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Joint Asynchronous Congestion Control and
Distributed Scheduling for Multi-Hop Wireless
Networks

Loc Bui, Atilla Eryllmaz, R. Srikant, and Xinzhou Wu

Abstract—We consider a multi-hop wireless network shared length based schedulers for the purpose of fair-resource al
by many users. For an interference model that only constrais  |ocation [11]-[17]. These algorithms determine the rate at
a node to either transmit or receive at a time, but not both, we which each user is allowed to inject data into the network

propose an architecture for fair resource allocation that onsists functi f th t tion | | of th work
of a distributed scheduling algorithm operating in conjunction as a tunction of the current congestion level of the network.

with an asynchronous congestion control algorithm. We showhat T he congestion level information is fed back to the congrll
the proposed joint congestion control and scheduling algithm  from the nodes. It has been shown that fair allocdtican be

supports at least one-third of the throughput supportable ty any  achieved through the joint operation of these two mechasism
other algorithm, including centralized algorithms. — scheduling and congestion control. However, each of these
Index Terms— Congestion Control, Fair Resource Allocation, papers has one or more of the following assumptions: (i)
Totally Asynchronous Algorithm, Distributed Scheduling, Wire- scheduling mechanism is ignored [16], [17], or (ii) a cen-
less Networks. tralized scheduling algorithm is assumed [11]-[13], [16,
(iii) it is assumed that the congestion price informatiom ca
. INTRODUCTION be instantaneously exchanged between all of the nodes (an

HE operation of a wireless network differs from itsassumptlon .made by all Fhe previous p‘?‘pers)- The requllremen
of decentralized scheduling is obvious in a multi-hop véssl

_W|reI|ne counterpart n many aspects. Interference, tlmﬁ'etwork. However, the importance of the ability of the netivo
varying channels, and limited resources are a few of the

N - . to exchange information between the nodes does not seem

distinguishing characteristics of wireless networks. Antoer . ;
to have been addressed previously. In particular, two nodes

of papers have addressed the problem of resource allocation : o .

o . T can exchange congestion price information only when they
in wireless networks while taking into account many of the . . .
. : . c¢an successfully transfer information between them. Wénlik
features. It was shown in [1] that scheduling algorithmd tha

aporopriately use the queue lenath information can Sm)i”a wireless network, information transfer between nodes is
bprop y d 9 s&:bject to interference constraints and hence neitherrdata

the queues in the network, provided that the set of arriva . S .
congestion price information can be transferred between tw

_rates from the various USErs of the network lies within Wh%todes without taking into account the activity of other node
is referred to as the stability region of the network. Such .a

scheduling rule is callethroughput optimaln the sense that, in their vicinity. This is similar to the asynchronous model

) . cd)nsidered in [9], except that in [9] it is assumed that nodes
for any set of flow rates for which the queues can be Stab"l'zeexchan e information with a bounded delav which mav not
the throughput-optimal scheduler will stabilize them. drat 9 y Y

. be the case in wireless networks, as we will demonstrate late
there has been a large body of literature that extended thes ) .
: n this work, one of our goals is to relax some of these
ideas to more general systems and classes of schedulers LZ —

[7]. All of these works assumed that the incoming flow rateS sumptions gnd stud_y the performance. .Of a d'SFrIbUted re-
. . . L ._.source allocation architecture for a specific, but widelgdis
areinelastic and that the buffer length information is availablé

at a central coordinator instantaneously, which then deters interference model. Under this interference model, called

. . . —__the node-exclusive model, each node can either transmit or
the allocation of the resources and informs all the nodesinag . . . :
: . : receive at a given time, but not both. No other constraings ar
in an instantaneous fashion.

Motivated by the works for wireline networks [8]_[10]'|mposed on the transmission. Thus, each feasible scheslule i

. S . a matching of the underlying graph of the network. Such an
recently there has been much interest in incorporating can- . ; I

estion control into the system in addition to the queuér]t(_arference model is appropriate for Bluetooth netwod] |
g or in FH-CDMA networks [19], [20].
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price and users’ packet arrival rate information in athe indicator function that is equal to one when lihks in
asynchronous fashion. A distributed maximal matchintpe route of flowf, and zero otherwise. The utility function,
algorithm proposed in [21] is used to perform the schedulenoted byU,(-), is assumed to satisfy the following set of
ing. conditions:

« Unlike [21], we do not assume that the user arrival rates , U;(-) is a strictly concave, nondecreasing, twice differ-

are known at each node on its route instantaneously.
Instead, we use a modification of an algorithm in [22], ,
[23] to stabilize the network.

We consider a deterministic fluid model and show the
stability of the joint congestion control and scheduling
architecture.

As mentioned earlier, congestion information can be
exchanged between two nodes only when they are sched;
uled to transmit to each other. To ensure that every pair of
neighbors communicate with each other infinitely often
(almost surely), we introduce a slight modification to
the maximal matching algorithm whereby every node ,
attempts to make a connection with each one of its
neighbors with a small probability.

With the above modification to the maximal matching
scheduling algorithm, the resulting congestion control
becomes an asynchronous algorithm with possibly un-
bounded delays in exchanging congestion information. To

entiable function.

The second derivative of the utility function is bounded,
i.e., for everyM € (0, c0), there exists a constant < co
such that

1
<m

0< — < Va € [0, M].

(1)

For everyM € (0, ), there exists a constaatsuch that

‘U}/ (U}f (y))‘ >ay  Vy>M. )
U}*l(-) is a convex function, and satisfles
U/—l K+ %
1-— M — O(L”V) (3)

Uy ()

for any fixedx, 3 > 0 and for somey € (0,1) that is
determined as a function aef € (0, 1).

the best of our knowledge, the approach in [24] does ngje note that these conditions are not restrictive and haid fo
seem to apply to our asynchronous computation modgde following class of utility functions.

and therefore, we provide a new proof of the convergence
of the asynchronous congestion control algorithm. Up(z) = z (4)
It should be noted that we consider a time-slotted model, L —ay

which assumes that all nodes have a common notion of €, js upper bounded. This class of utility functions are known
beginning and the end of a time slot. We refer the reader tb [25 characterize a large class of faimess concepts [26].
for a discussion about a time-slotted model, which usesdyuar

intervals in the context of FH-CDMA networks to enforce this
requirement at the cost of slightly reduced throughput. ~ A. Interference Model

The paper is organized as follows. Section Il introduces | this subsection, we describe the interference model,
the system model we consider in this paper, including theferred to as theode-exclusive interference modassumed
interference model, the description of the regulated makimp this paper and its implications. According to this model,
matching scheduler, and the problem statement. We descigh node can either transmit or receive, but not both, at a
and analyze a heuristic fluid model analysis of the synchuenqyiven time. There are no other constraints on the transomissi
version of the system in Section Il In Section IV, we praid  The arrival processes are assumed to be discrete as follows:
the description of the asynchronous congestion contralier 4t each time slot, the number of arrivals for flowf is a
prove its convergence properties. We finish with conclusiopoisson random variables with mean. At this point, let
in Section VI. us define thecapacity region A, of the network simply as
the set of flow ratex = {x,}, that are supportable by the
) ) ) network. We will provide a more precise description f
Consider a graphg = (N, L), representing a wireless 4t the end of this section, after we describe the interferenc

network where\" is the set of nodes and is the set of model. Let&(n) be the set of links that are incident on node
directed links. We will use both notatiotts, m) andi to refer ,, ;o E(n) = {(h,k) € L : h = nork = n}. Then, the

to alink in L. If a link (n,m) is in £, then it is possible to fo|lowing facts can be asserted.
send packets from nodeto nodem subject to the interference  pget 1-
constraints to be described shortly. We assume that time is
slotted, and let;; > 1 be the fixed capacity (the number of
packets per time-slot that can be transferred over the link)
of each linkl. Let F denote the set of flows that share the
network resources. The main goal of .th's paper |s.to .der'\ﬁ‘lis fact simply states that no node can be active more than
a fully distributed asynchronous algorithm that achiewas f 100% of the time and is proved in [27]
allocation of system resources among the competing flows. '
We assume that each floyi, has a unique, loop-free route
and a utility function associated with it. We ug/ to denote

170¢f

VOéf >0

Il. SYSTEM MODEL

Zfe}‘Hlfxf
A : == <1,V .
c {x E - <1,VneN}
le&(n)

gz

3f(z) = O(g(x)) implies thatlim sup

T—00

< 0.



IEEE/ACM TRANSACTIONS ON NETWORKING 3

Fact 2: Any set of flow rates that satisfies

L Hlz 2
> Lerflivg 2 5)
C| 3
le€(n)

lies within the capacity region of the network.

This fact is discussed in [20], [27], and is based on a
work by Shannon [28]. Notice that the condition in (5) is
equivalent to the requirement that any node in the network
should not be scheduled more than two-thirds of the time.
Also note that under the node-exclusive interference model
any feasible schedule corresponds tmatchingof the graph
G. Let M = {M;y,Ms,---, Mgk} be the set of all possible
matchings, wheré\/; is a 0-1 vector of |£| dimensions that
denotes the set of links that are active for e matching.
Here, M is a finite set since we have a graph with finite
number of links. Letco(M) denote the convex-hdillof the
set of matchings. Then, the capacity region can be expressed

; |
A= {x . [M] c co(/\/l)} ) " lnk(an
el i

Cl

Also, for each link(n,m) € L, let T,,,, denote the set of Fig. 1. An example network
all links interfering with(n, m) plus link (n, m) itself. For the
node-exclusive interference modél,,,,, is the set of(n, m)
and all one-hop neighbor links @f., m): Flow f packets that are served over lifik, m) are buffered
at the corresponding regulator of lifk, m) before they are
Lo = {(h, k) € L h # k. b€ {m,n} or k € {m,n}}. transferred topthe qSeue?that will rerfay th)em to the n)éxt.link
We let R/, (t) denote the length of linkn,m)’s regulator
B. Distributed Scheduler buffer corresponding to flov at the beginning of time slat
In this subsection, we introduce the fully distributed sthe A A(t)-regulator is a logical device which allows packets to
uler that is implemented at the MAC layer. The schedul@ass through it at a maximum rateX() at slotz. Specifically,
determines which links to activate and which packets toeser@t slot¢, a A(t)-regulator associated with link checks its
at a given slot. It is assumed that the amount of time requirbdffer size, and if its buffer size exceeds link capacityit
to perform the scheduling task compared to the actual pack@nsferse; packets from its buffer probabilits)c(lﬁ; otherwise,
transmission is small. no transfer occurs (other implementations of the regulater
We introduce the following notation to describe a schedulirglso possible). Finally, we le$;, (t) denote the number of
rule 7 = {mum, (n,m) € L} : we letr,,,(t) be equal to one packets that leave regulat®’ = at slott. We refer the reader
if link (n,m) € L is scheduled at slot and zero otherwise. to Figure 1 for an example network.
Also, we defineP,,,(t) to be the number of packets served With these definitions, the evolution of the number of
over link (n,m) at slott, and P/, (t) to be the number of packets in the regulators and the queues can be descrilied wit

flow f's packets served over link:, m) at slott. Clearly, the following difference equations.
Pan(t) = 32 B, PL(0). RE(t+1) = RL,(t) — SL.(t) + Pl (1)
JeF Qum(t+1) = Qum(t) = Pam(t) + Y ST()H],,
It is assumed that for each node a queue is maintained feF

fordeach of thlietﬁutgomkg l'mtf"{m) efﬁ. Thollsdqltjeue jtores whereS:’;(t) is the output of the regulator for floy that is
and serves all the packets that are forwarded to node a ..o 4 ot hode.

first-come, first-served (FCFS) fashion at those slots when t In our model, the value of\;(¢) used at a regulator is

scheduler setsn (t) = 1. Wellet. Qnm (t) denote the .tptal based on the rate at which floy is generating data. In
number of packets at the beginning of siothat are waiting general, this information is not available instantanepusl

o _Il_)ﬁ tranhsrglttled over “nK_Z’ m_)' thi . iahtl Il nodes inf’s path, and hence it is both inaccurate (old) and
€ scheduler we consider In this paper 15 a sightly mo uctuating (due to the fact that floy's rate is determined by

ffied version of theRegulated Maximal Matching Schedule% dynamic congestion control algorithm to be described)ate

'n.t£23]' Ehf |I(<ey |defa IS tohlr;ltroduce r_egutlgtors r?st‘:’]ociat?ﬂ comparison, the scheduler considered in [23] assumes the
with each ink, one for each flow passing throug € Inlf(nowledge of the mean flow rates at all the regulators and uses
4A convex hull of a setS is the intersection of all convex sets that (:overthIS fixed value in its |.mpleme.ntat|-0n. In our model, however
each element of. the current flow rate information is passed from the sources
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to each of the nodes with a random propagation delay. &hieve stability if the set of mean arrival rates of the flows
account for the delay, we let?(¢) € [0,] be the time slot at x, satisfies
which the rate information of sourcg (i.e. z4(-)) was sent,

f

given that it is received by node at slott. Further, suppose Z Zfef Hixy < 1 Vn e N
that noden is the k' node on the route of flowf. Then, the 1egtm) cl -3
regulator for flowf at noden is a (z;(77(t)) + (k — 1)e)-
regulator, where:, > 0 can take arbitrarily small values. In% Problem Statement
other words, the regulator uses the most recent update of the ]
rate (plus a very small amount) as(¢). Given the above model, our goal is to have the mean flow

The scheduler we consider uses the value€gf,(t) to rate vectorx™ > 0 satisfy:
find either aMax_imaI I\_/Iatchiné(MM) with z_:\_high probgbility x* € argmax Z Up(zy) @)
or some matching with a small probability. In particular, a ier
maximal matching is selected in a distributed fashion among y 1
those links that have at least one backlogged packet in their s.t. Z Z C—Hlf < 3 VneN,
buffers. The formal description is provided next. 1ce(n) feF !

| DISTRIBUTED SCHEDULER - DISCRETETIME | provided that the regulators and the queues are kept stable.

The strict concavity assumption of the utility functiongalies
thatx* is unique. We note that the constraint set of this opti-
mization problem containa /3 due to Fact 1. In (7), we have

« With probabilitye; > 0 allow all links (n,m) € £ to be formulated the wireless network rate allocation problenams

At the beginning of each time slot, each node, saydeter-
mines theeligible set of links according to:

eligible. optimization problem by taking the interference and distied
« Otherwise, allow only thosgn, m) € £, with Q,...(t) >  scheduling constraint into account. Such an approach hes be
c(n,m) t0 be eligible. taken for our interference model in [15], [16] before. Hoegv
Then, which set of links to activate at nodeis determined it is assumed in these works that the current rate of each
by the following distributed strategy: source and the current price of each node are immediately

« If n has at least one eligible neighbor (a neighbor that #ailable at all the nodes. Obviously, in an actual openatio
at the other end of an eligible link) that is notatched such information can only be conveyed along with the data

with another node, then choose any one randomly, s§gnsmissions, and hence is delayed by random amounts for

m, and match them with each other. After this operatio?laCh source-node pair. Updates with delays have been taken
n andm are said to be matched. into account in [9] in the wireline and [29] in the wireless

« Otherwise stop setting, but in our work we link the delay to the scheduler and
' also allow for unbounded delays as long as the updates occur
At the end of this algorithm, those links that have matchedl e W Hnbou 4 g P N

d il b heduled to t . ket Ii"hfinitely often.
nodes, sayn, m)I;W' e scheduled to transmit,, m) PACKeLS ) o 15 describe a new optimization problem whose optimum
C

. . . nm(t) _ _ . cppe ;
within slott, Le. T = wnm.(t) = 1. Itis not dlfﬁcu!t tosee point converges toc*. For anye > 0, let
that the algorithm WI“ result in a set of scheduled linksttisa

a maximal matching of, because any node can be matched x*(e) € argmax »  Uj(xy) 8
with at most one other node, and no pair of unmatched nodes fex
. o o
yv|t_h a pack_et to transmit is left at the end. Tl;g_eparameter_ ot Z Z x_lej <-_ Vn e N
is included in this algorithm to assure a positive probapili c 3

of activating a link even if it has no backlogged packet. This leem Jer

is necessary to ensure that every link is active occasigriall It is not difficult to see thatx*(¢) — x* ase — 0. We

allow its nodes to exchange congestion information. introduced this new problem to make sure that the optimum
It can be seen that if a scheduling rutét) is a maximal point lies strictly inside the feasible region of (7). This i
matching then it satisfies necessary to ensure that the queues and the regulators are
stable as will be discussed in Section IlI.
Z The(t) > 1 (6) In the remainder of this paper, we will propose a congestion
{(h,k)ETrm} controller mechanism that operates on top of the Regulated

MM Scheduler that will provide mean rates that are arbityari

for every (n,m) € L with Qi (t) > c(n,m)- _ close toz*. Furthermore, we incorporate all the asynchronous
Also, notice that the MM algorithm is performed using th%omponents that exist in the operation of the system. In

Lenf?ths ?I_fhthfe Iz;lctu_al c]{cuetu_esanottthezéengths of the regUIab%lrticular, we model the random nature of the scheduling
u ers.3. € ohowmgl a;:] IS gel o [23]. K gel i operation, which results in potentially unbounded delays i
q Fa(;t bFor the mu tl_l ode|re ess hnec;[WIpr mlo € h'mro'the information communication between different compdsen
uced above, the Regulated MM Scheduling Algorithm gl 1he network. Noting that information feedback is critica
s . _ _ _ y in the operation of our congestion controller, it is crudial
A matching is a collection of links such that no two links aneident on . . .
the same node. A matching is said to be maximal if it is a matelind no ?nswer the ques_t'on. a§ .tO whether the asynChron'Sm inherent
new link can be added to the set without losing the matchimgpeaty. in the network will significantly affect the performance.
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[1l. CONTINUOUS-TIME FLUID MODEL ANALYSIS Let us definep*(e) andq*(e) as follows:p? (¢) 2 Ly (e),
In this section, we consider a continuous-time, deterrtinis PENUN pr(e) + ph,(€) 11
fluid model of the system, in which all stochastic processes HOES Z Clnym) (11)
are approximated by their mean values. In Section IlI-A, we (nm)eR(f) ’

introduce a congestion control algorithm for this fluid mipdewhere L is some multiplicative factor. We defing, = LE,,

and analyze its convergence properties. Then, in Sectlen ile., if u*(¢) € E, then the corresponding*(¢) € ¥.. Notice

B, we describe a heuristic continuous-time version of ththat we can rewrite (10) and the complementary slackness
scheduler described in Section 1I-B and prove its stabifjizi condition (9) in terms ob*(¢) and q*(e):

characteristics. We will build upon these analyses later to

*
investigate the asynchronous, discrete-time algorithm. i (e) = U}fl <qu(6)>
+
A. Continuous-time Congestion Controller T} 1
'€ congestion Conte _ 0= [ ¥ E 0 m - (5- (12)
We start by noting that the optimization problem in (8) can I€E(n) feF 3 .
be solved by using Lagrange multipliers. The Lagrangian and Pi(c)
the Dual functions of the problem (8) are: where we defindy)T to be equal toy if z > 0 and zero if
y<0andz=0.
Le(x,p) = Z Ugp(zy) — Z {n The congestion control algorithm for the fluid model is
fer neN described as follows.
Ij | CONGESTIONCONTROLLER - CONTINUOUS-TIME |
DI ( ) At time .
1€8(n) feF © Sourcef computesz¢(t) = U}fl (qu(t)) .
De(p) = I)Iclgg)(]lle(X, 1) Noden computes:
- +
= — Hn ¥ Han . xf 1
= Lomg |V -er 3 S g = | 3 S S0a (5
fer (n,m)ER(f) leE(n) fEF o (®)

1
+ <§ - 6> Xn:un where

where i, is the Lagrange multiplier associated with the®
constraint of (8), andz(f) is the set of links which are along
the route of flowf. Notice that here we have assumed synchronous computation:
Then the dual optimization problem to (8) is given bynformation updates at the sources and the nodes occur in-
min, >oDe(p). It can be shown that for the problem westantaneously and simultaneously at each time instanatén |
consider, there is no duality gap [30]. Thus, there existssgctions, when considering the discrete-time model, wé wil
nonempty set of Lagrange multiplierE,, any element (say remove this key assumption and develop a fully asynchronous
1*(€)) of which satisfied. (1*(¢)) = 3= ; Uy (2% (e)). But for algorithm for congestion control. Nevertheless, the agialpf
any feasiblex of the primal problem (8), we must have:  the continuous-time system will be useful in understandlireg
more realistic model. Next, we state the theorem that proves
z the convergence properties of the congestion controller.
PACIEDS Z = Hf (_ B €> <0 Theorem 1:Starting from any initialp(0), x(¢) eventually
neN i) 7 ¢ reaches<*(¢) ast — oc.
because the expression in the parenthesis can never begosit Proof: Consider the Lyapunov function:

qr(t) 2 Z IM (13)

(om)er(f)  mm

for a feasible rate vector, and(¢) is a nonnegative vector. . 1 g
Thus, we must have*(¢) as the optimizer of the Lagrangian V(p;p*(e) = B Z(pn = pr(e)7,
L.(x,u*(¢)), and also have the paix*(¢), u*(¢)) satisfy: "
which is defined for somep*(¢) € .. For notational
. T} 1 convenience, we will occasionally uge’ andx* instead of
Z 0 Z Z 7 (g - 6> <0 p*(e) andx*(e). Then, the time derivative of this function at
neN let(n) feF ¢ satisfies
which is also called the complementary slackness cond'm'onv( Z{
the optimization literature. From the Lagrangian, it isyets (pn(t) = P7)
see that{x*(¢), u*(¢)) should also satisfy: n
/ . . zy(t (1 _ 6)
z5(e) = Uy 1 Z W (10) zesz:n)fze;f 3 put)

(n,m)eR(f)
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We first consider the case wheitt) € U, : note that the rate B. Continuous-time Scheduler
vector associated witp(¢) has to be the unique optimizer of
(8), i.e.x*(¢). But, by utilizing the complementary slackness
condition provided in (12) we can easily conclude that

In this subsection we show that the Regulated MM Schedul-
ing Algorithm, along with the Congestion Control Algorithm
described in previous subsection, can achieve stability.
V(p(t),p*) -0 for all p(t) € T.. (14) 5 I?ecall thatA denotes the capacity region of the network.

efine

Next, we considel (p(t), p*) for any p(t) > 0 : define ;
DerHizs 1
N=<x: E == < _-VneN
C

w®) =Y YL “’”f (15) e 3
le&(n) fEF
By Fact 2, we have) C % Moreover, we know that the
Then we have: optimum pointx* (¢) is strictly inside2. Thus,x*(e) is strictly
. 1 + inside the half of the capacity regiogﬂl
V(p(t),p") = Z(pn(t) —py) (yn - (§ - 6>) The evolution of the scheduler’s queues in continuous-time
n pn(t) can be described as follows.
< D (palt) = p}) (yn(t) - (% — e)) | SCHEDULER - CONTINUOUS-TIME |

RE () = (PLa®) = (@0 + (KF +1) &) e (A7)

1
-0 (- (3-4) +
Dnm (t) = zp(t) + Khe.) T HS — Pt
where the inequality follows from the fact thatgf,(t) = 0 Qnm(f) (Xj: (1) ! ) R (>0 ( ))
nm t
and y, (t) = (5 —¢) < 0, then (y,(t) = (1 =€), ) = 0. sy "
Otherwise, (. (t) — (5 — e)): ® = = (yn(t) = (3 —¢)). whereK? is the hop number of node along the path of flow

Also, from the complementary slackness condition, we have Note that this number is upper-bounded By,.. where
that |fpn > 0, theny = (1 — ¢). Otherwise, ifp}, = 0, then Niaz is the maximum number of nodes along any flow’s path.
yi < (% —¢). This fact imgplies Notice that in the fluid limit, the scheduling rutgt) satisfies

- the condition (6) for everyn,m) € £ with Q,,,,,(t) > 0.

N N 1 Theorem 2:Starting from any initialR(0) and Q(0), we
S n0 i) (s~ (3-)) 0 @0 et 2 ey

Proof: The proof uses the fact that*(¢) lies strictly

n

Therefore, inside half of the capacity regio@, and a Lyapunov argument
V(p(t),p*) <X, (pn(t) — p5) (yn(t) — y2) that is based on the discrete-time analysis of [23]. Theildeta
are moved to the Appendix. ]

> (palt) = p (Z fo 9”fo>

n €&(n) fEF IV. DISCRETETIME, ASYNCHRONOUSMODEL ANALYSIS

P (t) + P (t) In this section, we return to the discrete-time system model
Z —:vj Z Clmm) Here we do not assume synchronous computation which
f (n,m)ER(f) ’ is unrealistic in an actual network. Next, we describe the
* * discrete-time congestion controller mechanism. Then, vile w
Pn+Pm :
- Z —_ analyze this system.

(nym)eR(f) Cmm)

- Xf: (27 () = 7) (a5 (t) = 45) A. Description of the Congestion Controller
LZ o U (z(1)) — U/»(:c*)) We assume that when two nodes are matched by the MAC
7 f P At layer scheduler, the relevant price and flow rate infornmatio

is shared between them. Therefore, the information updates
at the sources and the nodes are asynchronous. Then, let us

with strict inequality Whenp(t) ¢ ., due to the strict consider the following asynchronous congestion controlle

with (14) and by |nvok|ng LaSaIIes theorem [31, Theorem

4.4], we conclude thap(t) =% ¥, and hencex(t) == At the beginning of each time slot,

x* (€). - Sourcef computesz s (t) = min {M, U}fl (Qf(TLf(t)))}

=

<

)
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Noden computes: Theorem 3:The mean drift satisfies:

el E[AV] £ E[V(p(t+1) = V(p(1) | P(), A1)
plt ) =m0+ 3 0 T < —lalt) —a (@) + CIAWDI? + B(2D)
(1 * for some constant§!, B < oo, v € (0,1) andd > 0. Here,

3 ¢ ’ || - || denotes Euclidean distance.
Furthermore, there exist sontg, B < oo, andc > 0 such
where that

P f N _

2 Y @O FeeCal) g BAV] £ —eL|k(#) - X" (O + CIAWIE + B22)
C(n,m)
(n,m)eR(f)

L
and M > 2max{c,;}. Here we definer/ (¢) € [0,] to be the the rate of flowf at timet if all the price information were
lel

time slot at which the price information of node (p..(-)) mséar;taneously azaﬂz:ﬁle at t?e fs_lo_lﬁrces. 3 ) |
was sent, given that it is received at soujcat slott. Thus, elore we provide the proof of Theorem 5 wWe give severa

t — 7/ (¢) is the random variable representing the number Jﬁmm;':lst thatt;/]vnl be us?d :cnt_the P{?OL' F'rfSt’ Wedzbser_ve that
slots it took forp,(-) to be transfered to sourcgé by the =~ 7 ( ) 'S the amount of time 1t takes for P,g S price
underlying scheduling mechanism, given that it is receised |nf0rmat|0n_to r_each sourcg. Similarly, ¢ — Ty (1) IS the
time slot¢. And similarly T;n)(t) € [0,4] is the time slot at amount of time it takes for the sourges rate information to

which the rate information of sourgeé(z(.)) was sent, given reach node:. These are random variables that depend on the
that it is received by node at slott. Further, letr! () be matchings chosen in the operation of the scheduler. To ensur

the vector ofr/f (t) for sourcef at timet, and also,r("™) (t) that each matching is chosen at least once with a positive
be the vector ofr}”) (t) for noden at time ¢. Finally, L. is probability, recall that we slightly modified the MM Schedul

a positive constant. We are interested in the behavior of tH%Ed n [21], [23] n Section I.I' Spec_lflcally, when the ma”"”?_
: matchings are being determined, with a very small prolspili
system wherl. is large.

Also. let us introduce the notation: we allow each node to pick a link that does not have any
' ' packets to transmit in line. We now establish the following
G n) (t) result for the delays in exchanging price and rate inforamati
(n) A 'y f . i
yn (T (1)) = Z ———H; (20) Lemma 1:There exists a constai? such that

(.
1€€(n) fEF “l »
st P(|t—7f(t) >TD)<e"PT v f
Notice thatg; (77 (¢)) (defined in (19)) is the estimated price (n) —n(D)T
of flow f's path at timet which is computed using delayed P (‘t 7 (t)‘ > TD) se vn. f
versions of the actual prices. On the other hapd) (defined wherer andy are some positive numbers dependingion
in (13)) assumes the instantaneous knowledge of all thepric  proof: Recall that M is a finite set containing all
on flow f’s path. Similar interpretation holds far,(7")(t))  the possible matchings. Also, Iét/ denote the sequence of
andy, (t) (defined in (20) and (15)). matchings needed to transmit the price information fromenod
This model contains the essential components of the asynto source f, and similarly, 5;’0 denote the sequence of

chronous operation of the network. Itis referred to as “lpta matchings needed to transmit the rate information fromaur
Asynchronous” in [24]. Specifically, the amount of time it to noden.

takes for the flow rate and node price information to reach anysijnce each node tries to connect to all of its
node or a source is captured by an unbounded random variahlsighbors with some positive probability,,, we have:

In the next section, we will prove that it asymptotically\sed P(M; occurs at time) > 4, for all i, and for somej > 0.
the resource allocation problem described in (8). Hence, for eactin, f) pair, we can state that

where we define (¢) = min iM7 U}fl (‘”—(t))}, i.e., itis

P ( S/ occurs in an interval of lengttsy|) > 6157 > 0
B. Analysis of the Congestion Controller o () )
A similar argument holds for any‘f" as well. Let us define
D=3+ |ST|+ |SJ(,")|, and letX be a random variable that

equalsl when all the matchings i85} and Slfc") occur within
(P(), A(t)) forms the state of a Markov chain, the first D s!ots. cherW|se,X is equal to0. Then, due to
Consider the L function/ d in th the above discussion, we can find some (0,1) such that
t(_)n5| ert_ N y?pl_m0¥h unc |or11, (I':)’ uste i n | €p (X =0) < (1 —9), which denotes the probability that at
continuous-time analysis (Theorem 1). For notational €9MVjeast one of the nodes (or sources) has not received any rate

Egnze’erwe ;V'” .ﬁe;(zsgytﬁ:':n;h: ;(ta;{znlqgn?:r aietnha!lyr?(les' (or price) update from one of the sources (or nodes) within
WEVET, We Wi ' w the lastD slots. Thus, we have

following theorem characterizes the drift of this Lyapunov R
function. P(t—7l(t))>D)<(1-0) Vn,f

Let A(t) be the vector{|t — = (t)], [t — 71" ()|} (),
and definer,, = min, {7/ (t), 7" (t)}. Also, let P() be
the sequence of vector(Q)(t),p(/t —1),---,p(7m)). Then
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P (‘t - r}") (t)‘ > D) <(1-96) vn, f which follows from the strict concavity assumption o (-).
Also, due to Taylor expansion, we can find somg(t)

Next, suppose we look ovérD slots. LetX,;, i =1,---,T between ; (1) and} for which,

be the associated Bernoulli random variable for #ffeblock
of durationD. Then Up(&¢(t) — Up(a}) = (@5(t) — 25U (y (1))

P (]t — 7'7{(15)‘ >TD) H P(X;=0) Using the assumption in (1), we can thus claim that therésexis

somec > 0 which yields

s - (n) . UG(@5(8) — Up(ah)| = el (t) — ofl.
A similar argument applies tP —7;"(t)| , which completes

the proof with appropriately definee{ D) and7(D) parame- Substituting this into (25) and then (25) into (24) yielde th
ters. m result. ]

The following two lemmas yield two different upper bounds Proof (Theorem 3): Notice that we can write
on similar expressions, and will be useful for the proof of

< (1=8)T = DT Vn, f.

Theorem 3. pa(t+1) = pu(t) +yn(t"(t) — (% - €> + un(t),
Lemma 2:Given anyB < oo, we can find some € (0,1)
such that forL large enough we have whereu, (t) is a nonnegative parameter that assures the non-
* negativity ofp, (¢ + 1). We first start by showing that we can
B+ Z{ as(t) = a) (B¢ (1) — 27)} ignore theun(t)( ternz in the iteration. Towards this end, we
can write
< —HHQ(U — @ gt —a* |5wrr + (Tat)—ar<wrr  (Palt+1) —p})? =
whered, ¢ andw are positive constants which are independent 1 2
of L. ( (t) + yu (T (2)) = (5 —e) pn> (26)
Proof: This statement is proved in [12] for a large class 1
of utility functions and for the case of a single transmitter +2 (pn(t) +yn (1M (1)) — (— - e)) un(t) (27)
transmitting to many receivers. Here, we consider the multi ) 3
hop scenario and further generalize the utility functiddev- +uy(t) (28)
ertheless, the arguments are very similar to those in [18] an —2u, (t)p, (29)
are moved to the Appendix. [ ]
Lemma 3:We have for any n. Sincep},u,(t) > 0, we have (29% 0. We also

. . 2 claim that (27)+(28K 0. To see this, we observe that; () =
Z{ ar(t) = a7) @5 (1) —2p)} < —cLI%O) = X% 0'if po(t) + ga(r™ () — (2 —€) > 0, and thatu,(t) =
—(Pn(@®) + yu (7™M (t)) — (2 —€)) if u,(t) > 0. These two

Wherec is a positive constant which is independent/of observations imply that (27)+(28) —u2(¢) < 0. This proves
Proof: We start by adding and subtractidg/;(Zs(t)) that (p,(t + 1) — p%)? < (26).

into the first factor within the summation, which yields By using this result in the definition oAV, we get

Z{ ap(t) = a}) (&5(t) = 2})} E[AV))

- Y- wEo) @0 - @ %Z[ynw%))—(%—e)]

N * 1
+Z LU s (t) — LU (b)) (24(1) — 2%) (24) +Z (ot [ (F (1) — (g _Gﬂ
We will analyze the terms (23) and (24) separately. We clam - g 4 Z " _ { (r (n )(t)) _ (} _ E)}
that (23K 0. To see this, we first note that, if;(¢) < M, - nl Yn 3
thenqs(t) = LU} (&4(t)) and hence we have N
d prtrny S A - B+an p3) [ (P (0) — 3]
(ar(t) = LU (1)) (@4 (t) — ) = 0.
If, on the other hand, we hav (t) = M > z%, thengy(t) < + Z pu(t) — ( ur (1 _ 6))
LU} (i (t)) which implies that ' 3
(a)
(a(t) = LU (@5 (1)) (@5 (t) - 2}) <. < B R (o) - [ n(r™(0) = i
Combining these two observations proves our claim. N
Next, we turn our attention to (24). We start by noting that = B+ Z pu(t) = p1) [yn(t) — r

(LUp(&5(t) — LU (xF)) (&4 (t) — 27F) B
= LUy (1) Up(ah)| o5 — o3l (25) 2 alt [n< (1) ~ (0]
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for some constanB, where inequality(a) follows from (16).

Now, looking at the second term:

S (on(t) = p3) (yn () = v3)
= 2 > fo fof
" leE(n) fEF
- Z _xf ( Z IM
f (n,m)ER(f) C(n,m)
Pn—i-pm
le;(j C(n,m) )

= > (xs(t) = a}) (ar () — a})

f

> (ar(t) = gf) (@p(t) — &5(t)

f

+3 " (ar () — @) (@5 (t) — 2%)

r
Therefore, we can rewrite the upper boundEjAV;] as
E[AV)]
< B+Z (ar(t) = qf) (&(t) — aF) (30)
+ Z qr(t) = q}) (w5 (t) — @4 (t)) (31)

+Z Pult

where we recall that ; () = min {M, U}*l (qf(TLf(t)))} and

Z¢(t) = min {M Uj (
By the Lemma 2, we

p) [ () 0] . (32)

now that for somee (0, 1),

]
(30) = —z7llal) = d"lZjqe)-q* 12w
T ja(t)—a* | <wL (33)
Alternatively, by Lemma 3, we can write
(30) < —cL|x(t) — x*||*+ B. (34)

Next, let us consider (31). From the Taylor's expansion,

|y (8) =5 (t)] <

qr(t) = qr (71 (1))
LU} (%)

for somez € [0, M].
It is not difficult to see that we can find sonfiz< oo which

satisfies|p,,(t) — p.(t — 1)| < B, Vn. Then we have:

(ar(t) — a7) (If(t) — (1))

ar(t) — ar (17 (1))

< ]qf( ’ | st ! |
Loy @)

2N [pacs) (8) = pacn (7L ) ()
< ar(t) - ¢j —
L‘Uf (@)| i)

D f
2N paw B ‘t ~l (t)‘
U7 (@) eigs

D f
2N B }t —l (t)}

IN

qr(t) — g}
la 7l L

< ar(®) - 5| (35)

L ’U}’ (:E)‘
where N,,q. is the maximum number of nodes along any
flow’s path, and

(1U(f),7(f)) = arg

Here the notatiom € [ means that link is |nC|dent on node
n. To simplify the notation, let us defina’, = ’t Ta( j)(t)
Noting that becausg], = Lu;, and g} sat|sf|es (11), we have
q7 = oL for some constand. Then, for each flowf, we get
the following cases:
Case 1y (t) < LUR(M
functions, we have:

pn(t)

—pa(rl () |

G

max
leR(f),nel

). Using the condition (1) on utility

2Nypax BA,

L ’U}’ (:E)‘

2mNma$BA}
L

(35) = las(t) - qj]

< L|UH(M)+ o = 1A}

where the constar®; = 2 ’U}(M) + g’ MN ez B < 00.

Eilas~e 2: LUK(M) < qp(t) < qp(r7(t)). Then, & =
Uy (%) for someg;(t) < ¢ < ¢f(r7(t)). Also, from the
condition (2) on utility functions, we hav#i/]’! (U}f1 (%))‘ >
c14 for some constant; > 0.

Therefore,
2Npaz BAYG
(35) = lar(t) - -
’Uf (v @)
p 2 NmamBAt
< ‘1_ ay ‘ qr(t) :
Qf(t) Lcl%
2N, azx BA
o max f ¢
< |1 =5 A
>~ + U}(M) 1 20
where the constant,; = ‘1 + M)’ NmazB g,

Case 3: LU(M) < qp(r7(t) < qf(t). Then, z =
U}fl(%) for someq; (77 (t)) < ¢ < q;(t). And we have:

(35) 40— 2Nz BAY
= qf r—1
Loy (v <z>)!
2N e BAY
< ar® _qf| qf("'f(t))
L
S ’1 _ qf ‘ 2NmawB Qf( ) Atf
qr(t) ‘e (T7(t))

0 2Nmam ( ) - Qf( f(t)) t
< N 1] AL
= UpM)|  « UHM)L + !

Cs 2
= 7 (&))" + Ay
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and Al = ‘t f(("))( )‘. Then, using a similar technique as

in the analysis of (31), we can finally argue that:

=\ 2
where the constan®; = ‘1 o (2NmasB)”
f

<M>’ e U7 (AT}
Case 4:q;(7/(t)) < LU}(M) < ¢s(t). Also using the

condition (1) on the utility functions, Cs 2 +
- (32) < LZ(A) +Co Y AL
. 2mNmawBAf n n
(35) < ’qf(t) - qf‘ T for some constant€’s, Cy < oo.
< (’qf( —qp(r ’ + ’qf _ q}]) > ETAh\ljS if we use the upper bound in (33), we have:
2mNmazBA [AVY] )
L _ < —=llat) = a1 Zjq)-q*zwL T (Ta(t)—q <wLr
v BALe L 2mwaBA§c T~ la®)—a| la®)—a*|I<
< (NmarBAG + LU (M) + o] L +Z[ (A%) +C7N}+Z[ (AL)? + Gy,
- G (At) +C5AY ;
< g lla®) - a'[+ B+ ClA®)]?,

where the constanfy = 2m (NWWB)2 < o0, and Cs
9mNpas B ’U’ (M) + g’ < o0.

Thus, combining the four cases by definings
max{Cg,C4} and Cr; = max{Cl,Cg,Cg)} we have

C 2
< f"’zf: (A%) +O7;A§.

for someB, € < .
Instead, if we use the upper bound in (34), we get

E[AV;] < —cL|x(t)—x*||* 4+ B + C||A®t)|*.

This completes the proof of Theorem 3. O

Corollary 1:
Finally, we consider (32). Recall that lim su Z E la(®) —a* (9] < B
T T L = 5L
(n) (¢ —xp(t) Proof:
Yn (T (1)) Z Z H We start by taking the expectation of both sides of the
le&(n) fe¥ expression (21) oveP(t), and then over\(t):
Then we can write (32) as EV(p(t+1))—V(p(t)) | A))
* n 4] . . .
>~ 0at) = 1) [ (7 ) - mw} < —=EBlla®) - a' @) | Q)+ ClAW|? + B
) 20 E[V(p(t+1)) = V(p())]
< Y-l X T H mf g R 5 2
e o < —=Ella®) - a @]+ CE [|A®)*] + B
R (n) R Then apply the Lemma 1:
< Z |pn(t) - p* | 2Fmam xf(”)( f(n)( )) xj(n) (t) f 2 2 —v(D)T
<2 . i E Ut — 1 ()] ] < S (rDy%
T

)2671/(D)T

where F,,q, is the maximum number of flows which go = D2 Z(T = Co

through any node, and

) X xf(T;n) () — 24 (t) , for some constanfy < co. We can also obtain the similar
(Un), f(n)) = max H|. bound:
le€(n),feF o] " 9 o
E ’t — M ’ < D2 T)2e—1(D)T
Also, for every flow f that goes through node, we always { f (*) ] - Z( )"e

T
havep,, < ¢¢. Therefore, = Cn

(32) < ZZFMI Q5 (8) +pr for some constantC;; < oo. Therefore, we will have
TS i) i) " E [||At[[?] is bounded by some constafit< oo, or
(n) EV(p(t+1)) - V(p@®)) [ (1]
% [ (752 (1) = ) ()] ) -
* < - *
< 3 2y () 1 < —Ellat) -q* @+ 0+ B
" (n) Let B = CC + B, and we varyt from 0 up to T":
X ‘“’” ) (T () —zﬂn)(“’ 5 .
E[V(Q)-V(O)] < —7Ella©) -a* (el + B
Let
. P (t) = pun (7" (1)) /
(Il(n),n(n)) = arg max , 0 B
< —EllaT -1

1eR(f(n)),mel @]

—qa’(9ll+ B
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Therefore, adding both sides of the inequalities and rehereN is the number of all flows and nodes in the network.

arranging the terms, we get Therefore vt > K,
E[V(0)-V(T)L" BL" At(At +13) -
—ZEllq Al < T3 +=5 P (At+1)zpn(t)+Nf>M
B[V(0)] L'  BL
=TT 5 I ACEDMEEAC
Taking thelimsup as7 goes to infinity yields the result.m i=0 n n,f

Similarly, we can get an upper bound on the rate vectors.

Corollary 2: +Z ‘t — T;.’”(t)‘ > M) >1-—c
T-1

hmsuplZE ||X t) —x*(e)l ]

Proof: The proof follows the exact same arguments (,élso P
in Corollary 1, applied to (22). [ ]

(At +1) 52, pa(t) + NALAED  37)

Corollaries 1 and 2 respectively argue that/agcreases, _ ZP (At +1) Z Pt
q(t andx(t) tend toE, andx*(¢) in the stated sense. Next,
We have the result for the positive recurrence of the Markov AL(AL + 13 .
chain. +N7( 6+ S M|At = T>
Theorem 4:The Markov chain(P(t), A(t)) is irreducible, - R
apperiodic and positive recurrent. < P (At — P (At —
Proof: It is easy to see that this Markov chain is - Z ( TH_; ( ™)
irreducible and apperiodic. From the result of Corollary 1,
we can find some&3; < +oo such that ( (R+1) an ﬂ > M)
6
T-1
1
lim sup Z E [[la(t)|] < BiL".
T=oe Notice that P (At =17) is exponentially decayed (see
Thus, there exists somBz < 400 such that Lemma 1). Hence, for every € (0, 1), we can find aR such
thaty 2 . P (At =7) < 4. Also, letM = 2L %.

lim sup — E n(t)| < BoL7. 36) Finally, we get

msup Z Zp 2 (36) y, we g
If the Markov Cham(P(t), A(t)) is not positive recurrent, P <an(t) > M) >1—e—3, vt > K.

t—Tm
. i _ j
[Jim P ; Y palt—i) + z]; |t =71 (1) Therefore,

an(t)l > lim %Mu—eﬂs)

=M(1—e—90)

T-1
1
. . limsup = E
+Z’t (¢ ‘<M)—O, VM > 0. T oo T;

That means, for every € (0,1), we can find aK such that . -
ChooseM, ¢, ¢ such thatM (1 —e—0d) > B, L7, then we get a

t—T, . .
< _ contradiction with (36). Thus, the Markov chai®(¢), A(¢))
f I
Z an(t —i)+ Z |t =7 ()] is positive recurrent. [ ]
=0 n n,f

+Z ‘t B T}")(t)‘ S| >1- vt > K. V. DISCUSSION ON THESTABILITY OF THE SYSTEM

In this section, based on the analysis in Sections IlI-B and
1 - , IV-B, we will provide a discussion why the regulators and the
Als% pu(t) =3 < pa(t+1) < pa(t) + M. Let us define gueues are stable for the asynchronous, discrete-timelmode
At =t — 7, then we have: Recall that in Theorem 2, we proved the stability of the
t—Tm continuous-time, fluid limit system by using the fact tkdt)
Z an (t—i)+ Z t—7](t)] + Z ‘t ‘ will stay inside ad neighborhood ok*(¢) for ¢ large enough.
Subsequently, in Section IV-B, we proved thaft) of the

t=Tm . asynchronous, discrete-time model can be made to be arbi-
(t=7m +1) an +N Z +2N(t — Tm) trarily close tox*(¢) in an asymptotic and expected manner
(c.f. Corollary 2). Moreover, in Theorem 4, we proved the
= (At +1) an + NA (At +1) +ONAt positive recurrence of the Markov chain and can consequentl

6 assume that the arrival processes are stationary. In fgct, b
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using Jensen’s inequality and Ergodic theorem, we can argu&Ve know from our analysis of the congestion controller that

that for anye > 0, andk > 0, x(t) — x*(e¢) ast — oo. Therefore, for every > 0, there
1 T B existsT < oo such that’:z:f(t) —a3(e)| < pfort >T and
lim sup T Z ZE (s () — 2} (e)]] < \/j+ € for all f.
Teo t=k f Also, noting a standard fact that the projection in (18) can

Hence, given any > 0, we can choose andé small enough, P€ ignored, we have:

and7 and L large enough, so that for ary> 0, WiQ) < Xymumyecy {(%)
LN ; (S @r0) + Nosaser) )
* X ma:ﬂer
7 > Eflzst)—ajl] <4, VfeF, andT >T. y 3 PaCH; )
" (h,k)eY C(h.k)

Then, following the argument in [7] which essentially claim
that if the continuous-time, fluid limit system is stable an

. . - ﬁjn the fluid limit, the scheduling rule(¢) satisfies the condi-
the arrival processes satisfy those above conditions, then g ®)

tion (6) for every(n,m) € £ with Qnn,(t) > 0. Thus,

discrete-time, stochastic system is also stable. Howexedo . Qo (1)
not provide the details here due to space limitation. Wi(Q(1)) < Z{(mn)eﬁ} {( Cln,m) )
VI. CONCLUSIONS (Zf (€ (t) + Ninas€r) Hj, )
In this paper, we have considered the fair resource alloca- x " k)z; C(h,k)
) 6 nm ’

tion problem in multi-hop wireless networks with a specific
interference model, and developed a cross-layer algoritr%n

* . . . . Q .
to solve it. More specifically, we proposed a c:ongestio_ecausex (€) is strictly inside 3, given anye > 0, we can

H * Q
control algorithm for transport layer, and a fully distrtbd ind somey > 0 for which (7 (¢) + @)y € 5. Then, we can

scheduling algorithm for MAC layer. The main contributiorf'00S€» > 0 ande, > 0 small such thap + Niazer < ¢,

* . . . . A .
of the paper is to allow for unbounded delays in the feedbalk (xf(e) +p+ Ninaz€r) 1S strictly insideg. Now, using the

between the components of the network. This is a crucial stﬁﬁme argument as in [23], we have:

towards being able to actually implement a congestion obntr S (24 (t) + Nypawer) Hi
. . . . . 7S mazr hk
mechanism in a real network, for time-varying delay is an Z —1<-6<0
inseparable ingredient of a wireless network. (hk)ETnm C(h,k)
_ We proved that even when all the sources_and nodes Op.erf%tresomee > 0if Qum(t) > 0. Thus,
in a totally asynchronous manner, our algorithms can aehiev
flow rates that are arbitrarily close to the fair operatingnpo ; Qnm(t
: bitrarily air operatindnp Q) <-o S ®
Extensions to other interference models is a topic for fitur Ser C(n,m)
research. {(m.m)eL}
Now, let us considefV>(-). Recall that
APPENDIX Qum () + 3¢ Rl (1)
Proof: [Theorem 2| +
Consider the following Lyapunov function: n f
W(Q,R) = W1(Q) + EW(Q. R), = | 2 @O+ Kfer) T o0 Him = Pam(t)
! Qum
1 nm n +
Wi(Q) = Q L + D (Phat) = (270 + (KF +1) ) s
€(n,m) E(h,k) f
(n,m)eL (h,k)EY pm ’
2
1 (Zf Rl + Qnm) Note thatP,{m(Lf) can only positive ifQ,,, > 0. Then we
W2 (Q,R) = B Z have the following cases:

C(n,m)

(n,m)eL o If Qum > 0andR], > 0 forall f, we remove the
where¢ is a positive parameter which will be chosen later.  projections:
First, considedt/; (-): Qum (t) + Zvam(t) < - ZET
- 1 Qun (1) Qu (1) ! ’
Q@) = 3 > N \ & e e If Qum=0andR{, >0 forall f, thenP,,,(t) =0,
(n,m)e (hs )e. nm Qum(t) + 3 RI(t)
N (Qnm(t)) Qnk (1) +
€n.m) (hk)E T (hoF) = | Do (@) +Efer) Tns (ool

7

= (O + (Kp+1)e) <= e
f

f

Z (Qnm (t) Qhk (t)

(nym)eL c(”vm)) (BB e (R
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o If Qum >0andRy,, =0 for somey, then there exists There are two cases to consider:f(t) = M, then ;(¢) —
some constant such that % > M — Cmaz > Cmaz, SINCEM is chosen to be larger than

Qnm (t) + Zf RIL (1) 2max; ¢; = 2Cmaz-
. If, on the other hand; ;(t) < M, then we have
= 3" (@) + K7€) T, )5 0Htm = Pam(t) !

1 (a0
f B n [ Sl AN
+§ Pl (t) = (zs(t) + (K7 +1) €) Bp(t) — 2% =% M _1l. (37)
J79 1—1 f
(%)
+ (P (1) = (zg(t) + (K2 + 1) €)) " AN
< _E""Z{PT'{M(t)zwg(t)+(K;+1)5T} Notice that
< .
XLt )<y )+ (15 +1)er} S X o [ a0 = g3l 2 0 ifqg() — g7 <0,
Therefore, we can write q7(t) = 7+ lgs(t) — q?| >0 ifg(t) - 7; 2 0.
W2(Q(t)a R(t)) l '
Assuming thatU’ !(.) is a decreasing, convex function, we
() REn(®) + Qun(®)) | |
can write
(n,mz)eﬁ €(n,m) -1 a;  lap(t)—q}l U1 4 lep(®—gjl
i \T -1 i\t
’ > f -1 > —-1].
X | Qum () + > RLL(1) . <q_f) - <q_f)
f f L f L
- nm (t
P Z (Zf R}, (t) + Qnm( )) I{Rf ~o) Therefore, we have
C(n,m) "
(n,m)eL % lgs(t)—q3%|
1 (4®) Ut (A A
Qnm U/A ! qu f (L L
+X Z Cmm) ! (qt)_lz ~ 1
(n,m)eL [ i Ut
(%) (%)

Therefore, . .

W(Q(1), R(?)) = W1(Q(t), R(t)) + EW2(Q(?), R(t) We consider the set af which satisfied|q — q*|| > wL?,
< 09 — Qnm (1) wherew and L are positive constants ande (0,1). We are
< = £x) ( z): . Cnm) interested in the behavior of the system/agends to infinity.

n,m)e

The exact values aof and ¢ depend on the utility functions
(Zf RE(8) + Qum (t)) and other system parameters, and will be provided lateran th

Lert, >0} proof.

—&e, Z

(nym)eL “(n,m) Notice that if]jq—q*|| > wL?, then|g;(t)—qj| > —£=L°.
We can easily choosg such that2d — £y > 0. Thus, Then, we can write
W(Q#),R(t) < 0 if Q+R#0 .
. U/Afl 2f + w
=0 if Q+R=0 7 (L W—Lla)
(37) > - 1
Then the result follows from Lyapunov’s stability theorem. U1 (%f)
f
[ |
Proof: [Lemma 2] We define Noting thatq;; = oL for somep > 0, and invoking the
O(t) = Z (ar(t) — qf(e) (&5 (t) — 2} (e)), condition (3) on the utility functions, we can write: fijy —
f Q|| > wlLe,
and
F = 3 —_ * * * — B N —0
f=arg m;wxqu (t) — q7l. () +B < —lgp(t) - q¥] <:cfclL gt 7VW||L ) .
Again, we will omit (¢) for notational convenience. Noting
that for all f we have If we chooser € (0, 1) such thaty = o, then for large enough
o N w, we get the following expression for sonie> 0 and{ < oo.
(g7 () = q7) (@ (t) —2F) <0
due to the fact thaU*J’g)l(-) is decreasing in its parameter, and o(t)+B < _wﬂ{”q(t)_wzwm}
* o 1—1/,4 :
thatz’(t) = Uy (=), we can write +CT{q(t)-q* [ <wL)}

o(t) < —lg;(t) - ¢}l ‘ff(t) - x;‘ ]
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