is the solution to

BGE
i (s)

1 −BGE
i (s)

=
∑

j∈N

ν̂ij(s)(1 −BGE
j (s)), s ∈ [0, κβ],

with

ν̂ij(s) = νij(1 + δijs), −1/(1 + κβ) ≤ δij ≤ 1.

As

ν̂ij(s) ≤ νij(1 + s), −1/(1 + κβ) ≤ δij ≤ 1

and by Assumption 2 we have that
∑

j∈Ni

νij ≤ χ,

it follows that
BGE

∗

1 −BGE
∗

< χ(1 + s).

Combining this result with Eq. (33), we obtain that
∣

∣

∣

∣

dBGE
k

ds

∣

∣

∣

∣

≤ (1 −BGE
k )χ(1 + s), s ∈ [0, κβ],

and the proposition follows.
We have the following corollary.

Corollary 3. Let κ = 2χ. The solution B(ν) =
(B1(ν), ..., BN (ν)) to the CSMA fixed point equation given
by Eq.(27) then satisfies

e−χ(κβ+(κβ)2/2) ≤ (1 −BE
i (ν))

(1 −Bi(ν))
≤ eχ(κβ+(κβ)2/2), i ∈ N ,

whereBE(ν) = (BE
1 (ν), ..., BE

N (ν)) is the solution to the
Erlang fixed point equation

BE
i

1 −BE
i

=
∑

j∈Ni

νij(1 −BE
j ), i ∈ N ,

with

νij =
p(i,j) + p(j,i)

β
.

Proof:
Recall that if we varyδij in the interval[−1/(1 + κβ), 1]

ands in the interval[0, κβ], ν̂ij , then

ν̂ij(s) = νij(1 + δijs), −1/(1 + κβ) ≤ δij ≤ 1.

will vary in the interval[1/(1 + κβ), 1 + κβ].
The corollary then follows immediately from Proposition 6

and from Lemma 4 which states that the CSMA fixed point
B(ν) is equal to the a solutionBGE(ν̂) to the fixed point
equation

BGE
i =

∑

j∈Ni

ν̂ij(1 −BGE
i )(1 −BGE

j ), i ∈ N ,
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whereν̂ij ≥ 0 is such that

1

1 + κβ
≤ ν̂ij

νij
≤ 1 + κβ, (i, j) ∈ L,

and ν̂ij = 0 if (i, j) /∈ L.

The above corollary states that the solutionB(ν) to the
CSMA fixed point equation given by Eq.(27) and the solution
BE(ν) to the Erlang fixed point equation become (asymptot-
ically) identical for largeN , as by Assumption 2 we have hat
β approaches 0 asN increases. We are going to use this result
in Section C-I to prove Proposition 5.

F. Existence of Steady-State Probabilities

In this section, we show that the family of CSMA policies
(p, β) provided in Definition 6 is contained in the setP of all
policies that have well-defined link service rates.

Consider a CSMA policyp with sensing periodβ. Further-
more, recall thatβl(l

′) is the amount of time linkl requires to
detect that linkl′ has finished transmitting a packet, i.e.βl(l

′)
is the sensing delay of linkl for link l′ (see also Section IV-B).

Recall that we say that a nodei is idle if nodei is currently
neither sending, nor receiving, a data packet. We say that a
link l = (i, j) is idle if both nodei andj are idle. Otherwise,
we say that nodei (link (i, j)) is busy.

For a given directed linkl = (i, j), we refer to nodei as
the source node of linkl. We then say that linkl = (i, j) is
sensed to be idle by its source node, if nodei is (a) currently
idle and (b) senses nodej to be idle. Otherwise, we say that
nodei senses linkl to be busy.

Suppose that at timet0 nodei has sensed linkl = (i, j) to
be idle for exactly the duration of a sensing periodβ, i.e. node
i first detect that linkl is idle at timet0 − β. Furthermore,
suppose that at timet0 nodei starts a packet transmission on
link l. Then we say that linkl has been idle in the interval
[t0 − β, t0).

If at time t0, link l = (i, j) just became busy (either because
nodei started a packet transmission on linkl, or because a link
l′ ∈ Il that interferes with linkl started a packet transmission)
and that timet1 is the first time after timet0 that link l is idle
again, then we refer to the interval[t0, t1) as a busy period of
link l.

Let yl(t) indicate whether linkl is busy (yl(t) = 1) or
idle (yl(t) = 0). In this section we show that the steady-state
probabilities

P (yi = 0) = lim
k→∞

P (yi(kβ) = 0),

for all i ∈ L, and

P (yi = 0, yj = 0) = lim
k→∞

P (yi(kβ) = 0, yj(kβ) = 0),

for all i ∈ L andj ∈ L, exist.
Note that the state of the system at timet can be charac-

terized by the vector(y(t), z(t)) where

y(t) = (yl(t))l∈L,

indicates for each linkl ∈ L whetherl is busy (yl(t) = 1) or
not (yl(t) = 0), and

z(t) = (zl(t))l∈L,

indicates the remaining time until nodei has the chance to start
a packet transmission on linkl (if link l is currently idle), or
the time until link l becomes idle again (if linkl is currently
busy).

The existence of the steady-state probabilitiesp(yi = 0)
andp(yi = 0, yi = 0), i, j ∈ N , can easily be established for
the special case where (a) all sensing delays are equal toβ,
i.e. we have

βl(l
′) = β, l, l′ ∈ L,

(b) the sensing times of all nodes are aligned, i.e. all nodes
are initial idle and start sensing links at timet0 = 0, and (c)
we have that

β =
1

c

for some integerc.
In this case, the system dynamics are given by a finite-state

Markov chain(y(k), z(k)), k ≥ 0, such that

(yl(k), z(k)) = (yl(kβ), zl(kβ)),

whereyl(k) ∈ {0, 1} and

zl(k) ∈ {β, 2β, ...., 1, 1 + β}, l ∈ L, k ≥ 0.

Furthermore, the Markov chain has a single-recurrent class
containing the state(y∗, z∗) given by

y∗l = 0 andz∗l = β, l ∈ L,
and is aperiodic as the recurrent state(y∗, z∗) has a self-
transition. It then follows that the above steady-state proba-
bilities exist.

For the general case where not all sensing times are the
same, we define a renewal process [12] to establish the
existence of the above steady-state probabilities. Without loss
of generality we assume for the rest of this section that

(a) for all links (i, j) ∈ L we have thatp(i,j) > 0, and
(b) the interference graph consists of one connected com-

ponent, where the vertex set of the interference graph is
equal toL and there exists an edge between two vertices
l, l′ in the interference graph if linkl andl′ interfere with
each other.

1) Recurrent State(y∗, z∗): In the following, we construct
a recurrent state(y∗, z∗) that we use to define a renewal
process for the general case where not all sensing times are the
same. To do this, we first iteratively number the links in the
following way. At step1, let l1 be an arbitrary link inL and
let S1 be the set of links that have an interference constraint
with link l1, i.e. we have

S1 = Il1 .

In addition setB1 = {l1}, set A1 = S1, and setC1 =
L\(S1 ∪ {l1}), i.e. setC1 contains all links except for link
l1 and the links that interfere withl1. We then apply this
procedure recursively as follows. Suppose that we are given
the setsAk, Bk, andCk, of stepk. These three sets have the
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following interpretation. SetBk contains all links that have
been chosen at stepk or an earlier iteration. SetAk contains
all links that interfere with at least one link in setBk, and set
Ck contains all links that are not contained in setAk or Bk.
Given these three sets, we proceed at stepk + 1 as follows.
If the setAk is empty, then we stop. Otherwise, we pick an
arbitrary link from the setAk and label it aslk+1. Let Sk+1

be the set of links in setCk that interfere with linklk+1, i.e.
we have

Sk+1 = Ck ∩ Ilk+1
.

SetBk+1 = Bk ∪ {lk+1}, setAk+1 = (Ak ∪ Sk+1)\{lk+1},
and setCk+1 = Ck\Sk+1.

Without loss of generality, we assumed that the interference
graph is connected, and the above procedure will terminate
afterL steps withAL = CL = ∅.

Having labeled the links as given above, we then construct
the following sample path of the system to which we will refer
to as sample pathSP ∗.

a) Sample PathSP ∗:: Suppose that during in the inter-
val [t0, t0 + β) all links l ∈ L are idle. Then let timet′0 be
given by

t′0 = t0 + β,

and let link l1 start a packet transmission at timet′0 + zl1(t
′
0)

while all other links remain idle during in the interval[t′0, t
′
0+

2β)). Note that in this case the packet transmission of linkl1
will not experience a collision. Lett1 = t′0 +zl1(t

′
0)+1 be the

time whenl1 finishes its transmission and let all other links
remain idle during the interval[t′0 + 2β, t1).

Then proceed iteratively as follows. Lettk, k = 1, ..., N , be
the time when linklk finishes its packet transmission, and let
all links be idle in the interval[tk, tk + β). Set

t′k = tk + β

and let link lk+1 start a packet transmission at timet′k +
zlk(t′k) while all other links remain idle during in the interval
[t′k, t

′
k + 2β). Let tk+1 = t′k + zlk(t′k) + 1 be the time when

link lk+1 finishes its transmission and let all other links remain
idle during the interval[t′k + 2β, tk+1).

Let time tL be the time when linklL finishes its packet
transmission and let all links to remain idle during the interval
[tL, tL + β).

Finally, let

tr = tL + β + zl1(tL)

be the time when linkl1 has a chance to start a packet
transmission in the interval[tL + β, tL + 2β), given that the
source node of linkl1 continues to sense linkl1 to be idle
during the interval[tr − β, tr).

Having defined the sample pathSP ∗, we show next that
the state variablez(tr) = (zl(tr))l∈L at the end of the sample
pathSP ∗ does not depend on the statez(t′0) at time t′0, but
is uniquely determined by the sequence of how all links make
their transmission attempts and the fact that all links wereidle
at timet′0. To do this, for a scalarx letmodβ [x] be the modulo

function given by

modβ [x] =















x−
⌊

x
β

⌋

β, x ≥ 0

⌈

|x|
β

⌉

β − |x|, x < 0.

,

and let
ẑl(t) = modβ

[

zl1(t) − zl(t)
]

,

be the difference (offset) between the time when the current
active period ends for linkl1 and l. We have the following
result.

Lemma 8. Let the timet′k, k = 1, ..., L be as given in
the definition of the sample pathSP ∗. Then at timet′k,
k = 1, ..., L, for all links l in the setAk ∪ Bk the offset
ẑl(t

′
k) is given by a function that does not depend onz(t′0),

but depends only on the constantsβl(l
′), l, l′ ∈ L, and the

sequence of the firstk links that are activated in the sample
pathSP ∗.

Proof: As we do not require the transmission time 1 to
be divisible byβ, let ∆t be given by

∆t = modβ(1).

We prove the lemma by induction. For the sample pathSP ∗,
recall thatt1 is the time when linkl1 finishes its transmission
and t′1 is given by

t′1 = t1β.

It follows that
zl1(t

′
1) = β

and for all linksl in the setA1 ∪B1 we have

zl(t
′
1) = βl(l1).

whereβl(l1) is the time link l requires to sense that linkl1
has finished a packet transmission. It follows that for all links
l in the setA1 ∪B1 we have

ẑl(t
′
1) = βl(l1),

and the condition given in the lemma is true fork = 1.
Suppose that the lemma is correct fork− 1 ≥ 1, and letlk

be the linkkth link that is activated in the sample pathSP ∗.
Recall thattk is the time when linklk finishes its transmission
and t′k is given by

t′1 = t1β.

We first note that when linkl1 does not interfere with linklk,
i.e. we havel1 /∈ Ilk , then the transmission of linklk does
not affect the offset betweenzl1(t

′
k) and zl(t

′
k) for all links

l /∈ Ilk . Using this observation, we consider the following two
cases.

First suppose thatl1 /∈ Ilk . Then for all linksl ∈ Ak ∪Bk

such thatl /∈ Ilk , we have that

ẑl(t
′
k) = ẑl(t

′
k−1),

and for link lk we have that

ẑlk(t′k) = modβ

[

ẑlk(t′k−1) + ∆t
]

.
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For all links l ∈ Ak ∪Bk such thatl ∈ Ilk , we have that

ẑl(t
′
k) = modβ

[

ẑlk(t′k−1) + ∆t+ βl(lk)
]

.

Next suppose thatl1 ∈ Ilk . Then for link lk we have that

ẑlk(t′k) = β − βl1(lk),

and for all linksl ∈ Ak ∪Bk such thatl /∈ Ilk , we have that

ẑl(t
′
k) = modβ

[

β − βl1(lk) + ẑlk(t′k−1) − ẑl(t
′
k−1) + ∆t

]

.

For all links l ∈ Ak ∪Bk such thatl ∈ Ilk , we have that

ẑl(t
′
k) = modβ

[

βl1(lk) − βl(lk)
]

.

As by the induction hypothesiŝzl(t
′
k) does not depend on

z(t′0) but only on the constantsβl(l
′), l, l′ ∈ L, and the

sequence of the firstk links that activated in the sample path
SP ∗, the statement of the lemma is true for stepk. The results
then follows.

We then have the following lemma.

Lemma 9. Let t′0 and tr be as given in the definition of the
sample pathSP ∗. The state(y∗, z∗) = (y(tr), z(tr)) in the
sample pathSP ∗ is given by a function that does not depend
on (y(t′0), z(t

′
0)), but only on the constantsβl(l

′), l, l′ ∈ L,
and the sequence of links activated in the sample pathSP ∗

Proof: This result follows immediately from Lemma 8
and the fact that

zl1(tr) = 0

and
zl(tr) = ẑl(t

′
L), l 6= l1.

Next we show that there exists a positive constantp0 such
that the probability that the above sample path reaches state
(y∗, z∗) within at most(1 + L)(1 + 2β) time units is lower-
bounded byp0.

Lemma 10. Let

pmax , max
(i,j)∈L

p(i,j), and pmin , min
(i,j)∈L

p(i,j).

Then, the probability that we reach the state(y∗, z∗) within
(1 + L)(1 + 2β) time units from any given initial state
(y(t0), z(t0) is lower-bounded by

p0 = (1 − pmax)
L(⌈1/β⌉+2)

[

pmin(1 − pmax)
L(2+⌈1/β⌉

]L

.

Proof: Note that from any initial state(y(t0), z(t0), with
probability at least

(1 − pmax)
L(⌈1/β⌉+2)

we have for
t′0 = t0 + 1 + 2β

that all links are idle during the interval[t′0 − β, t′0).
Consider the sample pathSP ∗. The probability that linkl1

starts a packet transmission in the interval[t′0, t
′
0 + β) and all

other links remain idle in the interval[t′0, t
′
0 + 2β), is lower-

bounded by
pmin(1 − pmax)

2L.

The probability that no other link starts a packet transmission
in the interval[t′0 + 2β, t′0 + 1 + 2β) is lower-bounded by

(1 − pmax)
L⌈1/β⌉.

Let t1 be the time when linkl1 finishes its packet transmission;
note that

t1 < t′0 + β + 1.

If all other links remain idle during the interval[t′0, t
′
0+1+2β),

then all links are idle during the interval[t1, t1 + β).
The result follows by applying the above argument itera-

tively to the case where linklk, k = 2, ..., L, start a packet
transmission under the sample pathSP ∗.

2) Renewal Process:Using Lemma 10, we can define a
renewal process where renewal epochs are marked by visits to
the recurrent state(y∗, z∗).

Lemma 11. The expected length of the interval between visits
to state(y∗, z∗) is bounded, and the visits to the state(y∗, z∗)
define a renewal process.

We have the following result for the resulting renewal
process.

Lemma 12. The renewal process defined by visits to the state
(y∗, z∗) is either aperiodic, or has a periodβ/c wherec is a
positive integer.

Proof: The lemma follows immediately from the fact that
if (y(t0), z(t0)) = (y∗, z∗) then with probability at least(1−
pmax)L we have that

(y(t0 + β), z(t0 + β)) = (y∗, z∗).

Combining the above lemmas, we obtain the following
result.

Proposition 7. For every sensing periodβ > 0, the family of
CSMA policiesp is contained in the setP of all policies that
have well-defined link service rates.

Proof: Let I(i,j)(t) be the indicator function for whether
link (i, j) is transmitting at timet a packet that does not
experience a collision during its entire transmission time.
Using Lemma 12, we then we have that (see for example [12])

lim
t→∞

1

t

∫ t

0

I(i,j)(τ)dτ = lim
k→∞

P (I(i,j)(kβ) = 1).

G. Properties of Balance Equations

In this section, we characterize the balance equations for
the steady-state probabilities

P (yi = 0) = lim
k→∞

P (yi(kβ) = 0), i ∈ L,

and

P (yi = 0, yj = 0) = lim
k→∞

P (yi(kβ) = 0, yj(kβ) = 0), i, j ∈ L,
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under a CSMA policyp with sensing periodβ.
We are going to use the following notation. If nodei is

busy at timet, i.e. if yi(t) = 1, let xi(t), i ∈ N , denote the
time until nodei becomes idle again, i.e. untili stops sending,
or receiving, the current packet transmission. Furthermore, if
nodei andj are jointly idle at timet, i.e. we have thatyi(t) =
yj(t) = 0, then letxij(t) = xji)(t) be the amount of time that
nodei andj haven been jointly idle. Note that if nodei andj
have to be jointly idle for at least the duration of sensing period
β before nodei can potentially start a packet transmission on
link (i, j).

1) Preliminary Lemmas:For a given linkl = (i, j), recall
thatIl be the set of links that interfere withl. Suppose that at
time t nodei andj have been jointly idle for at leastβ time
units, i.e. we have thatyi(t) = yj(t) = 0 and xij(t) ≥ β.
Given a CSMA policyp, the probability that nodei starts a
packet transmission on linkl during the interval(t, t + β] is
then lower-bounded by

p(i,j)

∏

l′∈Il

(1 − pl′),

upper bounded byp(i,j).
Note that from the definition of a CSMA policy, it immedi-

ately follows thatp(i,j) is an upper-bound on the probability
that nodei starts a packet transmission on linkl during the
interval(t, t+β]. To see thatp(i,j)

∏

l′∈Nl
(1−pl′) is a lower-

bound, we observe the following. Given that at timet nodei
andj have been jointly idle for at leastβ time units, lett0 be
the earliest time aftert when nodei has the chance to start
a packet transmission on linkl, if link l remains idle in the
interval (t, t0). Note that

t0 ≤ t+ β.

In the worst case, all linksl′ ∈ Il have an opportunities to start
a packet transmission in the interval[t0 − β, t0). In this case,
the probability that no linkl′ ∈ Il starts a packet transmission
during the interval[t0 − β, t0), and link l has the opportunity
to start a packet transmission at timet0 is lower-bounded by

∏

l′∈Il

(1 − pl′)

and the probability that linkl starts a packet transmission in
the interval(t, t+β] is lower-bounded byp(i,j)

∏

l′∈Il
(1−pl′).

We have the following result.

Lemma 13. Suppose that at timet nodei and j have been
jointly idle for at leastβ time units, i.e. we have thatyi(t) =
yj(t) = 0 andxij(t) ≥ β. Then there exists a constantκp such
that the probability that the link starts a packet transmission
in the interval(t, t+ β] is lower-bounded by

1

1 + κpβ
p(i,j), β ∈ [0, (4χ)−1]

and upper-bounded by

(1 + κpβ)p(i,j).

Proof: For k ∈ Il we have that
∣

∣

∣

∣

∣

d

dpk
p(i,j)

∏

l′∈Il

(1 − pl′)

∣

∣

∣

∣

∣

≤ p(i,j).

From the mean value theorem, it then follows that

p(i,j)(1 −
∑

l′∈Il

pl′) ≤ p(i,j)

∏

l′∈Il

(1 − pl′).

By Assumption 2 we have that
∑

l′∈Il

pl′ ≤ 2χβ,

and it follows that

p(i,j)(1 − 2χβ) ≤ p(i,j)

∏

l′∈Il

(1 − pl′).

Note that for
κp ≥ 4χ

we have that
1

1 + κpβ
≤ (1 − 2χβ), β ∈ [0, (4χ)−1].

The result then follows.
Below, we derive additional lemmas that we are going to

use in Section C-G2.

Lemma 14. The probability that a packet transmission expe-
riences a collision is upper-bounded by4χβ.

Proof: Suppose that nodei starts a packet transmission
on link l = (i, j) at time t. Then this packet transmission
will experience a collision only if another node starts a packet
transmission on a linkl′ ∈ Il in the interval(t−β, t+β). This
is because by Assumption 1, we have that for linksl′ ∈ Il we
have that the sensing delayβl(l

′) andβl′(l) is bounded byβ.
Furthermore, by Assumption 2 we have that

∑

l′∈Il

pl′ ≤ 2χβ,

and the lemma follows.

Lemma 15. We have

P (yi = 1, xi ∈ (0, β]) = P (yi = 1, xi ∈ (1 − β), 1]).

Proof: The above lemma follows immediately from the
fact that a packet transmission takes 1 time unit.

Lemma 16. We have

P (yi = 1, xi ∈ (0, β])
1

β

≤ P (yi = 1) ≤ P (yi = 1, xi ∈ (0, β])
1 + 2β

β
.

Proof: The results follows immediately from the fact that
the length of a busy period is bounded between 1 (the length
of a successful transmission) and1 + 2β (the maximal length
of a collision).

Lemma 17. We have

P (yi = 1, xi ∈ (1, 1 + β]) ≤ P (yi = 1, xi ∈ (1 − β, 1])4χβ.

Proof: Note that the event{yi = 1, xi ∈ (1, 1 + β]}
indicates that a packet transmission resulted in a collision. By
Lemma 14, the probability of this happening is upper-bounded
by 4χβ, and the lemma follows.
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Lemma 18. We have

P (yi = 0, yj = 0, xij ≥ β)

P (yi = 0, yj = 0)
≥ (1 − 4χβ), i, j ∈ N .

Proof: Suppose that at timet node i and j have just
become jointly idle, and letTt denote the time it takes starting
from t until either nodei or j become busy. Note that by
Assumption 2, we have that

E[Tt] ≥ β
1

2χβ
− β =

1

2χ
− β.

Furthermore, we have that

P (yi = 0, yj = 0, xij ≥ β)

P (yi = 0, yj = 0)
=
E[Tt|Tt ≥ β] − β

E[Tt]
.

As
E[Tt|Tt ≥ β] ≥ E[Tt],

we obtain that

P (yi = 0, yj = 0, xij ≥ β)

P (yi = 0, yj = 0)
≥ E[Tt] − β

E[Tt]
.

Furthermore as
E[Tt] ≥

1

2χ
− β,

it follows that

P (yi = 0, yj = 0, xij ≥ β)

P (yi = 0, yj = 0)
≥ E[Tt] − β

E[Tt]

≥ 1/2χ− 2β

1/2χ− β
=

1 − 4χβ

1 − 2χβ
≥ 1 − 4χβ.

2) Bounds on the Steady-State Probabilities:In the fol-
lowing, we derive bounds on the steady-state probability
P (yi = 1), i ∈ N . We start with the following lemma.

Lemma 19. For
β ∈ [0, (16χ)−1]

there exists a constantκ′p such that

1

1 + κ′pβ

∑

j∈Ni

P (yi = 0, yj = 0)(p(i,j) + p(j,i))

≤ P (yi = 1, xi ∈ (1 − β, 1])

≤ (1 + κ′pβ)
∑

j∈Ni

P (yi = 0, yj = 0)(p(i,j) + p(j,i)).

Proof: Suppose that the system is in steady-state at time
t0 and that we observe the evolution of the system from time
t0 to t0 + β. Using lemma 12, which states that the renewal
process is either aperiodic, or has a period ofβ/c wherec is
a positive integer, it follows that at timet0 + β the system
is again in steady-state. Furthermore, suppose that at time
t0 nodesi and j have been jointly idle for at leastβ time
units, i.e. we have thatyi(t0) = yj(t0) = 0 andxij(t0) ≥ β.
Then by Lemma 13, forβ ∈ [0, ((4χβ)−1) there exists a
constantκp such that the probability that link(i, j) starts a
packet transmission during the interval(t0, t0 +β] is bounded
between 1

(1+κpβ)p(i,j) and(1+κpβ)p(i,j). Furthermore, these
two bounds provided by Lemma 13 are independent of the
states of all other links, and hence independent of states of

the states of nodes other than nodei and j. By Lemma 14
the probability that this transmission will result in a collision
is upper-bounded by4χβ. When the transmission does not
result in a collision, then att0 + β the remaining time until
nodei finishes the packet transmission will be in the interval
(1 − β, 1], i.e. we havexi(t0 + β) ∈ (1 − β, 1].

Combining the above results, we obtain that

1 − 4χβ

1 + κpβ

∑

j∈Ni

P (yi = 0, yj = 0, xij ≥ β)(p(i,j) + p(j,i))

≤ P (yi = 1, xi ∈ (1 − β, 1])

and

P (yi = 1, xi ∈ (1 − β, 1])

≤ (1 + κpβ)
∑

j∈Ni

P (yi = 0, yj = 0)(p(i,j) + p(j,i))

+P (yi = 1, xi ∈ (1, 1 + β]),

where the last termP (yi = 1, xi ∈ (1, 1+β]) accounts for the
probability that at timet0 nodei is experiencing a collision
that will last anothertc time units withtc ∈ (1, 1 + β].

Using Lemma 18, we obtain for the first inequality that

(1 − 4χβ)2

1 + κpβ

∑

j∈Ni

P (yi = 0, yj = 0)(p(i,j) + p(j,i))

≤ P (yi = 1, xi ∈ (1 − β, 1]).

Furthermore, using Lemma 17 we obtain that

P (yi = 1, xi ∈ (1 − β, 1])

≤ (1 + κpβ)
∑

j∈Ni

P (yi = 0, yj = 0)(p(i,j) + p(j,i))

+P (yi = 1, xi ∈ (1 − β, 1])4χβ,

or

P (yi = 1, xi ∈ (1 − β, 1])

≤ 1 + κpβ

1 − 4χβ

∑

j∈Ni

P (yi = 0, yj = 0)(p(i,j) + p(j,i)).

Note that forβ ∈ [0, (16χ)−1] and κ′p ≥ 2(κp + 8χ) we
have that

1

1 + κ′pβ
≤ 1 − 8χβ

1 + κpβ
≤ (1 − 4χβ)2

1 + κpβ
.

The lemma then follows.
Using Lemma 19, we obtain the following bound for the

steady-state probabilityP (yi = 1), i ∈ N .

Lemma 20. For β ∈ [0, (16χ)−1], there exists a constantκs

such that
1

1 + κsβ

∑

j∈Ni

P (yi = 0, yj = 0)νij

≤ P (yi = 1)

≤ (1 + κsβ)
∑

j∈Ni

P (yi = 0, yj = 0)νij ,

where
νij =

p(i,j) + p(j,i)

β
.
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Proof: Using Lemma 15-19, forβ ∈ [0, (16χ)−1] we
have

P (yi = 1, xi ∈ (1 − β, 1])
1

β

≤ P (yi = 1)

≤ P (yi = 1, xi ∈ (1 − β, 1])
1 + 2β

β
,

and there exists a constantκ′p such that

1

1 + κ′pβ

∑

j∈Ni

P (yi = 0, yj = 0)(p(i,j) + p(j,i))

≤ P (yi = 1, xi ∈ (1 − β, 1])

≤ (1 + κ′pβ)
∑

j∈Ni

P (yi = 0, yj = 0)(p(i,j) + p(j,i)).

Combing the above results, we have that

1

1 + κ′pβ

∑

j∈Ni

P (yi = 0, yj = 0)νij

≤ P (yi = 1)

≤ (1 + κ′pβ)(1 + 2β)
∑

j∈Ni

P (yi = 0, yj = 0)νij ,

where
νij =

p(i,j) + p(j,i)

β
.

Note that forβ ∈ [0, (16χ)−1] and

κs ≥ κ′p + 2 +
κ′p
8χ

we have that

(1 + κ′pβ)(1 + 2β) ≤ 1 + κsβ.

The lemma then follows.

H. Characterization of the steady-state probabilities

In this section, we characterize the steady-state probabilities

B̄i = 1 − P (yi = 0), i ∈ N ,

that a nodei is busy under a CSMA policyp with sensing
period β, using the same analysis as given by Hajek and
Krishna in Section 3 and 4 of the reference [17] with only
minor changes.

Throughout this section, we set

νij =
p(i,j) + p(j,i)

β
, i, j ∈ N ,

with νij = 0 if (i, j) /∈ L and (j, i) /∈ L.
Note that by Lemma 20 there exists a constantκs such that

1

1 + κsβ

∑

j∈Ni

P (yi = 0, yj = 0)νij

≤ P (yi = 1)

≤ (1 + κsβ)
∑

j∈Ni

P (yi = 0, yj = 0)νij .

We have the following result.

Lemma 21. Let κs be the constant of Lemma 20. Then for
k, l ∈ N we have that

1

1 + κsβ

∑

j 6=k,l

P (yk = 0, yj = 0, yl = 0)νkj ≤

≤ P (yk = 1, yl = 0)

≤ (1 + κsβ)
∑

j 6=k,l

P (yk = 0, yj = 0, yl = 0)νkj .

Proof: Note that we have

P (yk = 1, yl = 0) = P (yk = 1|yl = 0)P (yl = 0),

and

P (yk = 0, yj = 0, yl = 0)

= P (yk = 0, yj = 0|yl = 0)P (yl = 0).

Therefore, to obtain the result, it suffices to show that
1

1 + κsβ

∑

j 6=k,l

P (yk = 0, yj = 0|yl = 0)νkj

≤ P (yk = 1|yl = 0)

≤ (1 + κsβ)
∑

j 6=k,l

P (yk = 0, yj = 0|yl = 0)νkj .

The above inequalities are obtained by the same argument as
given in the proof for Lemma 20.

We then have the following result.

Proposition 8. Letκs be the constant of Lemma 20. Fork, l ∈
N we then have that

1

1 + 2rp

(

1

1 + κsβ

)2N

≤ P (yk = 0, yl = 0)

P (yk = 0)P (yl = 0)

≤ (1 + κsβ)
2N

(1 + 2rp),

with rp ,
pmax

β and pmax is as given in Assumption 2.

Proof: Let Zi be the steady-stated probabilityP (yi = 0)
that nodei is idle, let Zij be the steady-stated probability
P (yi = 0, yj = 0) that nodesi and j are jointly idle, and let
Zijk be the steady-stated probabilityP (yi = 0, yj = 0, yk =
0) that nodesi, j, andk, are jointly idle.

We use a proof by induction on the number of nodes in the
network, as given in [17]. For a network withN = 1 node
the proposition is trivially true, and suppose thatN ≥ 2.

Using Lemma 21, we have that

1

1 + κsβ

(

Zkl +
∑

j 6=k,l

Zjklνjk

)

≤ Zl ≤ (1 + κsβ)
(

Zkl +
∑

j 6=k,l

Zjklνjk

)

.

Furthermore, starting with the equation

1 = P (yk = 0) + P (yk = 1)

and using the result from Lemma 20, which states that

1

1 + κsβ

(

∑

j∈Nk

P (yk = 0, yj = 0)νkj

)

≤ P (yk = 1)

≤ (1 + κsβ)
(

∑

j∈Nk

P (yk = 0, yj = 0)νkj

)

,
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we obtain
1

1 + κsβ

(

P (yk = 0) +
∑

j∈Nk

P (yk = 0, yj = 0)νkj

)

≤ 1

≤ (1 + κsβ)
(

P (yk = 0) +
∑

j∈Nk

P (yk = 0, yj = 0)νkj

)

.

Combining the above inequalities, we obtain by the same
approach as in [17] that

1

(1 + κsβ)2
(Zk + Zklνkl)Zkl +

∑

j 6=k,l ZjkZklνjk

ZkZkl +
∑

j 6=k,l ZkZjklνjk

≤ P (yk = 0, yl = 0)

P (yk = 0)P (yl = 0)
≤

(1 + κsβ)2
(Zk + Zklνkl)Zkl +

∑

j 6=k,l ZjkZklνjk

ZkZkl +
∑

j 6=k,l ZkZjklνjk
.(34)

Using the fact thatZkl ≤ Zk and by Assumption 2 we have

0 ≤ νij ≤ 2rp,

it follows that

1 ≤ Zk + Zklνkl

Zk
≤ 1 + 2rp

and
Zk ≤ Zk + Zklνkl ≤ (1 + 2rp)Zk. (35)

Furthermore, from the induction hypotheses applied to the
network withN − 1 nodes, we obtain, by deleting nodek,

1

1 + 2rp

(

1

1 + κsβ

)2(N−1)

≤ ZjkZkl

ZkZjkl

≤ (1 + κsβ)
2(N−1)

(1 + 2rp)

and

1

1 + 2rp

(

1

1 + κsβ

)2(N−1)

ZkZjkl ≤ ZjkZkl

≤ (1 + κsβ)
2(N−1)

(1 + 2rp)ZkZjkl. (36)

Using Eq. (35) and (36) in Eq. (34), we obtain
(

ZkZkl + 1
1+2rp

(

1
1+κsβ

)2(N−1) ∑

j 6=k,l

ZkZjklνjk

)

(1 + κsβ)2(ZkZkl +
∑

j 6=k,l ZkZjklνjk)

≤ P (yk = 0, yl = 0)

P (yk = 0)P (yl = 0)
≤

(1 + κsβ)2(1 + 2rp)

(

ZkZkl + (1 + κsβ)
2(N−1)

∑

j 6=k,l

ZkZjklνjk

)

(ZkZkl +
∑

j 6=k,l ZkZjklνjk)
.

and

1

1 + 2rp

(

1

1 + κsβ

)2N

≤ P (yk = 0, yl = 0)

P (yk = 0)P (yl = 0)

≤ (1 + κsβ)
2N

(1 + 2rp).

The result then follows.
We then obtain the following corollary.

Corollary 4. Let κs be the constant of Lemma 20, and letB̄i

be the actual steady-state probability that nodei is busy. Then

B̄i

1 − B̄i
=
∑

j∈Ni

ν̃ij(1 − B̄j)

whereν̃ij is such that

1

1 + 2rp

(

1

1 + κsβ

)2N+1

≤ ν̃ij

νij
≤ (1 + κsβ)2N+1 (1+2rp),

whererp is as given in Proposition 8.

The above results follows immediately from Proposition 8
and Lemma 20. Using the above Corollary 4, we obtain the
following result.

Corollary 5. Let κs be the constant of Lemma 20. Then there
exists an integerN0 such that forN > N0 the actual steady-
state probability

σi = 1 − B̄i, i ∈ N ,

that nodei is idle in a network of sizeN satisfies

(1 −BE
i (ν))e−χ(r+r2/2) ≤ σi ≤ (1 −BE

i (ν))eχ(r+r2/2),

whereBE(ν) = (BE
1 (ν), ..., BE

N (ν)) is the solution to the
Erlang fixed point equation given by

BE
i

1 −BE
i

=
∑

j∈Ni

νij(1 −BE
j ), i ∈ N ,

where
r = 2[(2N + 1)(κsβ) + 2rp]

and rp is given in Proposition 8.

Proof: Note that

(1 + κsβ)2N+1 (1 + 2rp) ≤ e(2N+1)(κsβ)+2rp .

and

1

1 + 2rp

(

1

1 + κsβ

)2N+1

≥ e−[(2N+1)(κsβ)+2rp].

Furthermore, recall thatrp = pmax

β , and, by Assumption 2,

lim
N→∞

p
(N)
max

β(N)
= 0, and lim

N→∞
β(N)N = 0.

It follows that there exists an integerN0 such that forN > N0

we have
e(2N+1)(κsβ)+2rp < 2

and

e(2N+1)(κsβ)+2rp < 1 + 2[(2N + 1)(κsβ) + 2rp],

where we used the fact that the functionex is convex and that
limx→0 e

x = 1. Similarly, for N > N0 we have

1

1 + 2[(2N + 1)(κsβ) + 2rp]
< e−[(2N+1)(κsβ)+2rp].

Using Corollary 4, forN > N0 we then have

B̄i

1 − B̄i
=
∑

j∈Ni

ν̃ij(1 − B̄j),
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whereν̃ij is such that

1

1 + 2
[

(2N + 1)(κsβ) + 2rp
]

≤ ν̃ij

νij
≤ 1 + 2

[

(2N + 1)(κsβ) + 2rp
]

.

Using the same argument as given in the proof of Proposition 6
and Corollary 3 in Appendix C-E, we then obtain the result
of this corollary.

I. Proof of Proposition 5

In this section, we combine the results of Sec-
tions C-E and C-H to prove Proposition 5.

Proof: Consider a CSMA policyp for a wireless network
consisting ofN nodes and set

νij =
p(i,j) + p(j,i)

β
, i, j ∈ N .

Let Bi(ν), i = 1, ..., N , be the CSMA fixed point given by
Eq. (27), and letσi(p) be the actual steady-state probability
that node i is idle under the CSMA policyp. Then by
Corollary 5, there exists a integerN0 such that forN > N0

we have that the steady-state probabilitiesσi, i ∈ N , satisfy

(1 −BE
i (ν))e−χ(r+r2/2) ≤ σi(p) ≤ (1 −BE

i (ν))eχ(r+r2/2),

whereBE
i (ν) is the solution to the Erlang fixed point given

by the equations

BE
i

1 −BE
i

=
∑

j∈Ni

νij(1 −BE
j ), i ∈ N ,

andr = 2[(2N + 1)(κsβ) + 2rp] is as given in Corollary 5.
Let B(ν) be the CSMA fixed point given by Eq. (27) and

recall the relation that

ρi(p) = 1 −Bi(ν).

Then by Corollary 3 we have that there exists a constantκ
such that

(1 −BE
i (ν))e−χ(κβ+(κβ)2/2)

≤ ρi(p) ≤ (1 −BE
i (ν))eχ(κβ+(κβ)2/2).

Combining the above results, we immediately obtain Proposi-
tion 5.

APPENDIX D
PROOF OFTHEOREM 4

Proof: Recall that the setC∞ is given by

C∞ =

{

{λ(N)}N≥1 ∈ A| lim sup
N→∞

(

max
i=1,...,N

Λ
(N)
i

)

< 1

}

,

and that in Theorem 4 we consider a sequence of net-
works {N (N),L(N)}N≥1 and a sequence of sensing periods
(β(N))N≥1 such that

lim
N→∞

Nβ(N) = 0.

Theorem 4 then states that for every sequenceλ(N) ∈ C
there exists a sequence of CSMA policies{p(N)}N≥1 that
asymptotically stabilizes the network, i.e. we have

lim inf
N→∞



 min
(i,j)∈L(N)

µ(i,j)(p
(N))

λ
(N)
(i,j)



 > 1.

We prove Theorem 4 as follows. By definition, for each
sequence{λ(N)}N≥1 ∈ C∞ there exists a scalar̄Λ < 1 and
an integerN̄ such that forN ≥ N̄ we have

Λ
(N)
i ≤ Λ̄, i = 1, ..., N.

Let thenΛ∗ be given by

Λ∗ , 1 − 1 − Λ̄

2
< 1

and let

γ ,
Λ∗

Λ̄
> 1. (37)

Using these definitions, let

λ̄
(N)
(i,j) , γλ

(N)
(i,j), (i, j) ∈ L, and

Λ̄
(N)
i ,

∑

j∈N
(N)
i

[

λ̄
(N)
(i,j) + λ̄

(N)
(j,i)

]

, i ∈ N (N).

For all i ∈ N (N), we then have

Λ̄
(N)
i ≤ Λ∗, N ≥ N̄.

As limN→∞ β(N) = 0 and limβ↓0 τ(G
+(β)) = 1 (see (6)),

there exists an integerN0 such that forN ≥ N0 we have

Λ̄
(N)
i ≤ Λ∗ < τ(G+(β(N)))e−(G+(β(N))), i = 1, ..., N.

Using this result, for a given network sizeN ≥ N0 let
G

(N)
i ∈ [0, G+(β(N))) be such that

e(G
(N)
i

−G+(β))τ(G
(N)
i )e−G+(β) = Λ̄

(N)
i (38)

and let

ρ
(N)
i =

β(N)

β(N) + 1 − e−G
(N)
i

.

Such aG(N)
i exists as shown in the proof of Theorem 2.

For N ≥ N0, consider then the CSMA policyp(N) given
by

p
(N)
(i,j) ,

λ̄
(N)
(i,j)

ρ
(N)
i ρ

(N)
j

β(N)e2G+(β(N)), (i, j) ∈ L.

Using the proof of Theorem 2, we then have forN ≥ N0

that

λ̄
(N)
(i,j) < τ(i,j)(p

(N)), (i, j) ∈ L(N).

Also, using Theorem 3, the approximationτ(i,j)(p(N)) of
the service rate of link(i, j) is asymptotically accurate asN
increases if the sequence{p(N)}N≥N0 satisfies Assumption 2.
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Next, we complete the proof of Theorem 4 assuming Assump-
tion 2 holds and then confirm that it does.

lim inf
N→∞



 min
(i,j)∈L(N)

µ(i,j)(p
(N))

λ
(N)
(i,j)





= lim inf
N→∞



 min
(i,j)∈L(N)

τ(i,j)(p
(N))

λ
(N)
(i,j)

µ(i,j)(p
(N))

τ(i,j)(p(N))





= lim inf
N→∞



 min
(i,j)∈L(N)

τ(i,j)(p
(N))

λ
(N)
(i,j)





≥ lim inf
N→∞



γ min
(i,j)∈L(N)

τ(i,j)(p
(N))

λ̄
(N)
(i,j)





≥ γ > 1.

To verify Assumption 2 for the sequence{p(N)}N≥N0, we
first show that for

p(N)
max = max

(i,j)∈L(N)
p
(N)
(i,j)

we have that

lim
N→∞

p
(N)
max

β(N)
= 0.

Note that by definition, we have for(i, j) ∈ L that
p
(N)
(i,j)

β(N)
e−2G+(β(N))

= λ̄
(N)
(i,j)

(β(N) + 1 − e−G
(N)
i )(β(N) + 1 − e−G

(N)
j )

(β(N))2
(39)

≤ max
(k,l)∈L

(

λ̄
(N)
(k,l)

) (β(N) + 1 − e−G
(N)
i )(β(N) + 1 − e−G

(N)
j )

(β(N))2

≤ γ max
(k,l)∈L

(

λ
(N)
(k,l)

) (β(N) + 1 − e−G
(N)
i )(β(N) + 1 − e−G

(N)
j )

(β(N))2
,

whereγ is the constant of Eq. (37).
Suppose that we can show that there exists a constantκ and

an integerN0 such that for allN ≥ N0 we have that

G
(N)
i ≤ κβ(N), i ∈ N . (40)

In this case, for all(i, j) ∈ L we have

p
(N)
(i,j)

β(N)
≤ γ max

(k,l)∈L

(

λ
(N)
(k,l)

)

(

β(N) + 1 − e−κβ(N)

(β(N))

)2

e2G+(β(N)),

and it follows that

p
(N)
max

β(N)
≤ γ max

(k,l)∈L

(

λ
(N)
(k,l)

)

(

β(N) + 1 − e−κβ(N)

β(N)

)2

e2G+(β(N)).

As
lim

N→∞
e2G+(β(N)) = 1, (41)

and

lim
N→∞

β(N) + 1 − e−κβ(N)

β(N)
= 1 + κ, (42)

it then follows that

lim
N→∞

p
(N)
max

β(N)
≤ γ(1 + κ)2 lim

N→∞
λ(N)

max

where
λ(N)

max = max
(i,j)∈L

λ
(N)
(i,j).

Combining the above results with the fact that for
{λ(N)}N≥1 ∈ A we have

lim sup
N→∞

(

max
(i,j)∈L(N)

λ
(N)
(i,j)

)

= 0,

it follows that

lim
N→∞

p
(N)
max

β(N)
= 0.

Furthermore, using (39) we have

∑

j∈N
(N)
i

[p
(N)
(i,j) + p

(N)
(j,i)]

β(N)
=

∑

j∈N
(N)
i

{

(λ̄
(N)
(i,j) + λ̄

(N)
(j,i))e

2G+(β(N)) ·

(β(N) + 1 − e−G
(N)
i )(β(N) + 1 − e−G

(N)
j )

(β(N))2

}

.

Using (37), (41), and (42), it then follows that there existsa
integerN1 such that forN ≥ N1 we have

∑

j∈N
(N)
i

[p
(N)
(i,j) + p

(N)
(j,i)]

β(N)
≤ 2(1 + κ)2

∑

j∈N
(N)
i

[λ̄
(N)
(i,j) + λ̄

(N)
(j,i)]

≤ 2(1 + κ)2Λ̄
(N)
i

≤ 2(1 + κ)2Λ∗, i = 1, · · · , N.

Hence the sequence{p(N)}N≥N0 satisfies Assumption 2 and
the theorem follows if we can verify (40), i.e. if we can show
that there exists a constantκ such that for allN ≥ N0 and
all i ∈ N , we can find aG(N)

i , G(N)
i ≥ 0, that satisfies the

inequality
G

(N)
i ≤ κβ(N)

and is a solution to (38), i.e. forβ = β(N) we have that

e(G
(N)
i

−G+(β))τ(G
(N)
i )e−G+(β) = Λ̄

(N)
i

where

τ(G) =
Ge−G

β + 1 − e−G
.

Note that the function

f(G) = e(G−G+(β))τ(G)e−G+(β)

is continuous inG with f(0) = 0, and recall that by definition
there exist a positive constantΛ̄ and a integerN̄ such that for
all N ≥ N̄ we have that

Λ
(N)
i ≤ Λ̄ < 1, i = 1, ..., N.

Therefore, in order to verify (40) it suffices to show that there
exists a constantκ such that

G(N)
max = κβ(N)
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we have

lim
N→∞

e(G
(N)
max−G+(β(N)))τ(G(N)

max)e
−G+(β(N)) > Λ̄.

Using the definition ofτ(G(N)
max), this is equivalent to showing

that

lim
N→∞

e(G
(N)
max−G+(β(N))) G

(N)
maxe−G(N)

max

β(N) + 1 − e−G
(N)
max

e−G+(β(N))

= lim
N→∞

G
(N)
max

β(N) + 1 − e−G
(N)
max

e−2G+(β(N)) > Λ̄.

Recall that

lim
N→∞

κβ(N)

β(N) + 1 − e−κβ(N)
=

κ

1 + κ

and Λ̄ < 1. Combining the above results, it follows that for

κ >
Λ̄

1 − Λ̄

andG(N)
max = κβ(N), we have

lim
N→∞

e(G
(N)
max−G+(β(N))) G

(N)
maxe−G(N)

max

β(N) + 1 − e−G
(N)
max

e−G+(β(N))

=
κ

1 + κ
> Λ̄.

This verifies (40) and completes the proof.
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