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Abstract—We analyze Asynchronous Carrier Sense Multiple
Access (CSMA) policies for scheduling packet transmissi@nin
multihop wireless networks subject to collisions under prmary
interference constraints. While the (asymptotic) achievhle rate
region of CSMA policies for single-hop networks has been wel
known, their analysis for general multihop networks has bea
an open problem due to the complexity of complex interaction
among coupled interference constraints. Our work resolveshis
problem for networks with primary interference constraints by
introducing a novel fixed-point formulation that approximates
the link service rates of CSMA policies.

This formulation allows us to derive an explicit characteriza-
tion of the achievable rate region of CSMA policies for a limting
regime of large networks with a small sensing period. Our ank
ysis also reveals the rate at which CSMA achievable rate regn
approaches the asymptotic capacity region of such networks
Moreover, our approach enables the computation of approxirate
CSMA link transmission attempt probabilities to support any
given arrival vector within the achievable rate region. As part of
our analysis, we show that both of these approximations becee
(asymptotically) accurate for large networks with a small £nsing
period. Our numerical case studies further suggest that thee
approximations are accurate even for moderately sized netarks.

Index Terms—Asymptotic Capacity Region of Wireless Net-
works, Carrier-Sense Multiple Access, Fixed-Point Approima-
tion, Throughput-Optimal Scheduling.

I. INTRODUCTION

nature of the wireless medium. The queue-length-based poli
cies typically have scheduling rules that use the queugtien
information to avoid collisions while prioritizing the séce
of more heavily loaded nodes. However, due to the coupling
between the interference constraints of nearby transomssi
such scheduling decisions can require highly complex and
centralized decisions. This observation has motivated hig
research activity in the recent years for the development of
distributed and low-complexity implementations of queue-
length-based schemes (e.g. [37], [13], [7], [25], [8], [30]
[41], [9], [42], [19]). Also, random access strategies hbeen
investigated in a number of works (e.g. [22], [24], [39],,[6]
[16], [14], [35]) that achieve a fraction of the capacity iy
In the case of primary interference model and general né&twor
topology that we consider, this fractionig2 and is tight (i.e.
there exist networks for which no rate outside half of the ca-
pacity region can be supported). These results have s@ghest
that a significant portion of the capacity region may need
to be sacrificed to achieve distributed implementation with
random access strategies. Besides performance degradatio
the practical implementation of existing resource allmrat
policies are also complicated by several factors: they liysua
rely on global synchronization of transmissions and rexjair
fair amount of information sharing (typically in the form of
gueue-lengths) between nodes to perform decisions.

In this work, we consider an alternative class of random

The design of efficient resource allocation algorithms fo{.cegs strategies with favorable complexity and practioal

wireless networks has been an active area of research
decades. The seminal work [38] of Tassiulas and Ephremi

ﬁ%mentability characteristics. In particular, we inigate Car-

Sense Multiple Access (CSMA) policies in which nodes

has pioneered in a new thread of resource allocation megfyerate asynchronously and sense the wireless channegbefo
anisms that arethroughput-optimalin the sense that the making an attempt to transmit a packet, which may result in
algorithm stabilizes the network queues for flow rates thghisions. We analyze such asynchronous CSMA policies for
are stabilizable by any other algorithm. This and subsegueRneduling packet transmissions in multihop wireless ngiss
works (e.g. [36], [1], [10], [34], [32], [26], [11]) have ppwsed g pject to collisions under primary interference conatsai
schemes that use queue-lengths to dynamically performtyarigqr 4 |imiting regime of large networks with a small sensing
of resource allocation decisions, including medium aGCe$iariod, we derive an explicit characterization of the achine
routing, power control, and scheduling. o rate region of CSMA policies. While an explicit characteri-
Scheduling (or medium access) has traditionally been thgiion of the (asymptotic) achievable rate region of CSMA
most computationally heavy and complex component of rfyjicies has been established in the special case of single-
source allocation strategies due to the interferencediumi hop networks, their analysis for general multihop netwdris
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through the introduction of a novel fixed point formulation
that approximates the link service rates of CSMA policies.
The main contributions of the paper are as follows.
« We provide an analytical fixed-point formulation to ap-
proximate the performance of asynchronous CSMA poli-



cies operating in multi-hop networks subject to collisionpolicies, as well as for the design of practical protocols fo
with primary interference constraints. Our formulationvireless local area networks. For the case where nodes are
makes interesting connections to work by Hajek arshturated and always have a packet to sent, the achievédble ra
Krishna on the accuracy of the Erlang fixed point foregion of CSMA policies is easily obtained [5]. For the case
stochastic loss networks [17], [20]. While our technicalvhere nodes only make a transmission attempt when they have
development focuses on the primary interference modalpacket to transmit has also recently been studied [5], [28]
we note that it suggests a general approach that can b&or general multihop networks, results for CSMA policies
used to handle higher-order interference models. are available for idealized situation of instantaneousok&

« We rigorously show that our fixed point formulation tofeedback. This assumption of instantaneous channel fekdba
approximate the performance of asynchronous CSMa#ilows the elimination of collisions, which significantlyns
policies is asymptotic accurate under an approprigpdifies the analysis, and allows the use of Markov chains
limiting regime where the network size becomes largéo model system operation. Under such an instant feedback
We also demonstrate through simulation results that suaksumption, an early work [4] has shown that the stationary
accuracy is achieved for moderately sized network. Thélistribution of the associated Markov chain takes a product
is especially important since it suggests that the approborm. A more recent work [18] has utilized such a product-
imation will be useful even in realistic networks. form to derive a dynamic CSMA policy that, combined with

« We utilize the fixed-point formulation to characterize theate control, achieves throughput-optimality while Sstisy a
achievable rate region of our CSMA policies, and furthegiven fairness criterion. Similar results with the sameana-
provide a constructive method to find the transmissiameous feedback assumption have been independently derived
attempt probabilities of a CSMA policy that can stablyn [33] in the context of optical networks and later extend
support a given network load in the achievable rate wireless networks [29]. Another relevant recent work][27
region. To the best of our knowledge, this constitutes tiseiggests a way of handling collisions under the synchronous
first such characterization of CSMA achievable rate re&&SMA operation.
gion in multi-hop networks with the explicit incorporation Our approach differs from much of this literature in that we
of collisions. do not assume instantaneous feedback or time synchramizati

« We show that for large networks with a balanced traffiand explicitly consider collisions, which are unavoidaisiea
load, the CSMA achievable rate region takes an extremetyal implementation. The incorporation of possible cuallis
simple form that simply limits the individual load onrequire the development of a completely different modeling
each node tol, which is the maximum supportableof the CSMA performance than the continuous-time Markov
load. This result together with the previous shows thahain model used for the aforementioned idealized setup.
the capacity region of large multi-hop wireless networkifistead, we develop a novel fixed-point approximation for a
(asymptotically) takes on a very simple form. specific interference model, and show its asymptotic acgura

The rest of the paper is organized as follows. We start by An important byproduct of this development is the quantifi-

noting several relevant works in the context of CSMA polciecation of the proximity of the CSMA achievable rate region
in Section Il. In Section Ill, we define our system model, ant the limiting capacity region as a function of the sensing
in Section IV we describe the class of CSMA policies weeriod level. Such information will be extremely helpful in
consider in this paper. In Section V we provide a summadetermining how small the sensing period should be to aehiev
and discussion of our main result, as well as an overview afdesired fraction of the capacity region.
the analysis. We provide our fixed point formulation and jgrov Clearly, a non-zero sensing period, however small, must be
its asymptotic accuracy in Sections VI and VIII, respediive considered in the CSMA operation to account for the propa-
Then, in Section VIl and IX, we provide a characterization ajation delay associated with transmissions. Yet, the giatu
the achievable rate region of the class of CSMA policies, amdl such a factor creates non-zero probabilities of collisio
show that it is asymptotically capacity achieving. We enthwi Thus, in order to keep the collision level at a small level,
concluding remarks in Section X. the aggressiveness of the CSMA policy must depend on the
particular value of the sensing period for the given system.
Il. RELATED WORK In our development, we explicitly determine this connettio
In this section, we provide a summary of the work on CSMAnd provide a constructive method to determine the CSMA
policies for single-hop and multihop networks that is mogfarameters as a function of the sensing period. Moreover, in
relevant to the analysis presented in this paper, and nete this paper we consider a completely asynchronous CSMA op-
key differences of our work in this paper. eration, which relaxes any synchronism assumptions amongs

For single-hop networks where all nodes are within trangne nodes that will facilitate its practical implementati®uch

mission range of each other, the performance of CSMA relaxation creates many technical challenges, which are
policies is well-understood [3]. Furthermore, the welbkm resolved in this paper.

“infinite node” approximations provides a simple charaeter
zation for the throughput of a given CSMA policy, as well as
the achievable rate region of CSMA policies, in the case of
a single-hop networks [3]. This approximation has been itNetwork Model: We consider a fixed wireless network com-
strumental in the understanding of the performance of CSM#osed of a seV’ of nodes with cardinalityV, and a set’ of

IIl. SYSTEM MODEL



directed links with cardinalityL.. A directed link (i,j) € £ able (using FDMA or CDMA) to avoid interference, but each

indicates that nodeis able to send data packets to ngd&/e node has only a single transceiver and hence can only send to

assume that the rate of transmission is the same for all linkssreceive from one other node at any time (see [31], [7] for

and all packets are of a fixed length. Throughout the paper weditional discussion).

rescale time such that the time it takes to transmit one pacKReaffic Model: We characterize the network traffic by a rate

is equal to one time unit. vector\ := {\, },er WhereR is the set of routes used by the
For a given node € N, letlf; := {j € N': (j,i) € L} be traffic, and\,, A\, > 0, is the mean rate in packets per unit

the set of upstream nodes, i.e. the set containing all nades f time along router € R. For a given router € R, let s, be

which i can receive packets. Similarly, I&®; := {j € A/ : its source node and, be its destination node, and let

(1,7) € L} be set of downstream nodes, i.e. the set containing N

all nodes;j which can receive packets fromCollectively, we Ry =A{(s,1),(,7), -+, (0,w), (w,dy)} C L

denote the set of all the neighbors of nades\; := U;UD;.  pe the set of links traversed by the route. We allow several

Also, we letL; := {(i,j) : j € Di} be the set of outgoing rgytes to be defined for a given source and destination pair
links from nodei, i.e. the set of all links from nodeé to its (s,d), s,d € N.

downstream node®; (see Fig. 1 for an example). Given the rate vectok = {\, },cr, we let
el 3) T Nepi= S A () el (1)
Rate ; Rate 2, r:(4,7)ER
be the mean packet arrival rate to lifk j). Similarly, we let
JEN;
be the mean packet arrival rate to nade N (see Figure 1
B L for an example).
Flows @ \';;a’wf To keep the notation light, we will in the following at times
use the notation\; instead ofA;()\).
Fig. 1. Example of a network where two route§ and g
given by Rf = {(sf,i)7(i7j)7(j,U)7(U,w)7(w,df)} and Rg =

{(sg, k), (k, i), (i, §), (4, m), (n,dg)}. In this network: the set of upstream V. POLICY SPACE AND CSMA PoLICY DESCRIPTION
neighbors of nodej is given by U {i,v}; the set of downstream

neighbors of nodej is given by D; — {i,59,n,0}; the set of out-  INthis sectiqn, we introc_iuce the space of scheduling p_mici
going links of nodej is given by £; = {(j,1), (4, s¢), (4,v), (4,n)}; that we are interested in, and provide the description of
the set of links that interfere with(s,j) is given by Z;; = CSMA policies that we consider. We also define the notions
£, ), (s£,1), (i, k), (k,9), (4, 8¢), (4,v), (v, 5), (4,n)}; the mean rate on o ; ;

link (7, 7) is given by A;.;) = A; + Agi and the load on node is of stability and achievable rate region that we use for our
As =25 +2)g. analysis.

Throughout the paper, we assume that= D;, for all
i € N so that we haveé/; = D; = N, for eachi € N. This
assumption simplifies the notation as we can use a single segonsider a fixed network\/, £) with traffic vector A\ =
N; to represent bott®; and/;. Our analysis can be extended A }re=. A schedulingpolicy 7 then defines the rules that are
to the more general case requiring only notational changesed to schedule packet transmissions on each(linh € L.
Thus, henceforth we will describe a network by the tuplk the following, we focus on policies that have well-defined
(N, L). link service rates as a function of the rate vectot {\, },cr.
Interference Model: We focus on networks under the well-
known primary interference or node exclusive interference
model [21], [40], defined next.

A. Scheduling Policies and Capacity Region

Definition 2 (Service Rate) For a given network(N, £),
the offered service rate:; , (A) for link I = (i,5) € L
under policyn and traffic vector\ = {\,},cx is equal to
Definition 1 (Primary Interference Model)A packet trans- the fraction of time that policyr allocates for successfully
mission over link(z, j) € £; is successful if only if within the transmitting packets on link = (4,5) under the primary
transmission duratiohthere exists no other activity over anyinterference model, i.e. the fraction of time nodean send
other link (m,n) € £ which shares a node witki, j). For packets on link = (4, j) that will not experience interference
each linki € £, we useZ; denote the set of linkk € £ that from any linkl’ € Z;.

interfere with linkl, i.e. the set of all link¢’ € £ that have a

. S Let P be the class of all policies that have well-defined
node in common with link

link service rates. Note that this class contains a broageran
The primary interference model applies, for example, tcheduling policies, including dynamic policies such asum+
wireless systems where multiple frequencies/codes arié aviength-based policies that are variations of the MaxWeight
T . _ _ policy [38], as well as noncausal policies that know the
Notice that our definition of interference model does notunen a f ival of the fl We th defi K bili
time slotted operation of the communication attempts, ascé applies to uture arrival ot the flows. We then define network stability
asynchronous network operation. as follows.



Definition 3 (Stability). For a given network(N, L), let time unit. Hence, the duration of an idle peri@ds measured
um(\) = {u&j)()\)}(i,j)eﬁ be the vector of link service ratesrelative to the length of one packet transmission, i.e. & th
of policy , = € P, for the rate vector\ = {\, },cr. We say length of an idle period ig; seconds and the length of a
that policyr stabilizes the network fok if A; ;) < uf; ;) (A), packet transmission i§, seconds, then we haye=L,/L,,.
(i,7) € L. For a fixedL;, the duration of an idle periogd will become
small if we increase the packet lengths. Hence, we can dontro

This commonly used stability criteria [38] requires that fothe value of3 by modifying L, for a fixed L;
P i

each link(i, j) the link service rate;ua.,j)()\) is larger than the
arrival rate)(; ;). The capacity region of a netwofk/, £) is  Definition 6 (CSMA(p, 3) Policy). A CSMA policy is given by
then defined as follows. a transmission attempt probability vectpr= (p(; j)) ¢, j)ec €
[0,1]F and a sensing period (or idle period} > 0, that
satisfies Assumption 1.

Givenp and 3, the policy works as follows: each node, say
1, senses the activity on its outgoing links £;. We say that
¢ has sensed linki, j) € £, to be idle for a duration of an

Definition 4 (Capacity Region)For a given network N, £),
the capacity regiorC is equal to the set of all traffic vectors
A = {\}rer such that there exists a policy € P that
stabilizes the network fok, i.e. we have

C={A=0:3mePwith A\ <pufj; ), V(i j) €L} idle period 3 if for the duration of3 time units we have that
(a) node: has not sent or received a packet and (b) nade
B. CSMA Policies has sensed that nodehas not sent or received a packet. If

nodei has sensed linki,j) € £, to be idle for a duration

In this paper, we are interested in characterizing the perf%f an idle periodg, theni starts a transmission of a single

mance of C.SMA policies th_at operate bY actively sensing t_‘ﬂ)%cket on link(i, j) with probability p(; ;), independent of all
channel activity and, when idle, performing random trarssmi ther events in the network. If nodeloes not start a packet

sion attempts according to the parameters O.f the particu PMnsmission, then linKi, j) has to remain idle for another
CS.MA pohcy. B_efore we describe the details of C,SM eriod of 3 time units before again has the chance to start
policy operation in Definition 6 we present our modglmg 4 packet transmission. Thus, the epochs at which riodas
heterogene_ous channgl Sensing dela_y_that must exist in gchance to transmit a packet on liigk j) are separated
real-world implementation of such policies. by periods of lengtht during which link(z, j) is idle, and the
Definition 5 (Sensing Delay{3,(I')}). Consider a given link probability thati starts a transmission on link, j) after the

I = (i,§) € £. When a linkl’ in the interference regiorf; link has been idle fog3 time units is equal tg; ;).

of a link [ becomes idle (or busy), then transmitting nadz In the event that the idle periods of two linksand !’
link [ will not be able to detect this instantaneously, but onlthat both originate at nodé end at the same time, we use
after some delay, to which we refer to as thensing delad the following mechanism to prevent the possibility thatenod
Gi(1). o 4 starts in this case a transmission on both linkand !’

We note that the sensing delay given in the above definiti S|nmultaneously (leading to sure collision): lettig(t) denote

. . ) e set of links inZ; for which an idle period ends at time
|§ lower-bounded by the propaga.tlon delay bgtween rGate ¢ for each linki — (i,j) € £i(t) the probability that
i'. The exact length of the sensing delay will depend on the =~ D7 . ) L

de i starts a transmission on link at time ¢ is given

specifics of the sensing mechanism deployed. In Appendix ﬂ\o _
we describe two possible approaches to how channel sené?ﬁ(g(p(i,j)) / (Z{j’:(i,j’)eéi(t)}_p(ivi/)) , independently of all
could be performed for networks with primary interferenc@ther attempts by any node in the network.
constraints. Finally, we assume that packet transmission attempts are
While the sensing delay of different node-link pairs magnade according to above description regardless of the avail
differ, throughout this work, we make the assumption thht a@bility of packets at the transmitter. In the event of the
sensing delays are bounded by a constanheasured with absence of a data packet, the transmitting node transmits a
respect to the normalized packet transmission duration. \$emmypacket, which is discarded at the receiving end of the
refer to this upper boungd as thesensing (or idle)period of transmission (see also our discussion in Section X), but is
a CSMA policy. counted in the service rate provided to that link. o

Assumption 1. There exists a constarit to which we refer ~ We note that while all the nodes use the same sensing time
to as the sensing (or idle) period of a CSMA policy such that to detect whether a given link is idle, the actual time that
for all links [ € £, we have that it takes a node to detect that another node has stopped (or
, , started) transmitting a packet is determined by its indiald
Al) < B, Fel. sensing delay as given in Definition 5, which can be different

Recall that throughout the paper we rescale the time suéf different nodes. Different sensing delays will lead o a
that the time it takes to transmit one packet is equal to oA&ynchronous operation of the network where the sensing and
packet transmission periods of different nodes are nohatig
2_In our subsequt_ent discqssion, for ease of exposition _vve_tym'ltally refer Also note that, under our CSMA policy, links make a
to links as performing sensing or scheduling a packet tréssom. This must . ith a fixed babili ft he ahel
be understood as the transmitting node of the (directe®)derforming the transmission attempt with a fixed probabillity after the n

action. has been sensed to be idle, independent of the current lgacklo



of the link. This may seem to be an unreasonable scenariovds will provide a precise description of the limiting regime
it implies that a link might make a transmission attempt evehat we consider in Section IX.
if there is no packet to be transmitted. However, there are atThe result that the achievable rate region of CSMA policies
least two reasons why this situation is of interest. Finsthsa is asymptotically such that it can support any rate vector
policy could indeed be implemented (where links send dummsytisfying (3) may seem very surprising and counter-iiviit
packets once in a while) Second, and more importantly, beiagfirst. And indeed, it is important to stress that our redaks
able to characterize the throughput of such a policy openst state that the achievable rate region of CSMA policies
up the possibility of studying more complex, dynamic CSMAs always of the form as given by (3), but only under the
policies where the attempt probabilities depend on theetiirr conditions that (a)3 becomes small and (b) the network
backlog. In particular, the results of our analysis can leglie resources are shared by many small flows. Let us briefly
formulate a fluid-flow model for backlog-dependent policiegomment on these two conditions.
where the instantaneous throughput at a given state (lmckloThe fact thats needs to be small in order to obtain a large
vector) is given by the expected throughput obtained in odthievable rate region is rather intuitive; clearlygifis large
analysis. Such policies are of interest as they might allew f(let's say close to 1) then the above result will not be truee T
dynamic adaptation of the traffic load in the network (e.@ séact that we need the assumption of many small flows in order
[23]). to obtain our result is illustrated by the following example
Given the length of an idle period, in the following we
will simply use p to refer to the CSMAY, 5) policy. Next,
we define the achievable rate region of a CSMA policy.

C. Achievable Rate Region of CSMA Policies

We show in Appendix C-F that a CSMA poligyhas a well-
defined link service rate vector to which we refer;gdp) =
{1¢i,j)(P)}i,j)ec i.6. CSMA policies are contained in the set
P. Note that for a giver, the link service rate under a CSMA
policy depends only on the transmission attempt probgbilitiq 2. The pentagon network with flows, - - ,5 on each link, and
vector p, and not on the arrival rates. The achievable rate the five possible simultaneous transmissions that can agwler the primary

region of CSMA policies is then given as follows. interference model. The rate,, = (1 —¢)/2, i =1,---,5, foranye €
(0,0.1] is not achievable by any policy for this scenario.

Definition 7 (Achievable Rate Region of CSMA Policies)

For a given network(V, £) and a given sensing period, Example 1. For the pentagon network of Figure 2, lete
the achievable rate region of CSMA policiés given by the (0,0.1] and A, = (1 —¢€)/2 for eachr = 1,---,5. Then,
set of rate vectors\ = {\,},cr for which there exists a the load on each node is given by, = (1 — ¢) for each
CSMA policyp that stabilizes the network fox, i.e. we have ¢ A/. Although the resulting traffic vector satisfies Eq(3),

Five possible maximal matchings for the Pentagon
network under the primary interference model

that \; j) < pej) (P), (4,7) € L. no scheduling policy can stabilize the network for This
can be seen by noting that at most two links out of five can
V.. OVERVIEW OF THE MAIN RESULTS AND ANALYSIS transmit SUCCESSfU“y at a given time, as shown in the figure.

ence, even an optimal centralized controller cannot aghie
maximum symmetric node activity of more thath, and
clearly, our result cannot hold for this network. o

This section provides an overview of the main results
this work along with an outline of the analysis.

In Section IX, we derive an approximatidn(s) for the
achievable rate region of CSMA policies for a given network The reason that in the pentagon network a node cannot
and a given sensing perig8, and show that in the limit as achieve a throughput of more tha&y5 is that under each

the sensing period approaches 0 we have that “maximal” schedule given in Figure 2, if one of the neigh-
) ) boring nodes of a given nodgis busy transmitting, then
%%F(ﬁ) ={A20:A()) <1, forallie N} nodei has to wait for a duration ol time unit to get a

) o ) ) B chance to make a transmission attempt. However, if we have a
_Smce it is impossible for any policy tq stabilize the networnetwork where each nodehas many neighbors with which it
if for a node: we have thai\;(A) > 1, this result suggest that gy -hanges data packets (many flows), then nodes will typical
in the limiting regime agj becomes small, the capacity regiorhaye to wait for much less than 1 time unit before they get the
for scheduling policies in wireless networks with primargnance to start a packet transmissions. Intuitively, thgeia
interference constraints includes all rate vectorsuch that  1he number of neighbors of a node, the shorter a node has
AN <1, ieN. 3) to wait_ gntil it getg a chance to start a packet transmissilon.
In addition to having many flows, we need the assumption
We verify this intuition for large networks with many smallthat each flow is small in order to avoid the situation where
flows, i.e. we show that asymptotic achievable rate region tife dynamics at each node is basically determined by a small
CSMA policies under the limiting regime large networks witmumber of large flows, essentially leading to a similar bérav
many small flows and a small sensing is of the above forms in the case where each node has only a small nhumbers



of neighbors. Note however that these assumptions aretn&nsmission range of each other. In this case, a CSMA policy
sufficient in order to obtain our result; we also need to shois given by the vectop = (py,---,pn) € [0,1]Y wherep,

that there exists a CSMA policy under which nodes (a) do nistthe probability that node starts a packet transmission after
wait too long before making a transmission attempt (and éenan idle period of lengtts [3].

waste bandwidth), (b) are not too aggressive such that a larg Suppose that the single-hop network is synchronized, i.e.
fraction of packet transmissions result in collisions, dojl the sensing delay is the same for all node pairs’ € A/ and
share the available network resources such that the megultive have that

link service rates indeed support a given traffic vectahat N .
satisfies Eq. (3). Bi@) = BD), gk LEN.

Below, we provide a brief description of the differenfThen the network throughput, i.e. the fraction of time the
steps taken in our analysis. Our first step is to derive channel is used to transmit packets that do not experience a
tractable formulation to characterize the link serviceesaor collision, can then be approximated by (see for example [3])
a given CSMA policy. Specifically, inspired by the reduced G(p)e~C®)
load approximations utilized in the loss network analy&i3]] T(GP) = T ———am (4)
. b . . . B+1—e "GP
in Section VI-B we propose a novéiked point formulation
to model the performance of a CSMA poligy. Similar to  where G(p) = Y27, p,. Note thatG(p) captures the ex-
the reduced load approximation in loss networks, the fixgucted number of transmissions attempt after an idle period
point equation is based on an independence assumption. Wagler a CSMA policyp.
show that the fixed point is well-defined, i.e., there exists a This well-known approximation is based on the assumption
unique fixed point. Our second step is to use the CSMA fixdldat a large (infinite) number of nodes share the communica-
point to characterize thapproximate achievable rate regiontion channel. It is asymptotically accurate as the number of
in Section VII, and show that this characterization suggestodesN becomes large and each node makes a transmission
that CSMA policies are throughput-optimal in the limit ag thattempt with a probabilityp,,, n € N that approaches zero
sensing time3 becomes small. In our third step, we show thawhile the offered load> = ij:l pn, Stays constant (see for
the formulatedC”SMA fixed point is asymptotically accurate €xample [3]).
the sense that it accurately characterizes the link seraiigss ~ The following results are well-known. Fgt > 0, one can
of a CSMA policy ass becomes small for large networks withshow that
many _small flows_. A tgchnicgl issue that _requires care in the 7G) < 1, G >0, (5)
proof is the scaling with which the sensing deldydecays
as a function of the network siz&. We identify a proper and forG™*(3) = v/24, 8 > 0, we have that
scaling, as given in Assumption 2 of Section VIII, that yield lim 7(G*(8)) = 1. (6)
the asymptotic accuracy result. Moreover, in the derivatio BLO
of the achievable rate region using the CSMA fixed point, we Using (4), the service ratg,,(p) of noden under a given
obtain an algorithm that allows the constructive compatatif CSMA policy p can be approximated by
the CSMA policy parameters that stabilize the network for an o—G(p)
given rate vecton within the achievable rate region. Finally, o(p) = p"—iG7 n=1,..N. (7)
in Section IX, we derive the asymptotic achievable rateaegi 1+ —e @)
of CSMA policies for the limiting regime of large networksIn the above expressiomn,, is the probability that node:
with many small flows and a small sensing period. This restifies to capture the channel after an idle period anéf(®)
shows that in this asymptote the CSMA achievable rate regieharacterizes the probability that this attempt is sudogss

can be described by a condition in the form of (3). i.e. the attempt does not collide with an attempt by any other
node.
VI. APPROXIMATE CSMA FIXED POINT FORMULATION Similarly, the fraction of time that the channel is idle can

In the first part of our analysis, we introduce a fixed point%e approximated by

approximation, called the CSMA fixed point, to characterize p(p) = p(G(p)) = Lv (8)
the link service rates under a CSMA poligy. The fixed B+1—eGP)

point approximation extends the well-known infinite nod@here we have thdimg;o p(G*(3)) = 0.

approximation for single-hop networks (see for examplg [3]

to multihop networks which we briefly review below. B. CSMA Fixed Point Approximation for Multihop Networks

In the following we will user to denote the services rates \y extend the above approximation for single-hop networks
obtained under our analytical formulations that we use {g i itihop networks that operate in an asynchronous manner
approximate the actual service ratgép) under a CSMA as described in Section IV-B as follows.
policy p as defined in Section IV-C. For a given a sensing perigtl we approximate the fraction

of time p;(p) that node: is idle under the CSMA policyp
A. Infinite Node Approximation for Single-Hop Networks by the following fixed point equation,

Consider a single-hop network wherf€ nodes share a I6)

single communication channel, i.e. where nodes are allivith pi(p) = B+1—e Gi) i=1--,N, ©)




where characterization is asymptotically accurate for largevoeks
_ with many small flows and a small sensing tinge,
Gi(p) = Z [PGi.g) + PG Pi(P); i=1,---,N. (10) We start by noting that, for a given sensing peritydve can
JEN use the CSMA fixed point(p) for a policy p to approximate
Note that the fixed point equation can be given both in ternige actual link service ratg; ;) (p) under the CSMA policy
of the fraction of idle timesy by substituting (10) in (9) or P by 7 ;)(p) that satisfies

in terms of the transmission attempt rat@sby substituting (R ,
p](p)e (G1 (p)+G](p))

(9) in (10). Given this equivalence, we refer to either one Tin(P) = P(ig) (11)
! . . () \P 1 — .—Gi(p)

as theCSMA fixed point equatiorWe further letp(p) = +B—e

(p1(P);--+,pn(P)) and G(p) = (G1(p), -+ ,Gn(P)) de- where

note particulaCSMA fixed pointandZ(p) and¥ (p) denote GE(p) £ Z P3P (P)

the set of all fixed pointef (9) and (10), respectively. JEN;

The intuition behind the CSMA fixed point equation (9}gnresents the rate at which nodereceivestransmission

and (10) 'S as follows: suppose that the frgction of tim&ttempts by its neighbors, and hence its difference ftaiip).
that node: is idle under the CSMA policyp is equal 0 Nqte that the above equation is similar to (7) where

pi(p), and suppose that the times when nades |d|§ are pii.jyp;(p) captures the probability that node makes an
independent of the processes at all other nodes. If AW  4empt to capture linki, j) if it has been idle ford time
been |<_jle forg time unlts,_ i.e. nc_>da has not recewed O Units, andexp [—(Gf-%(p) +Gj(p))} is the probability that
transmitted a packet fof time units, then nodeé can start s aitempt is successful, i.e. the attempt does not querla

a transmission attempt on link, j), j € A, only if node;j i an attempt by another link that shares a node \ith).
also has been idle for an idle period @ftime units. Under pte that

the above independence assumption, this will be (roughky) t
case with probabilityp;(p), and the probability that nodée
start a packet transmission on the litkj), j € A, given
that it has been idle fog time units is (roughly) equal to
(i, pi(p). Similarly, the probability that nodg € JV; starts a
packet transmission on the lirfk, <) after node; has been idle
for 3 time units is (roughly) equal tp(; ;p;(p). Hence, the
expected number of transmission attempts that noaakes
or receives, after it has been idle f@rtime units is (roughly)
given by (10). Using (8) of Section VI-A, the fraction of timeTheorem 2. Given a network/\/, £) with sensing period >
that node; is idle underp can then be approximated by (9).0, let I'(3) be given by

There are two important questions regarding the CSMA it )
fixed point approximation. First, one needs to show th&t8) = {)‘ > 0[A;(N) < 7(GH(B))e D, vi EN}’ (13)

the CSMA fixed point is well-defined, i.e. that there always Yim A a7 i . , .
exists a unique CSMA fixed point. In the above notation thwhereG (8) = V20, 7(GT(5)) Is as defined in (4), and

| N .
corresponds to proving that the se®p) and¥(p) have a &(/\) - Z M)+ Ag.], for eachi € V.

single element for any feasible. To that end, the following Then, for everyx € T'(3), we can explicitly find (cf.

rgsult, proven in_ Appendix B, establishes the uniqueness Ofiquation (14)) a CSMA policy parameter for which the
fixed point solution for all sucip. corresponding CSMA fixed point approximation yields
Theorem 1. For every CSMA policyp € (0,1)%, each of

the set of fixed point solution®(p) and ¢(p) has a single AGg) < 6.9 (P), (i,5) € £,
element, denoted henceforth pip) and G(p), respectively. where 7; ;)(p) is as defined in (11). In other words, by a
I\ﬂr per selection obp, the approximate service rates can be

fixed point approximation. This is postponed to Section VIl ﬁde to exceed the traffic load on each link as long\as
where we show that the CSMA fixed point approximation( )
is asymptotically accurate for large networks with a small  Proof: For brevity, we will denoteA;()\) as A;, which,
sensing period3 and appropriately decreasing link attempby definition, satisfies\; < 7(G™ (6))6*@(5) forall i e NV.
probabilities. In what follows, we focus on the CSMA achievFor each nodé = 1, ..., N, choose’; € [0, G*(3)) such that
able raFe region characterization based on the above fixatl po e(Gi*G+(5>)T(G»)e’G+(5> _ A
approximation. i i
and let
VII. A PPROXIMATE CSMA ACHIEVABLE RATE REGION pi = L
B+1—eGi

exists since the function

p(i_j)ﬁe—(Gi(P)'i‘Gj (p))
1+8— e_Gi(p)) (1 + 06— e_Gj(P))

asGi(p) > Gl (p).

The next result provides an approximate achievable rate
region of the CSMA policy based on the CSMA fixed point ap-
proximation and the approximate service rates ;) (p))
given in (11).

.5 (P) 2 ( (12)

,4)

Second, we need to check the accuracy of the above CS

In this section, we use the CSMA fixed point approximatiog
: . : uch aG;
(9) and (10) to characterize an approximate achievable rate . .
region of CSMA policies. In Section IX, we will show that this f(Gy) = e GG (G e ¢ B



is continuous inG; with f(0) = 0 and establishes that for networks with a small sensing time, the
approximate achievable rate region of static CSMA policies

+ — + -GT (8 : L - ) :
FGT(B) = 7(GT(B))e @ > A get arbitrarily close to the above limiting rate region déssd
Using p; for i = 1,...,N as defined above, consider thdurely in terms of per node traffic load. As we noted in
CSMA policy p given by Example 1, such a rate region is not achievable for all
A networks. In Section IX, we show that the capacity region
Plij) = Mgew*(ﬁ), (1,7) € L. (14) does take on the above simple form for large networks with
' PiPj many small flows and a small sensing perjod
By applying the above definitions, at every nade 1,..., N To that end, in the next section, we first establish condition
we have that on the network and CSMA parameters for which CSMA fixed
Aiiiy -+ Ao N point approximation becomes accurate.
3 Iy +pgale = Y, SRS g6,
JEN; JEN: PiPj
' N ! N VIII. A sympToTICCSMA FIXED POINT ACCURACY
ﬁezc (B8) 5620 (3) ) ) .
= — Z Mg T Ayl = ——N In this section, we study the accuracy of the CSMA fixed
Pi jen, pi point approximation proposed in Section VI (cf. Equations
ﬁ€2G+(ﬁ) . o eGi (9) and (10)) in capturing the service rate and idle fraction
= Te(cl GG TP = o 7(Gi) performance of the actual CSMA policy (cf. Definition 6).
54-11 L G Gre—Ci ' Our analysis establishes a large network and small sensing
= g e : — =G delay regime in which the approximation becomes arbitraril
B Btl-e ™ accurate.
This implies that the above choices 6f = (G1,--- ,GnN) More precisely, we consider a sequence of networks for
andp = (p1,---,pn) define the CSMA fixed point of the which the number of noded’ increases to infinity, and let
static CSMA policy given by (14), i.e. we have that £ and V™V respectively denote the set of all links and

(p)=p and G(p) = G the set of neighbors of nodé for the network with N
PP} =P P ' nodes. Similarly, asV increases, we consider a corresponding
Using (12), the service ratg; ;(p) on link (i, j) underp sequence of CSMA policiesp!™)} x>, with a sequence of

is then given by sensing period$ 3™} y>1, where (p™), (V) defines the

p;(p)e—(Gu(P)+C5(p)) CSMA policy for the network withN nodes as described
j J

4.5y (P) > P.g) — in Definition 6. We make the following assumptions on the
’ 1+ 8 —eCilp) parameters of the CSMA policy.
pje GG Xy o agt(g) pie” (GG .
P Ty f el = =L e (mm Assumption 2. For the sequences{p™}y>; and
; Pibj ¢ {pN)} y> introduced above:
Ni i 267 (B)~(Gi+Gy) . (N) — .
D) i+ B—e )" @) Jim NG : (V)
)\i . 20+(ﬁ)_(Gi+Gj) > )\1 N, . (N) & (N) . Pmaz
(45)€ ) (b) Letting prmaz = (i.’jr;neazc(mp(m), we havengmOO 5 =

where we used in the last inequality the fact that by construc 0.
tion we haveG;, G; < G*(53). The proposition then follows. (c) There exists a positive constaptand a finite integerVy,

[ | such that for allN > Ny we have
The proof of Theorem 2 is constructive in the sense that () (N)
given a rate vectok € I'(3), we construct (cf. Equation (14)) [p(i,j) +p(j,i)] . N 15
a CSMA policy p such that); j;, < 7 (p), (i,7) € L. Z BIN) = i=1-, N (15)
We will use this construction for our numerical results in jeN ™

Section IX-C. Theorem 2 also leads to the following inter- These technical assumptions have the following interpre-
esting corollary, which indicates the capacity achieviafure tation: Assumption 2(a) characterizes a small sensingydela
of CSMA policies in the small sensing delay regime. regime by specifying how fast™) decreases to zero as
Corollary 1. In the small sensing delay regime, i.e. ag 0, the network sizeN increases; Assumption 2(b) implies that
the approximate achievable rate regidii3) converges to the the attempt probability of each link becomes small &is

following simple set becqmes Ia_rge, as§uring thgt_no single link domina_ltes the
. . service provided by its transmitting node; and Assumpti@) 2
lﬁl?gr(ﬁ) ={A>20[A(N) <1, i=1,---,N}. states that the total rate (given on the left of (15) by the

_ ) ) expected number of transmission attempts per sensingdperio
~ Proof: The proof follows immediately from the def- 3(V)) \ith which links incident to a given nodestart a packet
inition of T'(3) once we recall from Section VI-A that yansmission, is upper-bounded by a positive constant.

limg o G*(B8) = 0, andlimgo 7(G*(8)) =1. B Below we provide two examples of networks that satisfy
Since any rate vectoh for which there exists a nodé Assumption 2.

with A; > 1 cannot be stabilized by any policy, Corollary 1



Example 2. Consider anN x N switch (depicted in Figure 3) i.e., the fixed point approximation becomes asymptotically
with traffic flowing from the setVY) = {1,---, N}, ofinput accurate both in terms of idle fraction and service rate
(or sender) ports to the sety") = {N +1,--- 2N}, of approximations.

output (or receiver) ports. For this setup where the degree o

each node isV, we can select the CSMA policy parameterg,. Numerical Results

as follows to satisfy the Assumption 2:

ﬁ(N)

In this section, we illustrate Theorem 3 using numerical
1/(Nlog(N)), and results obtained for théV x N switch network discussed in
N . N N) Example 3 and depicted in Figure 3. The switch topology is

x5! )/(QN)’ V(. j) € Né )% Nf(% -(16) selected for numerical comparison since such a topology is
Example 3. Consider a network consisting df nodes and the simplest non-trivial one that also leads to an anallyica
assume that each node communicates Wigf{ V') neighbor- tractable fixed point solution under symmetric conditioret,
ing nodes. This setup resembles randomly generated demseemphasize that Theorem 3 applies to any large network
network within a unit area, where the nodes within the conas long as CSMA policy satisfies Assumption 2. Besides
munication range of each other are connected. Such a modehfirming the asymptotic accuracy of the approximations, o
is widely studied in earlier works (e.g. [15]) that establis results also indicate that the accuracy is observed even for
that if the communication radius is optimally selected forelatively small networks.
connectivity, the degree of each node scalesOdbg(N))
for a network withV nodes.

The following parameters as a function of the network size
N will satisfy Assumption 2:

BN = 1/(Nlog(N)), and
pagy < xBN/(log(N)) W(i,5) e L™, (17)

Next, we analyze the accuracy of the CSMA fixed point
approximation for the limiting regime given by Assumption 2
i.e. we let P(p(N)) = (p (P(N)), s ,PN(p(N))) be the Fig. 3. Network topology for our numerical results consistsa set of N
CSMA fixed point for the network of siz&/, and leto; (p(™))  sender nodeNéN) ={1,...,N}, and a set ofN receiver nodesl\/lgN) =
be the actual fraction of time that nodeis idle under the {N +1,...,2N}. The set of linksc("") consists of all directed linksi, 5)
CSMA(™)) operation. Then, we use the following metric td/o™ & sendet € Ns to a receiverj € Ng.
measure the discrepancy of the two:

DP(ij)

For this network, we consider a sequence of CSMA policies

5N & ‘_rlnvz}VXN|pi(p(N)) —ai(p™M)], p™ = (p{))i.ecow and the corresponding sequence of
hich ifies th o o ; hsensing periodg(N) as in (16) by setting; = 10. Recall that
e e e e spronaton e of PGS iy iy parametr ) egines
74,5 (PDY)) be the approximate CSMA service rate for link o N T
(i, 7) defined in (11), and |eﬂ(i’j)(p(zv)) be the actual CSMA transmission of a packet to receivee Ny, "’ after link (4, )

service rate for link(i,5). Then, we define the following has been sensed to be idle for sensing period®? time

ink probabilitieSpE?;)) with which senderi ¢ NéN) starts a

metric to measure the discrepancy between the two: units. Given a sensing perioéi"), the CSMA fixed point for
. a policy p(™) is then given by
i) (P)
SN A ax 11— L BI)
. - N |’ () — =1,
(%J)EL‘,(N) N(z,])(p( )) Pz(p ) - (ﬁ(N) + 1— e—Gi(PU\”))’ 1 = 1, 72N7

which quantifies the maximum relative approximation erQlihere
of the link service rates under the CSMA fixed point. Note

that under Assumption 2 the link service raig ; (p™)) will  Gi(p™) = Y~ pggj))pj(p(N)), ie NV and
approach zero a¥ increases and the error tetm; ;) (p™"))— JeN)

(P will trivi ish: this i
i) (PYY)] will trivially vanish; this is the reason why we  ,  (n), (N) - (N) . (N)
consider theelative error when studying the accuracy of the Gi(p) = ZN)p(i-,j)pZ(p ), JENE .
CSMA fixed point equation for the link service rates. €N

The following result, proven in Appendix C, establisheghen, due the symmetry of the network topology as well as of
that in the limit as N approaches infinity, the fixed pointthe constructed CSMA policies("), the CSMA fixed point
approximation for CSMA polices with the above scaling(p(™)) is uniform and satisfies

becomes asymptotically accurate. Y (V) e NN & A )
. . . pl(p ) p](p )7 Za] S S U R .
Theorem 3. Under the CSMA policy scaling of Assumption 2,

we have that In Figures 4 and 5, we evaluate the performance of the above
. (™) ) () sequence of CSMA policies for varying si2é of the sender
Nlﬂnoo 9, =0, and Nlﬂnoo o =0, set Ns. In particular, Figure 4 depicts the measured mean



} R many small flows and a small sensing period that is formally
| (R ~ S defined in Section IX-A.
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In Section VIII, we introduced a sequence of networks for
I which the number of noded’ increases to infinity, and let
Number of sender nodes, N LW pe the set of all links in the network witl nodes, and
o000 M(N) be the set of neighbors of nodén the network with/V
nodes. In this section, we introduce a similar scaling f& th
traffic arrival rate vectors to assure that the load on arly lin
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respectively, denotes the mean packet arrival rate on(fink
and the mean packet arrival rate at nade

Definition 8 (Many Small Flows Asymptotic) Given a se-
quence of network§ N'(N) £V} v+, we defined as the
set of all rate vector sequencés ™)} x>, such that

Maximum error in idle fraction,

| | | 1 1
8 10 12 14 16 18 20 22 24
Number of sender nodes, N <

o94—m ¥ — lim sup
N—o00

(N) ) _
i7jr)11€aﬁ)((N) /\(m.)> =0.

50
«

We say thaf \(V)} v, satisfies thenany small flows asymp-
012 1 totic if it belongs to.A.

The above definition characterizes the limiting regime w&her
I the mean arrival of each flow becomes small as the network
f8F Numberofsendernodes, N o 2 H size scales, i.e. the network traffic consists mény small
flows It is important to note that, while the load on each link
vanishes under the many small flows asymptote, the total load
on a node may be non-vanishing if the number of neighbors
also increases. We shall see that this key characteristic of
Bve many small flows regime will allow CSMA policies

; . ) . achieve maximal per node loads under large and well-
performance predicted by the CSMA fixed point. Flgure_ onnected network topologies. Before we establish thisimai
shows the error terms of Theorem 3 for the approximatiq

rgsult, we define the asymptotic achievable rate region of

error in the fraction of time that nodes are idle, and the I'”&SMA policies under the many small flows asymptotic as
service rates. follows

Note that the above numerical results not only confirm
the asymptotic claims of Theorem 3 but also indicate th8efinition 9 (Asymptotic CSMA Achievable Rate Regian)
the CSMA fixed point approximation is remarkably accurat€heasymptotic achievable rate region of static CSMA policies
even for smaller values oV. This suggests that the CSMAunder the many flow limiis the set of flow rate sequences
fixed point approximation may be used to characterize tHa"V)}y>; € A for which there exists a sequence of CSMA
performance for moderate-size networks where each nodebeduling policieip(N),ﬁ(m)NZl such that
has a relatively small nhumber of neighbors. An extensive
investigation of this implication in more general network o ) 1y (PIY)
topologies is of practical interest and is left to futureermsh. lim inf min T

Nooo |\ (i,)ect )\gvj))

Maximum Error in rates,

Fig. 5. Error terms of Theorem 3 for different values /gt

fraction of times that nodes are idle and mean node through
under the actual CSMA policy operation, compared with t

> 1.

IX. ASYMPTOTIC CAPACITY REGION Ceo Thus, every flow rate sequenga™)} v~ in the asymptotic

In this section, we derive the asymptotic achievable ra@SMA rate region can be stabilized by the sequence of CSMA
region for CSMA for a limiting regime of large networks withpolicies (p), 3(")) v, for large enoughn.

10



Note that a sequende\(™)} y>; € A for which there exists vector\ € T'(¥)). Following this construction for the above

a nodei with choice of flow rates, we choos&™¥) ¢ [0, G (™)) such
Jim AN > that
(N)_cat(3(N) ot p()
cannot be stabilized by any policy as service rate at eack nod e =G5 ))T(G(N))e G
is bounded byl. Hence, the achievable region under the many —0.95. €7G+(5<N>)T(G+ (BN)Y),
flow limit is contained in the set
which is shown to exist in the proof. Then, letting
Coo 2 {{)\(N)}N € Al limsup < max A§N>) < 1}. (18) ™)
N —o00 i=1,...,N p(N) A ﬁ
We refer toC,, as the capacity region under the many small BN) 41— -G
flows asymptotic. we construct a sequence of CSMA policy parameiei¥)
satisfying
B. Asymptotic CSMA Achievable Rate Region (N)
In this subsection, we characterize the asymptotic achleva pgvj)) TN ( &;’))2 BN 26T (BN (i,7) € L.
- p

rate region of CSMA policies under the many small flows
asymptotic for networks with a small sensing period. Toheorem 4 then states that for such constructed sequence of
do this, we again consider a sequence of sensing peri@sSMA policies we have, for a large enough thatugﬁv_) >
{1} y>; that satisfies Assumption 2(a). The next theoremy) ’Jﬁ
proven in Appendix D, shows that in this case the achievatd%g)
rate region of CSMA policies converges to the capacity negio

Jforall (i, j) € L) Also, noting thatim y_., A" =
for the above choice of flow rates, we have

; (N) ; (N)
under the many small flows asymptotic.. J\}gnoo Z Bigy > 0.95, ieNg'’, and
. . N
Theorem 4. Given a sequence of networks JeNR"
{N™, £} -1, a sequence of sensing periods ™) } v, im S 4™ > 095, e

satisfying Assumption 2(a), and a sequence of flow rates V=
{AM)}y>1 € Co, we can explicitly find a sequence of CSMA _ o . . _
policy attempt rate§p(")} x>, that asymptotically stabilizes TO confirm these asymptotic claims and to investigate their

ieN{™)

the network, i.e., that satisfies correctness for moderate values ¥fwe simulate the above
network to measure the true link service rates for increpsin
(W) Figure 6 shows the average node throughput that we obtained.
lim inf . (i) 1 . .
N | (iiyeLo ) =L Note that the average node throughput indeed is above the
(i.9) value AY) for which we designed the CSMA policg™).

It is interesting to note that the proof of Theorem 4 ifrurthermore, asN increases the average node throughput
Appendix D is constructive in that sense that it providdgecomes larger them95 as predicted by our theoretical result.
explicit expressions for the link transmission attemptoadail- Moreover, these results indicate that the results are quite
ities that stabilize the network for a given rate vector saqe accurate even for small network sizes and that CSMA policies
A s in Coo. can be close to capacity achieving even if the number of
neighbors of each node is relatively small.

Figure 6 shows the distribution of the ratio of link service

] ) ) rates to link loads. We know from Theorem 4 that this ratio
In this section, we verify the statement of Theorem || eventually exceed. for all links as N tends to infinity.

using the same switch topology we used for the numeriogle opserve in Figure 6 that already at a moderate value of

results in Section VIII-A (see also Figure 3). As the nety _ 20, more thar5% of the links exceed and the rest of
work size increases, we consider a sequence of idle perigqs jinks achieve rates close 1o

{BMN) Y N1 = 0.1/(Nlog(N)) and traffic vectord \(M)} x>y

C. Numerical Results

with
0.95 X. CONCLUSIONS
Jo () . )
Egj)) N e e )T(G+(5(N)))’ i € Ns,j € Ng. In this work, we provided an extensive analysis of asyn-

chronous CSMA policies operating in multi-hop wireless
Notice that{\(")} x>, satisfies the many small flows asympnetworks subject to collisions with primary interferenae

totic (cf. Definition 8) and that the per node load satisfies straints. To that end, we first introduced a CSMA fixed-

(N) G T/ alN) , (N) point formulation to:(a) approximate the performance aftsu

AT =0095-¢ T(GT(E), LeNT, CSMA policies; (b) approximate their achievable rate ragio
which is non-vanishing. Also note that the selected ratéorecand (c) provide a constructive method for determining the
AN is within that approximate CSMA achievable rate regiotransmission attempt probabilities of the CSMA policy that
(™M) (cf. Equation 13) for eachv. can support a given rate vector in the achievable rate region
In the proof for Theorem 2 we derive an explicit construc- We then showed that the CSMA fixed point formulation

tion for obtaining a policyp™) that supports a given traffic becomes asymptotically accurate for an appropriate lmiti

11



(5]

0.951 [6]
g_ 0.9f
E;J_ 0.851
go (7]
£ os [V : i
3 1 | == Simulated CSMA Performance, ™
E 0.75- .'; = B = predicted capacity per port, C( B(N)) = e’Gi(BW)) K(G+(|3(N))) ] [8]
orl B | .y Traffic load, A =0.95C(E") |
v
0'650 é 1‘0 fs 25 2‘5 3‘0 3‘5 40 [9]
Number of input ports, N
[10]
% [11]
- [12]
[13]
1.05 11 115 [14]
Ratio of pfl'“]; /)\mi for N=20
. . - . [15]
Fig. 6. Performance of the CSMA policy for the network in Fig8 with
symmetric load. The graph on the left shows that the polidyiexes rates 6]
close to the aimed value 6£95 per sender node even for moderate values (Ll
N. The graph on the right shows the distribution of the ratioafieved rates [17]

to load on each link amongsdi00 existing links in the network in Figure 3
with N = 20.
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In this section, we discuss two specific channel sensifly®:te> andtr. respectively.

mechanisms that operate under heterogeneous sensing delay

characteristics. We note that our model is flexible enough to . L .
. . packets, and that in addition it is assigned a control chianne
allow other mechanism designs.

Mechanism T Suppose that each node A is assigned a ¢;, where the bandwidth of the communication E:harmeb
T . much larger than the one of the control channgl Then,
channele; over which itreceivesdata packets, and suppose

. . e . g node ¢ is currently receiving a packet transmission on its
that the sensing radius and transmission radius of the nodes - . .
. . communication channel;, then it can send out a busy signal
are different. The channel; could either be a frequency

range, or a code, if a FDMA-based, or a CDMA-base(?,n the control channeafl..ln this setting, a} nodg € N;

) . : . ~~Can sense whether nodeis currently sending a packet by
approach respectively is used to obtain a network with piyma . , s
) . . S scanning the channets used by nodé for transmission on
interference constraints (see also our discussion in@ett). . L . .

O S ) its outgoing links(i, k) € £,;. Furthermore, a nodg¢ € N
Nodes that are within the transmission radius of a node can ! L
can sense whether nodeds currently receiving a packet by

successfully receive its packet transmission if there ae gcanning the control channgl. Again, the time (measured in

collisions by another transmission within the trans'T"S‘S'.Osec:onds) that it takes a node to detect whether a neighboring

radius of the receiver. Nodes that are within the sensin ; - .
. o de is busy, will increase as the number of neighbors of a
radius of the transmitting node can only detect the presence : . . ; :
L o o . .”node increases; but the sensing defall’) measured relative
absence of activity together with its destination. The\atgti

" . X - tg the time it takes to transmit a packet can still kept low by
within the sensing radius does not cause collisions, but. |t . . . . o X

. o . ) , increasing the size of a packet. Figure 7 gives a timing+diag
signals the presence of activity. In this setting, a ngde/N; .

) . for this case.

can sense whether nodeis currently sending a packet by
scanning the channetls, used by nodeé for transmission on
its outgoing links (i, k) € L£;. Furthermore, if the sensing APPENDIX B
radius is at least twice the transmission radius, then a nodeX!STENCE AND UNIQUENESS OFCSMA FIXED POINTS
j € N; can sense whether nodeis currently receiving a  In this section, we prove Theorem 1 which states that for
packet by scanning channel Note that the time (measuredeach choice op € (0, 1) there exists a unique CSMA fixed
in seconds) that it takes a node to detect whether a neigithonpoint. We first establish the existence of a CSMA fixed point.
node is busy, V\{I|| increase as the r!umber of neighbors OfL%mma 1. For every CSMA policyp € [0, 1]%, there exists
node increases; however, the sensing delgy’) measured a CSMA fixed poinp(p) and G(p), i.e., the sets(p) and
relative to the time it takes to transmit a packet can stifitke P b b). 1€ p

low by increasing the size of a packet, and hence increase %g)) are non-empty.

time L, it takes to transmit a packet. Proof: The proof uses the continuity properties of the
Mechanism 2 Again, suppose that each nodec N is as- fixed point equation given (9), and is a straightforward appl
signed a communication channglover which itreceivesdata cation of the Brouwer’s fixed point theorem. [ |

13



We next establish the uniqueness of the CSMA fixed poifustify the inequalities (a)-(c) in the above derivatiom. get
for any p € (0,1)". Unlike standard methods in establishingnequality (a), we note that the arising real functibx) =
the uniqueness of a fixed point, our proof method does n% is a decreasing convex function with(0) = _é/@
require additional assumptions on the fixed point mapping
therefore may be of independent interest. The proof foIIewle 2 > 0. Inequality (b) follows from the fact that for each
number of steps, which is outlined here for clarity: Prop%— ’the_difference|G1 — 2| appears at most times in
sition 1.ShOWS t_he emstence_of a unique ASOIUt'On EO tr}ﬁe previous double summation. Finally, inequality (c)duls
fixed point equation for a particular choice of € (0,1)~, from the assumption that e (0,¢ 8 ) -

1 f— 8 8 - it ’ d7na’1¢ :

Ithe that 4 (p) . {t_G}_tfor fss[)rr]neG, Propozmon 2 PTOVES "~ \We note that the proof of Proposition 1 can be slightly mod-
b € zgp.egsemlc_?n mgl y 0 ?hcct)rfrespon gfm gl\1§n ified to establish that, as long as the link attempt probidmsli
yd(G)’ E;ODOS' |onG proves tha lor (?nfy di POIEY  4re chosen sufficiently small, the fixed point equation has a

an hb Eh (5)’ (p’G (p))_ ]i.s ulr'q_ll_fy € mle n b"?m Ogﬁnunique solution. However, we shall take a different diracti
neighborhood of(p, G(p)): finally Theorem 1 combines the 0 show a stronger result that the uniqueness holds for any

preceding results to establish the global uniqueness of the (0, )%, not only for sufficiently small values. To that

, . 7 p e
CSMA fixed point for anyp & (0, 1)". end, we next study the continuity properties ¥{p). The

proof uses the continuity of the mapping

nd hence satisfiefi(z1) — h(z2)] < %|z1 — zo| for all

Proposition 1. For any network topology and any > 0,

there exists g < (0,1)" for which there is a unique point
(0 1) Blpg) +pya)

G € 9(p) that solves the fixed point equation described in fi(G,p) =G, — LUl j=1,...,N.
(9) and (10). 72\:/ (1+5—e"G) y
Proof: We restrict our choice op to the symmetric case \ie that for f(G.p) = (G D)t n We have(th:);lt

of pij) = 6/2 for all (i,7) ﬁe £ and setd to any value F(G(P),p) = 0.
in the non-empty rang€), (~—— ), whered,,,, denotes the - _
maximum degree of the network agds any positive constant Proposition 2. The correspondenc® : [0,1]" — RY is
strictly less thanl. For this symmetric choice of link attemptUpper-semicontinuous; i.e%(p) has a closed graph.
probabilities, the fixed point equation (10) becomes:

G;(p) = Z __ 8

Proof: Note that for allp € [0, 1]%, 4(p) is given by
9(p)={GeRY | fi(G,p)=0, i=1,....N}. (20)

We will show that¥ has a closed graph. Let(px, Gr)}
be a sequence which satisfi€s, € ¢(py) for all & and
converges to somg, (). Assume to arrive at a contradiction
that G ¢ ¢(p). By (20), this implies that there exists some
i € {1,...,N} such thatf;(G,p) # 0. Assume without loss

. of generality that there exists some> 0 such that
Next, we will show that the mapping(-) is a contraction o
mapping under thé, norm: [|x — y|ly = 2%, | — il for fi(G,p) > 2e.
x,y € RY, which directly implies that the fixed point of theBy the continuity of the functiong;
mapping is unique. For any two feasible vectérs and G2 "
with non-negative entries, we have
IT(GY) = (G|

which also introduces the mappirg : RY — R of G(p)
to G,(p) that must hold for anyG(p) € ¥(p). More
compactly, we can define the mappifg : RY — RN
asT(G) 2 (T1(G), T»(G),--- , Tn(G)) and write the fixed

9

point equation as#(p) = T(G(P)).
(21)
we have
Jim fi(G, pr) = fi(G,p),
which implies the existence of sonié such that
fi(G,p) — fi(Gr,pr)| <¥¢,
Combined with (21), this yields

Vik>K.

N N .
<3 UE—— Ji(Grpr) = [:(GB) — € > ¢,
=1 jEN 1+8—e Gj 1+5—6_G1 o
N contradicting the fact thad, € ¢ (py) [cf. (20)]. ]
(@ 0 ol o2 Recall the definition of the mappingf(G,p) =
= B ;jeN’ G5 = Gl [£:(G,p))i=1.....~ given by (19). The next proposition estab-
A Nl lishes the local uniqueness of the correspondenge).
(<b) edmazZ|G1_G2| P . .- . L
< J 3 roposition 3. For all CSMA policiesp € (0,1)* and all
= CSMA fixed pointé/ € 4(p), there exist open neighborhoods
(2 6t — U c RY of GandV c (0,1)* of p such that for eaclp € V

the equationf(G,p) = 0 has a unique solutiorG € U.

which establishes thaf is a contraction mapping, and thereMoreover, this solution can be given by a functién= ¢(p)
fore has a unique fixed point. To complete the proof, wehere¢ is continuously differentiable ofr.



Proof: We prove this statement by using the implicit ~ Proof of Theorem 1By Proposition 1, for the choice ¢f

function theorem (see, e.g., [2]). For node N we have in the proposition, there exists a unique fixed paiip). For
1 = any given policyp € (0,1)" define the convex combination
fi _ 0 i ¢ N of p andp as
9G; Vi JEN 5 5
(©.5)¥i i p(t) =(1—t)p + tp, t €[0,1]. (25)
with

By Lemma 1, the se¥(p(t)) is nonempty, i.e., there exists
V(i,j) € £;  atleast one CSMA fixed point ai(t) for eacht € [0, 1]. We

%‘J) 2 [p(i,j) "’p(j,i)] %’ .
B+ (1—e%) use the following lemma to complete the proof.

-G,
LA m Vj €N Lemma 2. For everyG € ¥(p), there exists acontinuous
functionh : [0, 1] — RY that satisfiesh(0) = G(p); h(t) €
Note that the functionf is continuously differentiable. ¥ (p(t)), for ¢ € (0,1), where p(t) is defined in (25); and
Therefore, in order to use the implicit function theorem WR(1) = G.
need to show that the matrix
ot lo-cin] 22)
aG, ' ¢=¢P) H2(h:[0,1] —RY | h(t) € 2(p(t)),t € [0,1]; h(1) = G}.
has Iin_early i_nd_ependent rOWs. Before_z we proceed, We NQlg, oach, € H, let 7T, € [0,1] denote the set of points at
that this matrix is a non-negative mgtnx. . which h is discontinuous. Clearly, the s& is either empty,
Suppo_se that the_ rows are not linearly independent, th&n non-empty and bounded for eabhe H. To arrive at a
tEere exists a coefficient vector = (z1,...,zx) # 0 such contradiction, supposé, is nonempty for somé € H, and
that define the point € [0,1] as

N
>y (afj(p)) =0, forallie{l,...,N}. {2 inf ¢t
e 8GZ {te ’ZL}

Using the special structure of the Jacobian matrix, we abtayote that sinceG(p(0)) = G(p) is unique (from Proposi-
. . o . tion 1) and(p, G(p)) is uniquely defined in a neighborhood of
it i zj\; Vi =0, forallie{l,..., N} (p, G(p) (from Proposition 3), we must have> 0. Moreover,
N by the upper-semicontinuity o¥ (p) (cf. Proposition 2), the
and functionh can be chosen to be right continuous,amplying
o _ : thath is continuous at alt < #. By the definition oft, there
R Z Yoz,  foralliedl,..., N} exists some) > 0 such that for alle > 0 sufficiently small,

>

Proof: We define the set of functions

JEN;
Consider node* such that for ali = 1, ..., N we have ’h(f) — G| > 6, VG, e9(p(t—e)).
—Gi _ —a,
i [8+ 1 =@ 2 fa5[B+ (1" (23) This contradicts the fact that for ap and G € 4(p),
Then, (p, G(p)) is uniquely defined in a neighborhood @, G) (cf.
oy Proposition 3). Thus, the functidf, must be empty, implying
L = —w Z w(j-,i*)z_i thath is a continuous function, as claimed. [ |
€N+ v
’ 3 Back to the Proof of Theorem 1Assume, to arrive at a
< g Z [P ) +p(j,i*)}m e contradiction, that there exigt' and G? (G' # G?) such
JEN that G, G? € ¢(p). By Lemma 2, it follows that there
|28+ (1 —e )] exist continuous functiongy, () andhy(+), such that; (0) =
|z [8+ (1 — e=Gi)] h2(0) = G(p); hi(1) = G* andhy(1) = G2. Then, there
() 3 must exist ar = max{t € [0,1] : hy(s) = ha(s), 0 < s < t}.
< e Z [P 4y + P — Since we know that?(p) is unique, there must be a bifurcation
FEN Bt1—e®) of the (p(t), G(p(t)) ast exceedsr. But, this contradicts the
®) Gi-(p)e= G- (@) (c) local uniquenessesult of Proposition 3. Hence/(p) [and
- 37 (1—e Gp) L, (24)  thereforeZ(p)] has a unique element for g € (0,1)X. m

Theorem 1 combined with the upper-semicontinuity of
where (a) follows from (23), (b) follows from the fact that prgposition 2 directly implies the continuity of the unique

fi-(G,p) = 0, and (c) follows from (5). This proves that fixed point solutionG(p), and hence of(p). This is stated
the Jacobian matrix in (22) is non-singular. The resultho i, the following corollary.

from the implicit function theorem. | _ _ .
We next combine Propositions 1-3 to complete the proof &orollary 2. The unique CSMA fixed poin€(p) and p(p)
Theorem 1. are both continuous ip € (0,1)%.
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APPENDIXC where B¥ approximates the probability that linkis busy, i.e.
PROOF OFTHEOREM 3 the probability of serving an incoming connection. In [17],

Recall that Theorem 3 concerns a sequence of netwofiidiek and Krishna obtain the following result:

for which the number of nodes/ increases to infinity. Let Proposition 4. Consider a loss network as defined above and
L) pe the set of all links in the network wittv nodes, |et

and IetM(N) be the set of neighbors of nodeFurthermore, 7, = Max v;;

let {p¥)} x>, be a sequence of CSMA policies whes€") BIEL

defines a CSMA policies for the network wiffi nodes, and let and

{B™N)} y>1 be the corresponding sequence of sensing periods. X = maxz Vij.

By Assumption 2, the following conditions hold. er jeL

(a) For the sequencg3™¥)} >, we have Then, the actual steady-state probabiliy, i € £, that link

i is busy satisfies, for all € NV,

lim Ng™) =o.
N—oo (1 _ B?)e—x(ru-ﬁ-rg/Q) <1- Bz < (1 _BiE)ex(rv-f-ri/Q)’

(N) _ (N)
(b) Forpmaz = i peran i) we have that where BF, i € L, is the solution to the Erlang fixed point
) equation given by (26).
Jim g&ffﬂ; =0 The above proposition implies that for smgllandr,,, the

solution to the Erlang fixed point equation approximated wel
(c) There exists a constagtand an integefVy such that for the actual steady-state probability of a link being busyr Ou

all N > Ny we have that analysis follows a similar argument whereby we show that our
CSMA fixed point equation can be closely approximated by
(V) (V) (N) = . . . e .
(4,5) (G0 = ’ et an Erlang fixed point equation, which, in turn, is an accurate
> iy + gl <8 i=1.,N Erlang fixed hich
jen™ estimate of the actual performance of the CSMA policy in
For this setup, Theorem 3 states that the asymptotic regime of large networks and small sensing
' time. Next section outlines the steps of this argument more
lim 6" =0,  and lim 0 =0, explicitly.
N—oco N—oo
Where5,()N) andé,()N) are as defined in Section VIII. B. Main Steps in the Proof of Theorem 3

To prove Theorem 3, we use techniques and results thajy, this section, we list the main steps leading to the proof
were presented by Hajek and Krishna in [17] for their analyshf Theorem 3, and then provide the proof based on those
of blocking probabilities in loss networks. Before we st yesyits. The proof of the statements of the steps are moved
analysis, we provide in the next section a brief summary gf sybsequent subsections to avoid disruption of the flow.
[17] as it relates to our analysis. In Section C-B, we provide step 1) Recall that we previously defined and studied the

an overview of the proof. equations (9)-(10) as fixed point equations with respedhéo t
parameters(p) or G(p). For this proof, we find it move
A. Result by Hajek and Krishna convenient to work with a new paramet@r= (B, -, By),

S —_ . ; i
Here we provide a brief summary of the work by Hajek an\éhereBZ = (1 —pi) for each node that approximates the

Krishna, we refer to [17] for a more detailed descriptionn€o action of bu_sy tlme_of that node under CSMA pol|cyi.
sider a wired (loss) network consisting of a set of undirgct Jo that end, in Section C-C, we let = (v;;) with v;; =
g w, and defineB(v) as the solution to the CSMA

links £, where each link € £ has capacity 1. The networkf. dH . o

serves connections (calls) where each connection usest 1 URF F()Omt eq)uatlon.

of the capacity at each link it traverses, i.e. when activehea,, (1 — B; .

link can Fz);lcco);nmodate at most 1 connection. Furthermore, I} (1= exp(=F ZN vij(1=B;))), 1€ N. (@7)
suppose that all connections use routes that consist oflgxac . s ) ) ) )
two links. Connection requests arrive according to indejpen 1 N€N, in Lemma 4, we relate this CSMA fixed point equation
Poisson processes wherg; = v;; denotes the arrival rate (27) to the following generalized version of the Erlang fixed

. J . . i i GE
for connections that use linksand j. Once a connection is PCINt equation (26) wher&®"(v) solves

accepted, it stays in the system for an amount of time that is BEE GE ,
exponentially distributed with mean one. If a new connettio 1_ BGE — Z vij(1 = Bj™), ieN, (28
that uses linkg and j in its route arrives and one of these ’ JEN

links is already serving another connection, then it is kéac where (in contrast to the Erlang fixed point equation) it i$ no
and lost. ThenB¥(v) = (BF (v)); is defined as the solution required that;; = v;;, but it is allowed
of the following Erlang fixed point equation

h Vij 7§ Viji-
B; = = Z vij(1 — BJE), ieN, (26) Using the generalized Erlang fixed point equation, it is stow
1= B; Jet that there exists a nonnegative vecioe= (7;;) close tov,
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potentially, with 7;; # ©;; that satisfiesB(v) = BYF(). denote the approximation of link service rate for lifk ;)
Further, we provide bounds on the proximityipfvalues tor  under the CSMA fixed point approximation for the CSMA

(see Lemma 4 for details). policy ptv).

With this motivation, in Section C-D, we prove the existence We first show that
and uniqueness of the generalized Erlang fixed pBinf' (1) lim 6V — o
for any nonnegative’, potentially, with 2;; # ©;;. Then, in N—ooo P ’

Section C-E, we provide a sensitivity analysis of the fixe@his result follows immediately from Proposition 5 which

point BE (1) to bound the change in the fixed point solutiostates that the steady-state probabilities asymptoticaih-

when? is locally perturbed. verge to the solution of the CSMA fixed point equation if
Using this analysis we obtain Corollary 3 which allows to . _

tightly bounds the CSMA fixed point solutioR(v) with the A (2N +1)() +2rp) =0,

Erlang fixed point solutio’B¥ (), i.e. Corollary 3 states that or

the CSMA fixed pointB(v) and the Erlang fixed poinB* (v) lim N3=0, and lim Dinae —0
become (asymptotically) identical for largé The generalized N—oo ’ N—oo [3 '
Erlang fixed pointB“F (2) serves in this step as a vehicle toAnd indeed, these conditions hold by Assumption 2.
related that CSMA fixed point to the Erlang fixed point. The proof that

Step 2) In this step, we study the characteristics of the Nlim 6$N> =0

actual asynchronous CSMA policy performance. To that end, o )

in Section C-F, we first prove that the asynchronous CSMgAuires results that we obtain in Section C-G and C-H

policy has well-defined steady-state distribution, andceen(outlined in Step 2 above); we will provide references tasthe

falls within the set? of policies with well-defined link "esults in the derivations below. _

service ratesy = (u;;) and probabilities of links being We are going to use the following convention. We say that

idle o = (0,)ien- Then. in Section C-G. we derive severaf node;: is idle if nodei is currently neither sending, nor

properties ofs which are then used in Section C-H to prov&€Ceiving, a data packet. Otherwise, we say that nasléusy.

that the steady-state probabilities of nodes being idlemec Accordingly, we say that a link= (i, j) is idle if both node

asymptotically independent in the large network and smdl@ndJ are idle. Otherwise, we say that lirfk, j) is busy.

sensing delay limit. Let y; be the indicator whether nodeis idle (y; = 0) or
Step 3) Combining the results from Steps 1 and 2, wBUSY i = 1), and IetP(yi =0y; = 0) be the steady-state

show in Section C-I that under Assumption 2 the solutioprobabilities that nodéand; are jointly idle. In Section C-F,

to the CSMA fixed point equation is asymptotically accuratd/€ Show this steady-state probability exists. Then, usiteg t

In particular, we derive the following important result ¢se S2Me argumentas we give in Section C-G to prove Lemma 20,

Section C-I for its proof). we can see that

— . — .. _— 2
Proposition 5. Consider a CSMA policy(p™, 3(N)) for P(yi = 0,y; = 0)pi,j) (1 — 4x0)

a wireless network consisting @f nodes and Ie@ﬁ,%)m = < B < Py, =0,y; = O)p(z‘,j)
(V) ined i i = Haal = 1—4 ’

(mg}xﬁp(i ) and lety be as defined in Assumption 2(c). ( XB)

%,])€ ?

Then, there exist constants positiveand x, that do not Where (1 — 4x/3) is a lower-bound (see Section C-G) on
depend onV, and an integerN,, such that forN > N, the the probability that a packet transmission on lifkj) is

actual steady-state probability;(p(™)), i € A, that nodei successful, i.e. does not experience a collision.
is idle under the CSMA policyp(N),ﬂ(N)) satisfy, Vi € N, Also, by Proposition 8 in Section C-H, we have that

2N
ps(pN))eX(r+77/2) g =x(sB M+ (587 /2) 1 1 Py =0,y; = 0)
’ 142r, \1+ k.3 00,

< 03 (p™) < pa(pN))eX(+77/2) X(sB N (582 /2)

N

(1+k:08)*N (142r,).

where p;(p*™) is the solution to the CSMA fixed pOIntl.Jsing this result in the previous expression yields

equation forp™), and

1 1 2N
(N) 0i0pii (1 —4xB3)?
r22[@2N + 1) (kBN) + 2], with 1, 2 pﬁ—@‘;j. 1+42rp (1 + nsﬁ) P (L= 4xP)
1
2N
Based on Steps 1-3 and Proposition 5, we can now prove < )8 = (14 wsB)7 (14 2rp)0i0p(3,5) 1—4x6°
Theorem 3. _ Combining this result with Proposition 5, we obtain that
Proof of Theorem 3:Consider a sequence of CSMA oN )
policiesp¥) that satisfies Assumption 2. To keep the notation 1 > (1 —4x8) o 2X(r 5 g 2x (B )
light, we use in the following only instead ofp™), p;; in- 1+ k3 (14 2rp)
stead Ofpgv_j)), o; instead ofe; (p™")), p; instead ofp; (p™)), - i)
and 3 instead of3"). Furthermore, we usg; ;) instead of = PiPiPGi,)

1¢i.j) (™)) to denote the link service rate for lirfk, j) under

2N (1+2TP) 2x(r+ﬁ) 2x(nﬁ+ﬂ)
the CSMA policyp™), and 7, ;) instead ofr; ;,(p\) to (1 +£45) ¢ e e

(1 —4xp)

IN
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wherep; and p; are the solutions to the CSMA fixed point |

equation (9)-(10) for the CSMA policp. Let B(v) = (B;(v)); be the CSMA fixed point as given
As we have that (see Sections VI-B and VII, and Equay equation (27), i.eB(v) is the solution to the fixed point
tions (11) and (12)) equation
pjp(i,j)€_2XB pjp(iyj)e_(Gi(p)J"Gj(p)) B B -
T 2 . —G.(p) < — G Bi_l_%a Z—l,...,N,
1+ 8 —eGilp) 14+ 38 —eGilp) B+1—eGi
< < P3P (,5)
S TG STy B — e=Gilp) whereG; = Z (Paij) + Piay)(1 — Bj). Note that we can
JEN;
or pipip e X0 _ _ PiPPi) rewrite the expression foB; as
—ﬁ > Ty = 6 ) 5o Ll(l - eiGi) B 1(1 - eiGi)
it follows that Y B+l—eGip ~ 7B
2N 1 ,
( 1 ) (1- 4X5)ef2x(r+§)e*2x(nﬂ+(“§)2 ) g 2X8 = (1- Bz‘)B(l —e ), (29)
1+ ks (1+42rp)
< TGd) which is previously posed as (27) in our outline. We then have
T ) the following result.
< (1+4rBH Mewwé)e?x(nm%). Lemma 4. Given a CSMA policyp, 5) for a network with

(1—4xB)? N nodes, let
Finally, note that under Assumption 2, we have

- 4X5)872x(r+§)672x(nﬁ+#)672xﬂ Vij = 3 ) ,7j=1,...,N
Jx}gnoo (14 2rp)(1 4 ks0)2N =1 and let y be given as in Assumption 2(c). L&(v), i =
and 1,...,N, be Er;e CSMA fixed point as given 7). Then, for
)N (s 2%)82)((”%)62)((}{“#) B €[0,(2x)""] and x > 2x we have that
ngnoo (1—4xp) =L B;(v) = (1 — B;(v)) Z I?ij(l — Bj(u)), ieN,
Therefore, it follows thatlim §¥) = 0. [ JEN:
N=oe for somer;; > 0, potentially, with#;; # ©;; satisfying
C. Alternative Formulation of the CSMA Fixed Point 1 Dij o
In this section, we derive an alternative formulation foe th 1+ 3 < Vi <1+kp, (4,5) € £,

CSMA fixed point for a CSMA policyp, which is then used . o .
to relate the CSMA fixed point to the Erlang fixed point fof'”deViaj =0 if (1’0323 ¢ L. More compactly, we hav8 (i) =
loss networks (as outlined in Step 1 of Section C-B). To kedp () where BZ(7) is defined in equation (28).

the notation light, we use in the following; ;, instead of Proof: For
pg\’j), 3 instead of3™), G; instead ofG\"), and\; instead
of i}\/_(N). G; = Z (Paig) +pG.ay)(1 = Bi(v))
Recall that for a CSMA policyp with sensing periog, the JEN:
CSMA fixed point equation is given by note that
3 1—e @ < G; < Gi(1+Kp).
pizifga z’:lw“aNa
Btl—e ™ Furthermore, we have

whereG; = Y~ (p(i,j) + p(j.i))ps- First we observe that for Gre—Ci < 1— oG

JEN;
large N the offered load=; becomes small at all nodes. To see this, note thdim, o ze® = lim,_o(1 — %) = 0
’ Xr— - r— =

Lemma 3. Under Assumption 2, we have and Lze=® < L (1 —¢7), for z > 0. Since, by Assump-
. . tion 2, we havei; < x0, it also follows that
lim G; =0, i=1,...,N.

N —oo

o XB <« (1o~ Gi <1 _ _Gi.

Proof: By Assumption 2, we have that Gie SGeisl-e

. . Furthermore, since X% > (1 — , it follows that

ngﬂoo Gi = Nlinoo Z (PGi,g) + PGy Pi . I 2 (1=xB). 1 W

JEN: Gi(1—xp) < 1—e G

< lim (Pi.j) + PGy : N
N_)OOje/\/i Finally, for x > =5 We have

< lim xp 1 1 18
_— Trmd 1+ 258
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Combining the above results, it then follows that fére Proof: Fori € A/, we have
[0, (2x)~!] andx > 2x we have

1 . .
OF A-BoF)> =17
GiL<1—e*Gi<Gi(1+nﬁ) (i)B—GlE: Vij, JjeN;
1+ k68— - J 0, otherwise.
and, using (29), Note that the functiorF is continuously differentiable. Next
1 Z (- Bi)(1 - B:(»)) we show that the Jacobain matrix
Viq — D;\V — i\v
1+kp =~ ! ! oF;
< Bi(v) < OB
(1+#.8) Y viy(1=B;())(1 = B;(v)), VieN. has linearly independent rows. Having established thisltes
JEN: the lemma then follows from the implicit function theorem.

The result then immediately follows from continuity and th&efore we proceed, we note that this matrix has non-negative

fact that for nodei € N the vector (¥;;)en;, Can be e€ntries.

determined independently from the other nodes. m  Suppose that the rows are not linearly independent, then
Thus, the above lemma establishes that the CSMA fixéiere exists a coefficient vector = (21, ...,zn) # 0 such

point B(v) that solves (27) can alternatively be expressed Hat

the fixed point that solves the generalized Erlang fixed point ¥ OF,(BCE 1)

equation (28) where the true transmission ragsire replaced T (W

1 J

AN

>—O, forallie {1,...,N}.
by “approximate transmission rates;;. Jj=

Using the special structure of the Jacobian matrix, we abtai

D. Existence and Uniqueness of a Fixed Point T .
. . . . . Topema t D wri =0, Q€N
Consider the generalized Erlang fixed point equation of (1-B") JEN:
Lemma 4 that is given by or
€T .
BSP = 3" py(1— BEF)(1 - BF),  ieN, L+ Y vy t(1=BFF)? =0, ieN.
JEN; JEN: ’
with Consider a node¢* such that
Ui >0, i,7) € L, T Ti )
j (4, 7) e —‘1_BGE’ ieN.
where we allow that . ! !
Vij 7 Vji- Then,

: . , . , , ; 1 - B&FE
In this section, we will show that there exists a unique fixed 1 = — Y v (1 - BZF)(1 - BS¥) xj [ RCF
point by using an argument that is similar to the one in FEN Lir L= Dy
Section B that we used to prove the existence and uniqueness . 1— BGE
of the CSMA fixed point. < > w1 BEF)(1 - BSF) xj T RBeF

We first rewrite the above fixed point equation as JEN ! J
GE GE GE
BGE A ’ < Y (1= BEF)(1 - BEF) =BIP < 1.
W = Z I/ij(l — BJGE), RS N, (30) GEN«

JEN: Hence, we obtain a contradiction and the result followsm

wherer;; >0, (i,j) € L. We then obtain the following result by the same argument
Given vectory = (7). jec With 23 > 0, (i,j) € L, let as given to prove the uniqueness of the CSMA fixed point in
BYE (1) be the set of fixed points for Eq. (30). Then we havEection B.

the following result. Lemma 6. There exists a unique fixed poi®“” () to

Lemma 5. For all fixed points B2 ¢ BS%F(i), there Eg.(30).
exist neighborhood®/ c RY of BGF and V' c [0,1]* of
7 such that for eachv € V the equationF(B%E v) =

E. Sensitivity Analysis
(Fi(BYF . v))ienr = 0 where y y

In this section we show that asymptotically (&sbecomes
Fi(BOF, ) BeE S~ vy(1 - BOP) large) the solution to the CSMA fixed point equation converge
! ’ 1 - BSFE Y J to the solution of the Erlang fixed point equation given by
Eq. (26). To show this, we use a sensitivity analysis for the
has a unique solutioB“* ¢ U. Moreover, this solution can generalized Erlang fixed poinlB“* () that is the same as
be given by a functioB“F = ¢(v) where¢ is continuously given by Hajek and Krishna in Section 4 of [17] with only
differentiable onV'. minor notational changes. For convenience, we providevbelo

JEN;
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the analysis of Hajek and Krishna applied to the generalizadhich we can rewrite as

Erlang fixed pointBE¥ (1), oF ) .
C(JBEiven vectoguEz (uij)(iﬁggﬁ with v;; > 0, (i,7) € L, let 9BCE — D™ (I + DRD)D™".
eB ua(tiyo)n: (By*(v), .., By (v)) be the fixed point to the By Lemma 5, the matrix%‘jT is invertible. It follows that
q (I + DRD) is invertible andL is well defined.
BEE , To show that
W: Z I/ij(l—BJGE), ieN, (31) 1 .
T jGNi Z|L1J|SW, ZEN,
where we allow thatv;; # vj;. Furthermore, let the links JeN
l = (i,7) € £ be indexed with numbers, ..., L. we can use the same argument as given to prove Lemma 1
Consider then F(BCE v) = in [17]. That is, letM = DRD, so the diagonal elements of
(FL(BCE v),...,Fy(B9F,v))  where the  function M;; are all equal to zero and the off-diagonal elements are
F;(B%F v) is given by given by s s
BGE Mi,j:(l_Bz’ )(1_Bj )Vij'
GE _ i GE -
F(B™%,v) = 1_ BGE — Z vij (1 — By, i€N. Note that the elements ofl are all non-negative and that
g JEN;
.= (1— BGE (1 — BEEYy = BGE
with v;; > 0, (i, j) € L. ;Mw (1= B;7) ;v vij(1 = By™) = BIP.
We then have ! s _
Let e denote the vector with all elements being equal to 1.
OF;  _ 1 T + v, i,jeEN Then we have that
OBYP — (1-BgF) T e Me < BEP,
and OF where the inequality is understood to be coordinate-by-
87-1- =—(1- BJGE), ieL,jeN;. coordinate. By induction, we obtain for > 0 that
9

n GE\n
Let D be theN x N diagonal matrix with M < (B,%)",

Dii=(1— BOE), andLL is given by the absolute convergent series

Furthermore, leRR be the N x N matrix given by L= Z(—l)”M".
n=0
R Vij, .] € Ma . .
R;; = { 0, otherwise, Moreover, for the matriXLL| given by
and letT be theN x |£| matrix given by ILfij = |Li,j]
T { (1_BzGE)(1_BJGE)a l= (i,j),jEM, we have
il = . 00 00
’ 0, otherwise. n n L
|]L|€ S ZM e S Z(BSE) e = W@,
Using the above definitions, we then have that n=0 n=0 *
OF and the lemma follows. ]
9BGE — D> +R From the proof of Lemma 7, we have that
aBGE

and oF — (D2 +R)"'D"'T = DLT.

— =-D7IT. v

v We use this result as follows. L&“F(s) be the solution to
Finally, let the fixed point equation

L = (I+DRD)! BGE
—t = ;i (s)(1 — BEF), i€ N, 32
wherel is the identity matrix. Then we have the following 1 — B&F 7%\:/_ () i) (32)
result. _ o
with
Lemma 7. The matrixL is well-defined and 1
ﬁw(s) = I/ij(l + 51'3'5), — S 5ij S 1.

(14 kP)

Note that as we vary;; in the interval[— 7, 1] ands in

the interval[0, k5], ©;; will vary in the interval[_(1+1ﬁﬁ),1 +

1 .
Y Lijl < —pam €N,
JEN *

where B¢F = max; e BEE.

k0.
Proof: Recall that Using the fact that
or 9 OBCEF
9BCE = D™ +R 5 DLT
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and the chain rule

dBSP  9BSF di
ds  0v ds

we obtain forBSE (s), k= 1,.., N, that

2.0

€N JEN;

BGE'
] sz 7

dBEE
ds

IN

IN

BN Wil Y T iyl

ieEN JEN;
BEP) Y {|Lk,z-| -
ieN

> (1= BEF)(1 = BF Py 6341
JEN;

|

As we have that;; = 0 for j ¢ N;, we obtain that

(1-BEF) Y {|Lk,1-| -

iEN

> (1-BfF)[

IN

dB,?E
ds

- BjGE)Vz‘j|5ij|}

JEN;
= -5 Y {iLda - 567).
iEN
~ 17 GE
> iy [ |- 7).
= 1+ s0;;

We then have the following result.

Proposition 6. Let x = 2x and let B“F(s) be the solution
to the fixed point equation

> i(s)(1 = BYP),

JEN;

GE
Bi

1—BGE —

i€ N,

with

vij(s) = vij (1 + diz5), —1/(1+kp) < L.

Then for0 < s < k3, we have that

(1 - BEE(s))
= (1-B9P(0)

o x(s+52/2) x(s+s2/2)

ieN.

Proof: For the proof, we use the same analysis as glv%rll]

to prove Theorem 2 and Corollary 2 in [17]. That is, foe
[0, k0] andé;; € [-1/(1+ k3),1] we have

51'3'
— 1+ Séij -

Combining this bound with the fact tha; (s) is the solution
to (32), we have that

GE
Z N B;
Vij
J

GE
(1= B < pon

_ Oy
1+ 505

21

Combining the above result with Lemma 7, it then follows
that

aBy* GE GE cpy_ BEF
| < 1889 Y ILaalBE® < (1-BER) .
ieN *
(33)
Recall thatB&E(s) is the solution to
BiGE S R
s = S - B, s o)
v JEN
with
Dij(s) =vij(1+0i5),  —1/(1+£p) <dy <1
As
ﬁij(s)gl/ij(l—i—s), —1/(1+I€5)§§J§1

and by Assumption 2 we have that

Z Vij <X,

JEN;
it follows that
BGE
W < X(l + S).
Combining this result with Eq. (33), we obtain that
dBGE
|0 BEEa e, se ol

and the proposition follows.
We have the following corollary.

2x. The solution B(v)

Corollary 3. Let k = =

(B1(v), ..., By(v)) to the CSMA fixed point equation given
by Eq(27) then satisfies
_ 1 - BE(v)) 2 _
extspre?/n) o L BEW) o) e
(1= Bi(v))
where BE(v) = (B¥(v),..., BE(v)) is the solution to the
Erlang fixed point equation
B 2 :
1_BE:ZVZ'J'(1—BJ-), ZEN,
¢ JEN;
with
L PGg) T PG
1] 6 .
Proof:

Recall that if we varys;; in the interval[—1/(1 + x03),
ds in the interval0, k5], 755, then

—-1/(14+kpB) <

will vary in the interval[1/(1 + x3),1 + x03].

The corollary then follows immediately from Proposition 6
and from Lemma 4 which states that the CSMA fixed point
B(v) is equal to the a solutioB“#(7) to the fixed point
equation

1]

Dij(s) = vij (1 + 055), bij < 1.

BGE

i

ieN,

> (1 - BEF)(1

JEN;

GE



where?;; > 0 is such that indicates for each link € £ whetherl is busy {;(t) = 1) or
t @i (t) = d
L not () = 0), an
1+ k8 ~ v 2(t) = (z1(t) )iec,
ando;; =0 if (i,5) ¢ L. indicates the remaining time until nodéas the chance to start
m 2 packet transmission on link(if link [ is currently idle), or

the time until link! becomes idle again (if link is currently

§1+f€ﬁa (iaj)EEa

The above corollary states that the soluti®r) to the
CSMA fixed point equation given by Eq.(27) and the solutioRUSY): »
BF(v) to the Erlang fixed point equation become (asymptot- 1€ existence of the steady-state probabilifieg; = 0)
ically) identical for largeN, as by Assumption 2 we have ha@"d?(¥i = 0,y; = 0), i, j € N, can easily be established for
3 approaches 0 a¥ increases. We are going to use this resujfi® SPecial case where (a) all sensing delays are equal to
in Section C-I to prove Proposition 5. .e. we have

Bi(l") = B, I, e L,

(b) the sensing times of all nodes are aligned, i.e. all nodes
are initial idle and start sensing links at timg= 0, and (c)

In this section, we show that the family of CSMA policiesye have that
(p, B8) provided in Definition 6 is contained in the sBtof all B==
policies that have well-defined link service rates. ¢

Consider a CSMA policy with sensing period. Further- for some integet.
more, recall that;(I’) is the amount of time link requires to  In this case, the system dynamics are given by a finite-state
detect that link’ has finished transmitting a packet, i@(/’) Markov chain(y(k), z(k)), k > 0, such that
) . . A :
is the sensing delay of linkfor Ilnk l. (se_e also S_ectmn IV-B). (wi(k), 2(k)) = (yu(kB), 21(kB)),

Recall that we say that a nodés idle if nodei is currently
neither sending, nor receiving, a data packet. We say thawvherey;(k) € {0,1} and
link I = (4, ) is idle if both nodei andj are idle. Otherwise,
we say that node (link (i, ) is busy. alk) €46,20,0 L1+ By L€ Lk 20,

For a given directed link = (i, 5), we refer to node as Furthermore, the Markov chain has a single-recurrent class
the source node of link. We then say that link = (i, j) is containing the statéy*, z*) given by
sensed to be idle by its source node, if nads (a) currently . _ . _
idle and (b) senses nodeto be idle. Otherwise, we say that vi =0 andz =5, Le L,
node: senses link to be busy. and is aperiodic as the recurrent stgig’, z*) has a self-

Suppose that at timg nodei has sensed link= (i, ) to transition. It then follows that the above steady-statebpro
be idle for exactly the duration of a sensing perifid.e. node bilities exist.
i first detect that linkl is idle at timet, — 3. Furthermore, For the general case where not all sensing times are the
suppose that at timg node; starts a packet transmission orsame, we define a renewal process [12] to establish the
link {. Then we say that link has been idle in the interval existence of the above steady-state probabilities. Withuss
[to — B, t0). of generality we assume for the rest of this section that

If at timeto, link I = (4, j) just became busy (either because (a) for all links (i, j) € £ we have thap; ;) > 0, and
nodei started a packet transmission on liplor because a link  (b) the interference graph consists of one connected com-

F. Existence of Steady-State Probabilities

" € 7, that interferes with link started a packet transmission) ponent, where the vertex set of the interference graph is
and that time; is the first time after time, that link [ is idle equal to£ and there exists an edge between two vertices
again, then we refer to the intervigy, ¢1) as a busy period of 1,1 in the interference graph if linkand!’ interfere with

link 1. each other.

~ Let y(t) indicate whether linki is busy ¢u(¢) = 1) or 1) Recurrent Statéy*, z*): In the following, we construct
idle (y(t) = 0). In this section we show that the steady-statg recurrent statey*,2*) that we use to define a renewal

probabilities process for the general case where not all sensing timebare t
0= £3) — same. To do this, we first iteratively number the links in the
Py =0) = kinéop(yi( p) =0), following way. At stepl, let /; be an arbitrary link inZ and

let S; be the set of links that have an interference constraint

forall i € £, and with link {1, i.e. we have

for all i € £ andj € L, exist. In addition setB; = {l1}, set A4, = S;, and setC; =
Note that the state of the system at timean be charac- £\(51 U {i1}), i.e. setC contains all links except for link
terized by the vectofy(t), z(t)) where l; and the links that interfere witly,. We then apply this
procedure recursively as follows. Suppose that we are given
y(t) = (yi(t))iec, the setsA;,, By, andCy, of stepk. These three sets have the
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following interpretation. SetB;, contains all links that have function given by
been chosen at stgpor an earlier iteration. Set;, contains

all links that interfere with at least one link in sB},, and set T = {%J B, 20
C,. contains all links that are not contained in skt or B;. modglz] = ,
Given these three sets, we proceed at dtep1 as follows. [%W B—lz|, <o0.

If the setAy is empty, then we stop. Otherwise, we pick an

arbitrary link from the setd, and label it ad;, ;. Let S,,; and let

be the set of links in sef’; that interfere with linkl;. 1, i.e. Z1(t) = modg {zll(t) — zl(t)},

we have _ .
be the difference (offset) between the time when the current

active period ends for link; and . We have the following

SetBy4+1 = Brp U {lk+1}, SetAk+1 e (Ak U Sk+1)\{lk+1}, result.
and setCy1 = Ci\Sk41- Lemma 8. Let the timet}, k = 1,..,L be as given in
Without loss of generality, we assumed that the interfezenghe definition of the sample patiP*. Then at timet;,
graph is connected, and the above procedure will termingte= 1,... L, for all links [ in the setA, U B, the offset
after L steps withA;, = C = 0. Z(t,) 1s given by a function that does not depend ),
Having labeled the links as given above, we then construsit depends only on the constamtg!’), I,I’ € £, and the
the following sample path of the system to which we will refesequence of the first links that are activated in the sample
to as sample patly P*. path SP*.
a) Sample Pattb P*:: Suppose that during in the inter-
val [to,to + () all links I € £ are idle. Then let timeg;, be
given by

Sk+1 =C} ﬂIlk+1-

Proof: As we do not require the transmission time 1 to
be divisible byg, let At be given by

ty =to + 0, At = modg(1).

and let linkl; start a packet transmission at timg+ z, (t,) Ve Prove the lemma by induction. For the sample p#ifr,
while all other links remain idle during in the intervét,, £, + recall thatt; is the time when link; finishes its transmission
23)). Note that in this case the packet transmission of link @nd? is given by

/
will not experience a collision. Let =t} + 2, (th) + 1 be the ty=tp.
time whenl; finishes its transmission and let all other links; tojiows that
remain idle during the intervale), + 23, t1). () =8
1

Then proceed iteratively as follows. Ligt £ =1,..., N, be _ _
the time when linK;, finishes its packet transmission, and le@nd for all links! in the setA; U B; we have
all links be idle in the intervalt, tx + ). Set 2(t) = Billa).

ty =tk + 0 where (1, is the time linki requires to sense that link
has finished a packet transmission. It follows that for alks

and let link ;1 start a packet transmission at timg + lin the setA; U B; we have

2, (t},) while all other links remain idle during in the interval
[t 1, +206). Lettiy1 = t), + 2, () + 1 be the time when zZi(ty) = Bi(l),

link I finishes its transmission and let all other links remain - ) . .
idle during the intervallt!, + 23, tj.1) and the condition given in the lemma is true for= 1.
k ’ .

Let timet¢; be the time when link; finishes its packet Suppose that the lemma is correct for-1 > 1, and letl;

M e _ !
transmission and let all links to remain idle during the ital  2€ the link&™ link that is activated in the sample pafif>”.

ecall thatt), is the time when link}, finishes its transmission
ttots 4 ) Recall thatty, is the time when link,, finishes its t

- andt; is given by
Finally, let k
4 t) = t18.

We first note that when link; does not interfere with link;,
be the time when link; has a chance to start a packetje we havel; ¢ 7,,, then the transmission of link, does
transmission in the interval, + 5,11, + 203), given that the not affect the offset between, (¢,) and z(t}) for all links
source node of link; continues to sense link to be idle ;¢ 7; . Using this observation, we consider the following two
during the intervallt, — 3, ¢,). cases.

First suppose thay ¢ Z;,. Then for all linksl € A, U By,
Having defined the sample pahP*, we show next that such that ¢ 7;, , we have that
the state variable(t,) = (z(t.))iec at the end of the sample - oy
path SP* does not depend on the staté,) at timet{, but aty) = 2(tk),
is uniquely determined by the sequence of how all links malgd for link [, we have that
their transmission attempts and the fact that all links wele
at timet),. To do this, for a scalar let modg[z] be the modulo 2, (t) = modg [élk (th—1) + At

tr =tr + 6+ 2z, (t1)
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For all links! € Ay U By, such thatl € 7;,, we have that other links remain idle in the intervat;, t;, + 23), is lower-
bounded by
ZA’l(t;C) = modg [élk (t;c—l) + At + ﬁl(lk)} . Prnin(1 — pmaX)QL

Next suppose that € Z;, . Then for link/,, we have that The probability that no other link starts a packet transioiss
o in the interval[t) + 23, ¢, + 1 + 23) is lower-bounded by
m (tk) = ﬁ - ﬁh (lk)a
(1— pmaX)Lfl/m_
Lett; be the time when link; finishes its packet transmission;

21(t),) = modg [ﬁ — B, () + 21, (t 1) — 2t 1) + At] . note that

and for all linksl € A, U By, such thatl ¢ 7;,, we have that

th <th+3+1
For all links! € Ay U B, such thatl € 7,,, we have that If all other links remain idle during the intervay,, t,+1+273),
5 (1) = mod L) — 6] then all links are idle during the intervélh ,¢; + ().
A(th) = mo B[ﬁll( k) = Bl k)} The result follows by applying the above argument itera-

As by the induction hypothesi(t},) does not depend on ftively to the case where link,, k = 2,..., L, start a packet
z(t) but only on the constantg;(’), I,I' € £, and the transmission under the sample patfr~. -
sequence of the first links that activated in the sample path 2) Renewal ProcessUsing Lemma 10, we can define a
SP*, the statement of the lemma is true for stefThe results renewal process where renewal epochs are marked by visits to
then follows. m the recurrent statéy*, z*).

We then have the following lemma. Lemma 11. The expected length of the interval between visits

Lemma 9. Let#, andt, be as given in the definition of thet0 State(y”, 2*) is bounded, and the visits to the stae’, =*)
sample pathSP*. The state(y*, z*) = (y(t,), z(t,)) in the define a renewal process.

sample pathSP* is given by a function that does not depend we have the following result for the resulting renewal
on (y(ty), 2(t,)), but only on the constants;(I’), I,I" € £, process.

and the sequence of links activated in the sample dth ] o
Lemma 12. The renewal process defined by visits to the state

Proof: This result follows immediately from Lemma 8(y*, z*) is either aperiodic, or has a period/c wherec is a

and the fact that positive integer.
2 (tr) =0 Proof: The lemma follows immediately from the fact that
and if (y(to),z(to)) = (y*,z*) then with probability at leastl —
alty) = 2(t),  1#0hL. Pmaz)” We have that
n (y(to + B), 2(to + B3)) = (¥, 7).
Next we show that there exists a positive consgansuch m

that the probability that the above sample path reaches statCombining the above lemmas, we obtain the following
(y*, z*) within at most(1 + L)(1 4+ 23) time units is lower- result.

bounded byp,.
Wo Proposition 7. For every sensing period > 0, the family of

Lemma 10. Let CSMA policiesp is contained in the seP of all policies that

A A . have well-defined link service rates.
Pmax = MaxX P 4y, and Pmin = MO DG ).
()L (hi)el Proof: Let I(; ;(t) be the indicator function for whether
Then, the probability that we reach the statg’, *) within link (i, ) is transmitting at timet a packet that does not
(1 + L)(1 4+ 23) time units from any given initial state €xperience a collision during its entire transmission time

(y(to), z(to) is lower-bounded by Using Lemma 12, we then we have that (see for example [12])
L .1t .
Po = (1 — praax) “/A1H2) |:pmin(1 — Punax) FEFI/BT Jim - ; L (r)dr = lim P(I ;) (kB) = 1).
Proof: Note that from any initial statéy(ty), z(to), with u

probability at least

L([1/8142) G. Properties of Balance Equations
(1 — Pm:e )

ax In this section, we characterize the balance equations for
we have for the steady-state probabilities
th=to+1+2p P(y; =0) = klim P(y;(kB) = 0), ieL,
that all links are idle during the interv@di, — 3, t(,). and

Consider the sample pathP*. The probability that linki, ) o
starts a packet transmission in the interigl ¢, + 3) and alll Pyi=0,y; =0) = khj{}o P(yi(kB) = 0,y;(kB) = 0), i.j €L,
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under a CSMA policyp with sensing periods. From the mean value theorem, it then follows that
We are going to use the following notation. If nodés

busy at timet, i.e. if y;(t) = 1, let 2;(t), i € N/, denote the Py (1= Z pr) < pGij) H (L =pv).

time until node; becomes idle again, i.e. untiktops sending, _ Ve Ve

or receiving, the current packet transmission. Furtheemifr By Assumption 2 we have that

nodei and; are jointly idle at time, i.e. we have thagy_i(t) = Z v < 2B,

y;(t) = 0, then letx;;(t) = ;) (t) be the amount of time that

nodei and;j haven been jointly idle. Note that if nodeand ; . et
have to be jointly idle for at least the duration of sensinggee  and it follows that
[ before node can potentially start a packet transmission on iy (1= 2x8) < pip H 1 - py).

link (i, 7).
1) Preliminary LemmasFor a given linkl = (i, j), recall
thatZ; be the set of links that interfere with Suppose that at Note that for
time ¢ nodei andj have been jointly idle for at leagt time Kp = 4X
units, i.e. we have thag;(t) = y;(t) = 0 andz;;(t) > 5. e have that
Given a CSMA policyp, the probability that node starts a 1
packet transmission on linkduring the intervalt, t + ] is R <(1-2xB), Bel0,(40)7.
then lower-bounded by P

UVeT;

The result then follows. [ |
D) H (1 =pw), Below, we derive additional lemmas that we are going to
Vel use in Section C-G2.

upper bounded byy; ;.

Note that from the definition of a CSMA policy, it immedi-
ately follows thatp; ;) is an upper-bound on the probability
that node: starts a packet transmission on lihlduring the Proof: Suppose that nodg starts a packet transmission
interval (¢, ¢+ 3]. To see thap(; ) [ [y, (1 —pr) is alower- on link I = (4,;) at time t. Then this packet transmission
bound, we observe the following. Given that at timeode:  will experience a collision only if another node starts aksac
and;j have been jointly idle for at leagt time units, letto be  transmission on a linK € 7; in the interval(t — 3, t+3). This
the earliest time aftet when nodei has the chance to startjs because by Assumption 1, we have that for littks Z; we
a packet transmission on link if link [ remains idle in the have that the sensing delay(!’) and g, (1) is bounded bys.

Lemma 14. The probability that a packet transmission expe-
riences a collision is upper-bounded By 3.

interval (¢, o). Note that Furthermore, by Assumption 2 we have that
fost+/. > e <2xB,
In the worst case, all link8 € Z; have an opportunities to start Ver
a packet transmission in the intery&l — 3, to). In this case, and the lemma follows. m

the probability that no link’ € Z; starts a packet transmission
during the intervalto — 3, o), and linki has the opportunity -€mma 15. We have
to start a packet transmission at timgis lower-bounded by Ply;=1,2: € (0,8) = P(y; = 1,z € (1 — ), 1]).

H (1 —pr) Proof: The above lemma follows immediately from the
req, fact that a packet transmission takes 1 time unit. [
and the probability that link starts a packet transmission i
the interval(t, t+ ] is lower-bounded by; j) [T, ¢, (1—pr). Lemma 16. we have

i 1
We have the following result. P(y; =1,z € (0, ﬂ])ﬁ
Lemma 13. Suppose that at time nodei and j have been 14283
jointly idle for at leasts time units, i.e. we have thaj(t) = < Pyi=1) < Pyi=1,2; € (0,4]) 7
y;(t) = 0andxz;;(t) > 8. Then there exists a constaty such . .
that the probability that the link starts a packet transrioss Proof: The results follows immediately from the fact that
in the interval (¢, ¢ + 3] is lower-bounded by the length of a busy period is bounded between 1 (the length
1 of a successful transmission) ahd- 25 (the maximal length
S .. 71 S
T npﬁpw)’ B €0, (4x)" ] of a collision). ]
and upper-bounded by Lemma 17. We have
(14 kpB)p(i j)- Plyi = L€ (1,L145]) < Pys = 1,wi € (1= 5, 1])4x0.
Proof: For k € Z; we have that Proof: Note that the evenf{y;, = 1,2; € (1,1 + 5]}
d indicates that a packet transmission resulted in a caflidy
—D(ij) H (1—pv)| < paj)- Lemma 14, the probability of this happening is upper-boudnde
dpr” " e ’ by 43, and the lemma follows. m
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Lemma 18. We have the states of nodes other than nadand j. By Lemma 14

P(y; = 0,y; = 0,2;; > f3) o the probability that this transmission will result in a dsibn
P(y: = 0,y; = 0) > (1 —4xp), i,.jEN. is upper-bounded byy 5. When the transmission does not
v — Y Yy —

. ] result in a collision, then at, + 8 the remaining time until
Proof: Suppose that at time node: and j have just nqqe; finishes the packet transmission will be in the interval
become jointly idle, and let}; denote the time it takes starting 1 - B,1], i.e. we haver;(to + ) € (1 — 8, 1].
from ¢ until either nodei or ; become busy. Note that by Combining the above results, we obtain that
Assumption 2, we have that e

1 1 Z P(yi = 0,y; = 0,2i; > B)(p(i,j) + Piii))
E[Tt]Zﬁ%—ﬂ—ﬁzﬂ—ﬁ- 1+HPﬁjeNi
Furthermore, we have that < Plyi=1zi € (1-61))
Py =0,y;=0,2i; > ) _ E[T|T; > 8] - 8 and
P(y; =0,y; =0) BT Ply; =1,2; € (1 —3,1))
As < (1+mpB) Y Plyi = 0,5 = 0)(py) + Piiii))
E[Tt|Tt 2 ﬁ] Z E[Tt]7 JEN; ‘
we obtain that +P(yi =1,z € (1, 1+ 7)),
P(y; =0,y; = 0,25 > ) - E[Ty] - p where the last tern(y; = 1, 2; € (1,1+ 3]) accounts for the
P(y; = 0,y; =0) - E[T)] probability that at timety node: is experiencing a collision
Furthermore as that will last anothet.. time units witht. € (1,1 + 3].
BT > 1 3 Using Lemma 18, we obtain for the first inequality that
t| = 5 — M
2x (1—4xpB)?
it follows that 5 1,0 GZN P(y; = 0,y; = 0)(pgj) +pga))
J i
P(yi =0,y; =0,zi; = B) > B[] - < Ply;=1,a; € (1 B,1]).
Py =0,y; =0) E[TY] _ _
_ _ Furthermore, using Lemma 17 we obtain that
1/2x=26 _ 1-4x8 .
T2 -p 1—2x6 — - Plyi=1l2€(1-p,1)
N m < (1+5pB) Y Plyi = 0,5 = 0)(pig) + Piiy)
2) Bounds on the Steady-State Probabilitids: the fol- JEN:
lowing, we derive bounds on the steady-state probability +P(y; = 1,2 € (1 — 3,1])4x0,
P(y; =1), i € N. We start with the following lemma.
or
Lemma 19. For
Be0,(16x)7Y Py =1,2; € (1-05,1])
1+ k0
there exists a constant, such that < 1o 4;5 Z P(yi = 0,y; = 0)(p(ij) + P(ii))-
JEN;
1
T5r 3 > Plyi = 0,95 = 0)(peig) +pii)) Note that for3 € [0, (16x)~'] and x/, > 2(k, + 8x) we
p ieN;
€ have that
< Plyi=1l,z;€(1-0,1]) 1 1—8xS (1_4X6)2
< <
< (1+RyB) Y Plyi=0,y; = 0)(pg) +Pi0)- L+ rpB = T mpf = 1+ k0
=
' The lemma then follows. [ |

Proof: Suppose that the system is in steady-state at timeysing | emma 19, we obtain the following bound for the
to and that we (_)bserve the evolutl_on of the system from t'”é?eady-state probabilitf (y; = 1), i € N
to to tg + (5. Using lemma 12, which states that the renewal
process is either aperiodic, or has a periodigf wherec is Lemma 20. For 8 € [0, (16x) '], there exists a constant,
a positive integer, it follows that at timg + 3 the system such that
is again in steady-state. Furthermore, suppose that at time 1 - -
to nodesi and j have been jointly idle for at least time 1+ k.3 Xj\; Plys = 0,95 = 0wy
units, i.e. we have thag;(to) = y,(to) = 0 andz;;(to) > S. =

Then by Lemma 13, fo3 € [0, ((4x3)~!) there exists a < Plyi=1)

constants, such that the probability that linki, j) starts a < (14k4P) Y Plyi = 0,y; = 0)viy,
packet transmission during the interval, ¢y + 3] is bounded JEN;
between(lJFIWp(_i,j) and (1 +r,B)p(i,5)- Furthermore, these where N

two bounds provided by Lemma 13 are independent of the vij = Pli.j) T PG

p

states of all other links, and hence independent of states of
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1+ K0

Proof: Using Lemma 15-19, for3 € [0, (16x)~!] we
have

Plyi=1,2;, € (1 - ,1])
< Plyi=1)
< Plyi=1l,zi€(1-p,1])

s

1428
6 b

and there exists a constaﬁg such that

1
> Plyi = 0,95 = 0)(piy) + piii)
JEN;
< Plyi=1,2€(1-41])
< (L+wpB8) D Plyi =055 = 0)(pij) + ii)-
JEN;

Combing the above results, we have that

1
3" Plyi=0,y; =)
1+K;6J6M ( J ) J

< P(y; =1)
< (L4 /B (1 +26) Y Plyi = 0,y; = 0wy,
JEN;
where
PG T PG
Vij = ——F——">.,

B
Note that forj € [0, (16x)~'] and

!/
fp

ks > KL +2 4
> ko, Sx

we have that
(14 rp0)(1+26) < 14 Kyp.

The lemma then follows.

H. Characterization of the steady-state probabilities
In this section, we characterize the steady-state prabesil

ieN,
that a nodei is busy under a CSMA policp with sensing

Bi:1—P(yi:O),

Lemma 21. Let x, be the constant of Lemma 20. Then for
k,1 € N we have that

. +1,€Sﬁ j;c:,lp(yk =0,y; = 0,y = 0)vy; <
< P(yp =1, =0)
< (1+rs8) > Plye =0,y; =0,y = 0)i;.
J#k,l
Proof: Note that we have
Py, =1,y1=0) = P(yr = 1|ly; = 0) P(y; = 0),
and
P(yr =0,y; =0, =0)
P(ye =0,y; =0lyr = 0)P(y, = 0).
Therefore, to obtain the result, it suffices to show that
1+1H56 j;lp(yk =0,y; = 0lyr = 0)v;
< P(yy =1y = 0)
< (1+5:8) Y Py = 0,y; =0y = 0.
J#k,l
The above inequalities are obtained by the same argument as

given in the proof for Lemma 20. |
We then have the following result.

Proposition 8. Let k5 be the constant of Lemma 20. Foyl €
N we then have that
Py = 0)P(y, = 0)

1 1 2N
1+ 27, (1 + /-;Sﬂ>
N
(14 ksB)" (14 2rp),

with 7, £ ”mﬁ and p,q. IS @s given in Assumption 2.

Proof: Let Z; be the steady-stated probabili(y; = 0)
that nodei is idle, let Z;; be the steady-stated probability
P(y; = 0,y; = 0) that nodes andj are jointly idle, and let
Zi;1. be the steady-stated probabili(y; = 0,y; = 0,y =
0) that nodes, j, andk, are jointly idle.
We use a proof by induction on the number of nodes in the
network, as given in [17]. For a network witN = 1 node

Py, =0,y =0)

IN

period 3, using the same analysis as given by Hajek arfBe Proposition is trivially true, and suppose that> 2.
Krishna in Section 3 and 4 of the reference [17] with only USing Lemma 21, we have that

minor changes.
Throughout this section, we set
_ PGy T PG
3 ;
with v;; =0 if (i,7) ¢ £ and(j,i) ¢ L.
Note that by Lemma 20 there exists a constansuch that

i,j €N,

Vij

1
> Py =0,y; = 0)vy;
1+ KSB JEN;
<Py =1)
< (L+ks8) Y Plyi =0,y; = 0)vi;.
JEN;

We have the following result.

(Zkl + Z ijlek)

7k,

<Z;<(1+ Hsﬁ)(zkz + Z ijlek)-
J#k,l
Furthermore, starting with the equation

1= P(yr =0) + P(yr = 1)
and using the result from Lemma 20, which states that

1+1ﬁsﬁ( > Plys=0,y; = O)ij)

1+ k50

JEN
< P(yr=1)
<@+ Hsﬁ)( > Plyr =0y, = O)ij),

JENK
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we obtain Corollary 4. Let x, be the constant of Lemma 20, and et

1 be the actual steady-state probability that nade busy. Then
Plyr =0 Plyr = 0,y; = 0 ) h
(P =0+ 5 =0, =0, y f
JENK L — ;i (1 — Bj)
<1 1-B; vig /
= Y jEN;
< (1+ksB) (P(yk =0)+ Y Py =0y, = O)ij)- where?;; is such that
JENk 1 1 OINH1 -
Combining_the above inequalities, we obtain by the samlp 5 (1 ) < Yij < (1 + reB)*NH! (1+2r,),
approach as in [17] that +2rp \1+ 50 ij
1 (Zie + Ziavia) Zia + Z.#k,l ZikZravin wherer), is as given in Proposition 8.
(1 + Kksf3)2 ZiZi + 3 kg ZrZjravin The above results follows immediately from Proposition 8
_ _ ' and Lemma 20. Using the above Corollary 4, we obtain the
Py =0,y =0) tollow "
= Pl = 0P =0) = ollowing result.
) (Zk + Zyvi) Zr + Z#M ZikZyvik Corollary 5. Let k4 be the constant of Lemma 20. Then there
(1 + ks0) 22+ 200 Zijlejk : exists an integelV, such that forN > N, the actual steady-

state probability

Using the fact thatZy,; < Z; and by Assumption 2 we have B
o;=1-—DB;, xS N,

0 S Vij S 2rpa - . . . g
. ‘ that node; is idle in a network of sizeéV satisfies
it follows that (1- BE(V))efx(r+r2/2) <oi<(1- BE(V))eX(HTz/z)
1<Zk+Zlekl<1+2r i S0 s i ;

- 7y - P where B (v) = (BF(v),..., BX(v)) is the solution to the

and Erlang fixed point equation given by
Zi < Zip+ Zrv < (1 + 2r )Zk. (35) BE
. . i . lE:ZVZ](l_BJE)a ZENv
Furthermore, from the induction hypotheses applied to the 1= Bj JEN:
network with N — 1 nodes, we obtain, by deleting node
where
| ( 1 )2<N‘” - ZnZu r=2((@N + 1)(x:) +2r,]
1+2rp \1+ ks ZrZjki andr, is given in Proposition 8.
2(N—1)
< (14 k) (1+2rp) Proof: Note that
and (1 _H%ﬁ)zNH (1+2r,) < e(2N+1)(ksB)+2rp
1 1 2(N-1)
I Ziw < ZinZ and
1427, (1 + Iisﬂ) REIME = SIREH 1 1 2N+1
2(N—-1) —[2N+1)(ksB)+27p]
< il - > Pl
< (1 + Hsﬂ) (1 + 2Tp)Zngkl (36) 1+ 2Tp (1 T Iisﬂ> = e

Using Eqg. (35) and (36) in Eq. (34), we obtain Furthermore, recall that, = p—”é‘”, and, by Assumption 2,

(Z Zu+ i () 3 2z (V)
k<kl T 127 (1+mﬁ) k4 jkiVjk . Dmdr ) N
! JF#k,l ngnoo B(N) = 07 and ngnooﬁ( )N =0.
1+ rsB)*(Zr 2 o I Z v . _
(Lt RoB)* (2 + 2 g D Zgravi) It follows that there exists an integé¥, such that forN > Ny
Plyp =0, =0) _ we have
~ P(yr =0)P(y; =0) — c@N+D)(r:B)+2r, _ o
(Zkal + (14 ke 3) 2N > Zijlejla)Wd
J#kl

1+ keB)3(1 + 2 EN+D(EB+2r0 1 4 2[(2N + 1) (ks 2
( R 6) ( TP) (Zk;Zkl + Zj;ékl ZkZ_]klI/]k) € + [( + )(KJ ﬁ) + Tp]a

where we used the fact that the functighis convex and that

and lim, o e = 1. Similarly, for N > Ny we have
: ( 1 )” S ! [(2N-+1)(raB)2r,]
—[(2N+1)(ksB)+2r
1+27’p 1+I€56 P(yk:O)P(yl:O) 1+2[(2N+1)(/€56)+27’p] <e P
< (1+r8)N (1 +2m). ,
= s P Using Corollary 4, forN > N, we then have
The result then follows. u B; ) _
We then obtain the following corollary. 1_ B = > (1 By),

JEN;
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where7;; is such that Theorem 4 then states that for every sequeNd® e C
1 there exists a sequence of CSMA policigs™} x>, that
asymptotically stabilizes the network, i.e. we have
1+ 2[(2N + 1)(ksf3) + 21,

.
< Z5 <14 2[@N + 1)(k,B) + 21y ). it [ i P )
Vij N—oo \ (i,j)eL) )\EN))

2]

> 1.

Using the same argument as given in the proof of Proposition 6

and Corollary 3 in Appendix C-E, we then obtain the result We prove Theorem 4 as follows. By definition, for each

of this corollary. m sequencg \(M)} x>, € Co there exists a scalak < 1 and
an integerN such that forN > N we have

I. Proof of Proposition 5 A < &, i=1,..,N.
In this section, we combine the results of Sec- )
tions C-E and C-H to prove Proposition 5. Let thenA™ be given by
Proof: Consider a CSMA policy for a wireless network 1—A

consisting of N nodes and set ATE1- —— <!

vy = P TPGH gy and let N

b vE = >1. (37)

Let B;(v), i = 1,..., N, be the CSMA fixed point given by A

Eqg. (27), and letr;(p) be the actual steady-state probabilitysing these definitions, let
that node: is idle under the CSMA policyp. Then by

Corollary 5, there exists a integé¥, such that forN > N, ;\Ef\fj)) £ W\Ef-?), (i,5) € L, and
we have that the steady-state probabilites: € A/, satisfy AEN) 2 Z ngj)) + 5‘8'\.,?)} ’ ie NV
(1= BF(v)e™X+7/2) < gy(p) < (1= BF (v))eX(+7°/2), jeN ™

where BF (v) is the solution to the Erlang fixed point givenFor all i ¢ N™), we then have
by the equations

BE

— (1 _ RE ;
1-BE %\; vis(1 = ByY), teN, As limy .o, 3N) = 0 andlimg|o 7(G*(3)) = 1 (see (6)),
I there exists an intege¥, such that forN > N, we have

AM <p*, N>N.

andr = 2[(2N + 1)(ks03) + 2r,] is as given in Corollary 5. -
Let B(v) be the CSMA fixed point given by Eq. (27) and AN < A* < r(GT(BMN))e @ ETN =1, N,

recall the relation that ) ) ] ]
Using this result, for a given network siz& > N let

pi(p) =1 - Bi(v). G™M e 10,G+(3™)) be such that
Then by Corollary 3 we have that there exists a constant e(GEN)7G+(5))T(GZ(.N))€7G+(5) - ]\EN) (38)
such that
(1- BE(V))e—X(mB-&-(nﬁ)z/z) and let .
' (V) _
< pi(p) < (1= BP(0))ex(s0+ (/) P T f1— e

Combining the above results, we immediately obtain Propog’uch 2™ exists as shown in the oroof of Theorem 2

tion 5. . . .
For N > Ny, consider then the CSMA policp™) given
by
APPENDIXD
3 (V)
PROOF OFTHEOREM 4 SN 2 (i.9) ﬂ(N)62G+(ﬁ(N)) i) e L
Proof: Recall that the sef.. is given by (0,9 PV V) ’ ’ ’
T J
Coo = {{/\(N)}N>1 € Al lim sup ( max A(N>> < 1}7 Using the proof of Theorem 2, we then have f§r > N,
N N—oo \i=L N that
and that in Theorem 4 we consider a sequence of net- AN < M), (6,5) € £V,
. . (4,7) (1,9)
works {N V) £}y, and a sequence of sensing periods
(BN))n>1 such that Also, using Theorem 3, the approximatiop ;,(p")) of
) () the service rate of linKi, j) is asymptotically accurate as
Nlﬂnoo NB¥7 = 0. increases if the sequenép™¥)} x> v, satisfies Assumption 2.
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Next, we complete the proof of Theorem 4 assuming Assumipthen follows that

tion 2 holds and then confirm that it does.

1) (PH)

lim inf

N—oo (z',jI)Ig?(N) AW
(4,9)
A (p(Y) (p)
— liminf T(”)(]IV) )ﬂm)(PN )
e \E)est /\Ei,j)) (i) (PMY))
. (N)
= liminf m M
N—oo | (iject NV
(4,9)
(N)
> lim inf min M
N—oo (4,§) €L A
(4,9)
>y > 1.

To verify Assumption 2 for the sequené¢e™)} x> n,, we
first show that for

(N) _ (N)
Pmmaz = (i.,jI)neag((N)p(i’j)
we have that
(N)
pmam -0
N—o0 6

Note that by definition, we have fdg, j) € £ that
(N)

Pl

hm L 5 <1+ k)? hm A

max

where

Combining the above results with the fact that for
{(AM1y>; € A we have

limsup( max /\EN?)>=0,
Nooo \(i,j)ecty) 0]

it follows that
(N)
i pmam
1m

Furthermore, using (39) we have

[pEN)) ))] (N)

2,7 771 N

R RO E
jeN ™) g jeN ) ’
(B™ +1-e=C") W 41—

CaDE |

Using (37), (41), and (42), it then follows that there exiats
integer Ny such that forv > N; we have

)\EN))) QG+(B(N)) )
7y

N)
771)]

Py _ (N) [p(w) 2 3
ﬁ((]\?i 2GH (M) Z T < 2(1 + H) Z [/\ 7]) + /\ 771)]
jeEN™) jeENI
(N) (N) _
Ly BN A1 O 1S < 21+ m?AY
(6:4) (B(N))2 < 21+k)2A*,  i=1,---,N.
_a@™ —_g™
< max (A iVl) ) B +1 e EM 1% ) Hence the sequendg ™)} v, satisfies Assumption 2 and
(kpec (D (BN)2 the theorem follows if we can verify (40), i.e. if we can show
(N) 41— =GNy () 1 —G(N) that there exists a constantsuch that for allN > N, and
< W(ﬁ?& ()‘Eivz)) (8 (5()15)6)2 )all 1 € N, we can find aG G( ) > 0, that satisfies the

where~ is the constant of Eq. (37).
Suppose that we can show that there exists a constand
an integerN, such that for allN > Ny we have that

ieN.

In this case, for alli, j) € £ we have

G < kg™ (40)

(V)
Pl
BN =

max (
(k,l)eL

and it follows that

(N) (N) ™\ 2
Pmax <’Y max (/\(i\fl)) ﬁ +1 e €2G+(6(N)).
BN = e kD B
As
N
lim €263 =1, (41)
N—oo
and o
(V) 41— —kf
Jm P =, @
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)\EkNl))) (6(1\]) —’—(1(]_\/)6) ’ 62G+(ﬁ(m)
, B ’

inequality
GZ(-N) < Kﬂ(N)
and is a solution to (38), i.e. fof = 3Y) we have that

GV =GO (MG (B) = R
where .
7(GQ) = ﬂ—l—leﬁ'
Note that the function

F(G) = €9

is continuous inG' with f(0) = 0, and recall that by definition
there exist a positive constatand a integerV such that for
all N > N we have that

BN 7(G)e=T )

ANV <R<1,  i=1,.,N.

Therefore, in order to verify (40) it suffices to show thatrthe
exists a constant such that

N)_Iiﬁ

max
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and A < 1. Combining the above results, it follows that for

and G = kM), we have

(N) -G
lim e(CL-GH (™)) Gmax€mx (o)

N B0 11— —Gok

T 14k
This verifies (40) and completes the proof. [ |
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