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Joint Asynchronous Congestion Control and
Distributed Scheduling for Multi-Hop Wireless

Networks
Loc Bui, Atilla Eryılmaz, R. Srikant, and Xinzhou Wu

Abstract— We consider a multi-hop wireless network shared
by many users. For an interference model that only constrains
a node to either transmit or receive at a time, but not both, we
propose an architecture for fair resource allocation that consists
of a distributed scheduling algorithm operating in conjunction
with an asynchronous congestion control algorithm. We showthat
the proposed joint congestion control and scheduling algorithm
supports at least one-third of the throughput supportable by any
other algorithm, including centralized algorithms.

Index Terms— Congestion Control, Fair Resource Allocation,
Totally Asynchronous Algorithm, Distributed Scheduling, Wire-
less Networks.

I. I NTRODUCTION

T HE operation of a wireless network differs from its
wireline counterpart in many aspects. Interference, time-

varying channels, and limited resources are a few of the
distinguishing characteristics of wireless networks. A number
of papers have addressed the problem of resource allocation
in wireless networks while taking into account many of the
features. It was shown in [1] that scheduling algorithms that
appropriately use the queue length information can stabilize
the queues in the network, provided that the set of arrival
rates from the various users of the network lies within what
is referred to as the stability region of the network. Such a
scheduling rule is calledthroughput optimalin the sense that,
for any set of flow rates for which the queues can be stabilized,
the throughput-optimal scheduler will stabilize them. Later,
there has been a large body of literature that extended these
ideas to more general systems and classes of schedulers [2]–
[7]. All of these works assumed that the incoming flow rates
areinelastic, and that the buffer length information is available
at a central coordinator instantaneously, which then determines
the allocation of the resources and informs all the nodes, again
in an instantaneous fashion.

Motivated by the works for wireline networks [8]–[10],
recently there has been much interest in incorporating con-
gestion control into the system in addition to the queue-

This research was supported by AFOSR URI F49620-01-1-0365,NSF
Grant ECS-0401125, and a VEF Fellowship.

An earlier version of this paper appeared in the Proceedingsof IEEE
INFOCOM, Spain, April 2006.

L. Bui and R. Srikant are with the Department of Electrical and Computer
Engineering and Coordinated Science Lab, University of Illinois at Urbana-
Champaign, USA (emails:{locbui, rsrikant}@uiuc.edu).

A. Eryılmaz is with Laboratory for Information and DecisionSystems,
Massachusetts Institute of Technology, USA (email: eryilmaz@mit.edu).

X. Wu is with Flarion Technologies, NJ, USA (email: x.wu@flarion.com).

length based schedulers for the purpose of fair-resource al-
location [11]–[17]. These algorithms determine the rate at
which each user is allowed to inject data into the network
as a function of the current congestion level of the network.
The congestion level information is fed back to the controller
from the nodes. It has been shown that fair allocation1 can be
achieved through the joint operation of these two mechanisms
– scheduling and congestion control. However, each of these
papers has one or more of the following assumptions: (i)
scheduling mechanism is ignored [16], [17], or (ii) a cen-
tralized scheduling algorithm is assumed [11]–[13], [15],or
(iii) it is assumed that the congestion price information can
be instantaneously exchanged between all of the nodes (an
assumption made by all the previous papers). The requirement
of decentralized scheduling is obvious in a multi-hop wireless
network. However, the importance of the ability of the network
to exchange information between the nodes does not seem
to have been addressed previously. In particular, two nodes
can exchange congestion price information only when they
can successfully transfer information between them. Unlike
a wireless network, information transfer between nodes is
subject to interference constraints and hence neither datanor
congestion price information can be transferred between two
nodes without taking into account the activity of other nodes
in their vicinity. This is similar to the asynchronous model
considered in [9], except that in [9] it is assumed that nodes
exchange information with a bounded delay which may not
be the case in wireless networks, as we will demonstrate later.

In this work, one of our goals is to relax some of these
assumptions and study the performance of a distributed re-
source allocation architecture for a specific, but widely used
interference model. Under this interference model, called
the node-exclusive model, each node can either transmit or
receive at a given time, but not both. No other constraints are
imposed on the transmission. Thus, each feasible schedule is
a matching2 of the underlying graph of the network. Such an
interference model is appropriate for Bluetooth networks [18]
or in FH-CDMA networks [19], [20].

The main contributions of this paper are as follows:

• We propose an architecture for joint congestion control
and scheduling under the node-exclusive model. Con-
gestion control is performed by exchanging congestion

1An allocation is said to befair if the sum of the utilities of the users is
maximized over all possible allocations.

2A matching is a set of edges that no pair is incident to the samenode.
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price and users’ packet arrival rate information in an
asynchronous fashion. A distributed maximal matching
algorithm proposed in [21] is used to perform the schedul-
ing.

• Unlike [21], we do not assume that the user arrival rates
are known at each node on its route instantaneously.
Instead, we use a modification of an algorithm in [22],
[23] to stabilize the network.

• We consider a deterministic fluid model and show the
stability of the joint congestion control and scheduling
architecture.

• As mentioned earlier, congestion information can be
exchanged between two nodes only when they are sched-
uled to transmit to each other. To ensure that every pair of
neighbors communicate with each other infinitely often
(almost surely), we introduce a slight modification to
the maximal matching algorithm whereby every node
attempts to make a connection with each one of its
neighbors with a small probability.

• With the above modification to the maximal matching
scheduling algorithm, the resulting congestion control
becomes an asynchronous algorithm with possibly un-
bounded delays in exchanging congestion information. To
the best of our knowledge, the approach in [24] does not
seem to apply to our asynchronous computation model,
and therefore, we provide a new proof of the convergence
of the asynchronous congestion control algorithm.

It should be noted that we consider a time-slotted model,
which assumes that all nodes have a common notion of the
beginning and the end of a time slot. We refer the reader to [25]
for a discussion about a time-slotted model, which uses guard
intervals in the context of FH-CDMA networks to enforce this
requirement at the cost of slightly reduced throughput.

The paper is organized as follows. Section II introduces
the system model we consider in this paper, including the
interference model, the description of the regulated maximal
matching scheduler, and the problem statement. We describe
and analyze a heuristic fluid model analysis of the synchronous
version of the system in Section III. In Section IV, we provide
the description of the asynchronous congestion controllerand
prove its convergence properties. We finish with conclusions
in Section VI.

II. SYSTEM MODEL

Consider a graph,G = (N ,L), representing a wireless
network whereN is the set of nodes andL is the set of
directed links. We will use both notations(n, m) andl to refer
to a link in L. If a link (n, m) is in L, then it is possible to
send packets from noden to nodem subject to the interference
constraints to be described shortly. We assume that time is
slotted, and letcl ≥ 1 be the fixed capacity (the number of
packets per time-slot that can be transferred over the link)
of each link l. Let F denote the set of flows that share the
network resources. The main goal of this paper is to derive
a fully distributed asynchronous algorithm that achieves fair
allocation of system resources among the competing flows.

We assume that each flow,f, has a unique, loop-free route
and a utility function associated with it. We useHf

l to denote

the indicator function that is equal to one when linkl is in
the route of flowf, and zero otherwise. The utility function,
denoted byUf(·), is assumed to satisfy the following set of
conditions:

• Uf(·) is a strictly concave, nondecreasing, twice differ-
entiable function.

• The second derivative of the utility function is bounded,
i.e., for everyM̄ ∈ (0,∞), there exists a constantm < ∞
such that

0 ≤ − 1

U ′′
f (x)

≤ m ∀x ∈ [0, M̄ ]. (1)

• For everyM̄ ∈ (0,∞), there exists a constanta such that
∣

∣

∣U ′′
f

(

U
′−1

f (y)
)∣

∣

∣ ≥ ay ∀y ≥ M̄. (2)

• U ′−1
f (·) is a convex function, and satisfies3

1 −
U ′−1

f (κ + β
L1−σ )

U ′−1
f (κ)

= O(L−γ) (3)

for any fixedκ, β > 0 and for someγ ∈ (0, 1) that is
determined as a function ofσ ∈ (0, 1).

We note that these conditions are not restrictive and hold for
the following class of utility functions.

Uf(x) =
x1−αf

1 − αf

∀ αf > 0 (4)

if x is upper bounded. This class of utility functions are known
to characterize a large class of fairness concepts [26].

A. Interference Model

In this subsection, we describe the interference model,
referred to as thenode-exclusive interference model, assumed
in this paper and its implications. According to this model,
each node can either transmit or receive, but not both, at a
given time. There are no other constraints on the transmission.

The arrival processes are assumed to be discrete as follows:
at each time slott, the number of arrivals for flowf is a
Poisson random variables with meanxf . At this point, let
us define thecapacity region, Λ, of the network simply as
the set of flow ratesx = {xf}f that are supportable by the
network. We will provide a more precise description ofΛ
at the end of this section, after we describe the interference
model. LetE(n) be the set of links that are incident on node
n, i.e. E(n) = {(h, k) ∈ L : h = n or k = n}. Then, the
following facts can be asserted.

Fact 1:

Λ ⊂ {x :
∑

l∈E(n)

∑

f∈F Hf
l xf

cl

≤ 1, ∀n ∈ N}.

This fact simply states that no node can be active more than
100% of the time and is proved in [27].

3f(x) = O(g(x)) implies thatlim sup
x→∞

����f(x)

g(x)

���� < ∞.
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Fact 2: Any set of flow ratesx that satisfies

∑

l∈E(n)

∑

f∈F Hf
l xf

cl

≤ 2

3
∀n ∈ N (5)

lies within the capacity region of the network.
This fact is discussed in [20], [27], and is based on a

work by Shannon [28]. Notice that the condition in (5) is
equivalent to the requirement that any node in the network
should not be scheduled more than two-thirds of the time.
Also note that under the node-exclusive interference model,
any feasible schedule corresponds to amatchingof the graph
G. Let M = {M1, M2, · · · , MK} be the set of all possible
matchings, whereMi is a 0-1 vector of |L| dimensions that
denotes the set of links that are active for theith matching.
Here, M is a finite set since we have a graph with finite
number of links. Letco(M) denote the convex-hull4 of the
set of matchings. Then, the capacity region can be expressed
as

Λ =

{

x :

[

∑

f∈F Hf
l xf

cl

]

l∈L
∈ co(M)

}

.

Also, for each link(n, m) ∈ L, let Υnm denote the set of
all links interfering with(n, m) plus link (n, m) itself. For the
node-exclusive interference model,Υnm is the set of(n, m)
and all one-hop neighbor links of(n, m):

Υnm = {(h, k) ∈ L : h 6= k, h ∈ {m, n} or k ∈ {m, n}}.

B. Distributed Scheduler

In this subsection, we introduce the fully distributed sched-
uler that is implemented at the MAC layer. The scheduler
determines which links to activate and which packets to serve
at a given slot. It is assumed that the amount of time required
to perform the scheduling task compared to the actual packet
transmission is small.

We introduce the following notation to describe a scheduling
rule π = {πnm, (n, m) ∈ L} : we let πnm(t) be equal to one
if link (n, m) ∈ L is scheduled at slott and zero otherwise.
Also, we definePnm(t) to be the number of packets served
over link (n, m) at slot t, and P f

nm(t) to be the number of
flow f ’s packets served over link(n, m) at slot t. Clearly,

Pnm(t) =
∑

f∈F
Hf

(n,m)P
f
nm(t).

It is assumed that for each noden, a queue is maintained
for each of the outgoing links(n, m) ∈ L. This queue stores
and serves all the packets that are forwarded to nodem in a
first-come, first-served (FCFS) fashion at those slots when the
scheduler setsπnm(t) = 1. We let Qnm(t) denote the total
number of packets at the beginning of slott that are waiting
to be transmitted over link(n, m).

The scheduler we consider in this paper is a slightly mod-
ified version of theRegulated Maximal Matching Scheduler
in [23]. The key idea is to introduce regulators associated
with each link, one for each flow passing through the link.

4A convex hull of a setS is the intersection of all convex sets that cover
each element ofS.
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Fig. 1. An example network

Flow f packets that are served over link(n, m) are buffered
at the corresponding regulator of link(n, m) before they are
transferred to the queue that will relay them to the next link.
We let Rf

nm(t) denote the length of link(n, m)’s regulator
buffer corresponding to flowf at the beginning of time slott.
A λ(t)-regulator is a logical device which allows packets to
pass through it at a maximum rate ofλ(t) at slott. Specifically,
at slot t, a λ(t)-regulator associated with linkl checks its
buffer size, and if its buffer size exceeds link capacitycl, it
transferscl packets from its buffer probabilityλ(t)

cl
; otherwise,

no transfer occurs (other implementations of the regulatorare
also possible). Finally, we letSf

nm(t) denote the number of
packets that leave regulatorRf

nm at slott. We refer the reader
to Figure 1 for an example network.

With these definitions, the evolution of the number of
packets in the regulators and the queues can be described with
the following difference equations.

Rf
nm(t + 1) = Rf

nm(t) − Sf
nm(t) + P f

nm(t)

Qnm(t + 1) = Qnm(t) − Pnm(t) +
∑

f∈F
Sf
·n(t)Hf

nm,

whereSf
·n(t) is the output of the regulator for flowf that is

maintained at noden.
In our model, the value ofλf (t) used at a regulator is

based on the rate at which flowf is generating data. In
general, this information is not available instantaneously to
all nodes inf ’s path, and hence it is both inaccurate (old) and
fluctuating (due to the fact that flowf ’s rate is determined by
a dynamic congestion control algorithm to be described later).
In comparison, the scheduler considered in [23] assumes the
knowledge of the mean flow rates at all the regulators and uses
this fixed value in its implementation. In our model, however,
the current flow rate information is passed from the sources



IEEE/ACM TRANSACTIONS ON NETWORKING 4

to each of the nodes with a random propagation delay. To
account for the delay, we letτn

f (t) ∈ [0, t] be the time slot at
which the rate information of sourcef (i.e. xf (·)) was sent,
given that it is received by noden at slot t. Further, suppose
that noden is thekth node on the route of flowf. Then, the
regulator for flowf at noden is a (xf (τn

f (t)) + (k − 1)εr)-
regulator, whereεr > 0 can take arbitrarily small values. In
other words, the regulator uses the most recent update of the
rate (plus a very small amount) asλf (t).

The scheduler we consider uses the values ofQnm(t) to
find either aMaximal Matching5(MM) with a high probability
or some matching with a small probability. In particular, a
maximal matching is selected in a distributed fashion among
those links that have at least one backlogged packet in their
buffers. The formal description is provided next.

DISTRIBUTED SCHEDULER - DISCRETE-TIME

At the beginning of each time slot, each node, sayn, deter-
mines theeligible set of links according to:

• With probability εs > 0 allow all links (n, m) ∈ L to be
eligible.

• Otherwise, allow only those(n, m) ∈ L, with Qnm(t) ≥
c(n,m) to be eligible.

Then, which set of links to activate at noden is determined
by the following distributed strategy:

• If n has at least one eligible neighbor (a neighbor that is
at the other end of an eligible link) that is notmatched
with another node, then choose any one randomly, say
m, and match them with each other. After this operation
n andm are said to be matched.

• Otherwise stop.

At the end of this algorithm, those links that have matched end
nodes, say(n, m), will be scheduled to transmitc(n,m) packets
within slot t, i.e. Pnm(t)

c(n,m)
= πnm(t) = 1. It is not difficult to see

that the algorithm will result in a set of scheduled links that is
a maximal matching ofG, because any node can be matched
with at most one other node, and no pair of unmatched nodes
with a packet to transmit is left at the end. Theεs parameter
is included in this algorithm to assure a positive probability
of activating a link even if it has no backlogged packet. This
is necessary to ensure that every link is active occasionally, to
allow its nodes to exchange congestion information.

It can be seen that if a scheduling ruleπ(t) is a maximal
matching then it satisfies

∑

{(h,k)∈Υnm}
πhk(t) ≥ 1 (6)

for every(n, m) ∈ L with Qnm(t) ≥ c(n,m).
Also, notice that the MM algorithm is performed using the

lengths of the actual queues, not the lengths of the regulator
buffers. The following fact is due to [23].

Fact 3: For the multi-hop wireless network model intro-
duced above, the Regulated MM Scheduling Algorithm can

5A matching is a collection of links such that no two links are incident on
the same node. A matching is said to be maximal if it is a matching and no
new link can be added to the set without losing the matching property.

achieve stability if the set of mean arrival rates of the flows,
x, satisfies

∑

l∈E(n)

∑

f∈F Hf
l xf

cl

≤ 1

3
∀n ∈ N

C. Problem Statement

Given the above model, our goal is to have the mean flow
rate vectorx? ≥ 0 satisfy:

x? ∈ arg max
∑

f∈F
Uf (xf ) (7)

s.t.
∑

l∈E(n)

∑

f∈F

xf

cl

Hf
l ≤ 1

3
∀n ∈ N ,

provided that the regulators and the queues are kept stable.
The strict concavity assumption of the utility functions implies
thatx? is unique. We note that the constraint set of this opti-
mization problem containsΛ/3 due to Fact 1. In (7), we have
formulated the wireless network rate allocation problem asan
optimization problem by taking the interference and distributed
scheduling constraint into account. Such an approach has been
taken for our interference model in [15], [16] before. However,
it is assumed in these works that the current rate of each
source and the current price of each node are immediately
available at all the nodes. Obviously, in an actual operation,
such information can only be conveyed along with the data
transmissions, and hence is delayed by random amounts for
each source-node pair. Updates with delays have been taken
into account in [9] in the wireline and [29] in the wireless
setting, but in our work we link the delay to the scheduler and
also allow for unbounded delays as long as the updates occur
infinitely often.

Let us describe a new optimization problem whose optimum
point converges tox?. For anyε > 0, let

x?(ε) ∈ arg max
∑

f∈F
Uf (xf ) (8)

s.t.
∑

l∈E(n)

∑

f∈F

xf

cl

Hf
l ≤ 1

3
− ε ∀n ∈ N

It is not difficult to see thatx?(ε) → x? as ε → 0. We
introduced this new problem to make sure that the optimum
point lies strictly inside the feasible region of (7). This is
necessary to ensure that the queues and the regulators are
stable as will be discussed in Section III.

In the remainder of this paper, we will propose a congestion
controller mechanism that operates on top of the Regulated
MM Scheduler that will provide mean rates that are arbitrarily
close tox?. Furthermore, we incorporate all the asynchronous
components that exist in the operation of the system. In
particular, we model the random nature of the scheduling
operation, which results in potentially unbounded delays in
the information communication between different components
of the network. Noting that information feedback is critical
in the operation of our congestion controller, it is crucialto
answer the question as to whether the asynchronism inherent
in the network will significantly affect the performance.



IEEE/ACM TRANSACTIONS ON NETWORKING 5

III. C ONTINUOUS-TIME FLUID MODEL ANALYSIS

In this section, we consider a continuous-time, deterministic
fluid model of the system, in which all stochastic processes
are approximated by their mean values. In Section III-A, we
introduce a congestion control algorithm for this fluid model,
and analyze its convergence properties. Then, in Section III-
B, we describe a heuristic continuous-time version of the
scheduler described in Section II-B and prove its stabilizing
characteristics. We will build upon these analyses later to
investigate the asynchronous, discrete-time algorithm.

A. Continuous-time Congestion Controller

We start by noting that the optimization problem in (8) can
be solved by using Lagrange multipliers. The Lagrangian and
the Dual functions of the problem (8) are:

Lε(x, µ) =
∑

f∈F
Uf(xf ) −

∑

n∈N
{µn

×





∑

l∈E(n)

∑

f∈F

xf

cl

Hf
l −

(

1

3
− ε

)











Dε(µ) = max
x≥0

Lε(x, µ)

=
∑

f∈F
max
xf≥0



Uf (xf ) − xf

∑

(n,m)∈R(f)

µn + µm

c(n,m)





+

(

1

3
− ε

)

∑

n

µn

whereµn is the Lagrange multiplier associated with thenth

constraint of (8), andR(f) is the set of links which are along
the route of flowf.

Then the dual optimization problem to (8) is given by
minµ≥0 Dε(µ). It can be shown that for the problem we
consider, there is no duality gap [30]. Thus, there exists a
nonempty set of Lagrange multipliers,Ξε, any element (say
µ?(ε)) of which satisfiesDε(µ

?(ε)) =
∑

f Uf(x?
f (ε)). But for

any feasiblex of the primal problem (8), we must have:

∑

n∈N
µ?

n(ε)





∑

l∈E(n)

∑

f∈F

xf

cl

Hf
l −

(

1

3
− ε

)



 ≤ 0

because the expression in the parenthesis can never be positive
for a feasible rate vector, andµ?(ε) is a nonnegative vector.
Thus, we must havex?(ε) as the optimizer of the Lagrangian
Lε(x, µ?(ε)), and also have the pair(x?(ε), µ?(ε)) satisfy:

∑

n∈N
µ?

n(ε)





∑

l∈E(n)

∑

f∈F

x?
f (ε)

cl

Hf
l −

(

1

3
− ε

)



 ≤ 0, (9)

which is also called the complementary slackness conditionin
the optimization literature. From the Lagrangian, it is easy to
see that(x?(ε), µ?(ε)) should also satisfy:

x?
f (ε) = U

′−1

f





∑

(n,m)∈R(f)

µ?
n(ε) + µ?

m(ε)

c(n,m)



 (10)

Let us definep?(ε) andq?(ε) as follows:p?
n(ε)

4
= Lµ?

n(ε),

q?
f (ε)

4
=

∑

(n,m)∈R(f)

p?
n(ε) + p?

m(ε)

c(n,m)
(11)

whereL is some multiplicative factor. We defineΨε = LΞε,
i.e., if µ?(ε) ∈ Ξε then the correspondingp?(ε) ∈ Ψε. Notice
that we can rewrite (10) and the complementary slackness
condition (9) in terms ofp?(ε) andq?(ε):

x?
f (ε) = U

′−1

f

(

q?
f (ε)

L

)

0 =





∑

l∈E(n)

∑

f∈F

x?
f (ε)

cl

Hf
l −

(

1

3
− ε

)





+

p?
n(ε)

(12)

where we define(y)+z to be equal toy if z ≥ 0 and zero if
y ≤ 0 andz = 0.

The congestion control algorithm for the fluid model is
described as follows.

CONGESTIONCONTROLLER - CONTINUOUS-TIME

At time t,

Sourcef computes:xf (t) = U
′−1

f

(

qf (t)
L

)

.

Noden computes:

ṗn(t) =





∑

l∈E(n)

∑

f∈F

xf (t)

cl

Hf
l −

(

1

3
− ε

)





+

pn(t)

where

qf (t)
4
=

∑

(n,m)∈R(f)

pn(t) + pm(t)

c(n,m)
(13)

Notice that here we have assumed synchronous computation:
information updates at the sources and the nodes occur in-
stantaneously and simultaneously at each time instant. In later
sections, when considering the discrete-time model, we will
remove this key assumption and develop a fully asynchronous
algorithm for congestion control. Nevertheless, the analysis of
the continuous-time system will be useful in understandingthe
more realistic model. Next, we state the theorem that proves
the convergence properties of the congestion controller.

Theorem 1:Starting from any initialp(0), x(t) eventually
reachesx?(ε) as t → ∞.

Proof: Consider the Lyapunov function:

V (p;p?(ε)) =
1

2

∑

n

(pn − p?
n(ε))2,

which is defined for somep?(ε) ∈ Ψε. For notational
convenience, we will occasionally usep? and x? instead of
p?(ε) andx?(ε). Then, the time derivative of this function at
t satisfies

V̇ (p(t),p?) =
∑

n

{(pn(t) − p?
n)×





∑

l∈E(n)

∑

f∈F

xf (t)

cl

Hf
l −

(

1

3
− ε

)





+

pn(t)













IEEE/ACM TRANSACTIONS ON NETWORKING 6

We first consider the case whenp(t) ∈ Ψε : note that the rate
vector associated withp(t) has to be the unique optimizer of
(8), i.e.x?(ε). But, by utilizing the complementary slackness
condition provided in (12) we can easily conclude that

V̇ (p(t),p?) = 0 for all p(t) ∈ Ψε. (14)

Next, we considerV̇ (p(t),p?) for any p(t) ≥ 0 : define

yn(t)
4
=

∑

l∈E(n)

∑

f∈F

xf (t)

cl

Hf
l (15)

Then we have:

V̇ (p(t),p?) =
∑

n

(pn(t) − p?
n)

(

yn −
(

1

3
− ε

))+

pn(t)

≤
∑

n

(pn(t) − p?
n)

(

yn(t) −
(

1

3
− ε

))

=
∑

n

(pn(t) − p?
n) (yn(t) − y?

n)

+
∑

n

(pn(t) − p?
n)

(

y?
n −

(

1

3
− ε

))

where the inequality follows from the fact that ifpn(t) = 0

and yn(t) −
(

1
3 − ε

)

≤ 0, then
(

yn(t) −
(

1
3 − ε

))+

pn(t)
= 0.

Otherwise,
(

yn(t) −
(

1
3 − ε

))+

pn(t)
=
(

yn(t) −
(

1
3 − ε

))

.
Also, from the complementary slackness condition, we have

that if p?
n > 0, theny?

n =
(

1
3 − ε

)

. Otherwise, ifp?
n = 0, then

y?
n ≤

(

1
3 − ε

)

. This fact implies

∑

n

(pn(t) − p?
n(ε))

(

y?
n(ε) −

(

1

3
− ε

))

≤ 0 (16)

Therefore,
V̇ (p(t),p?) ≤∑n(pn(t) − p?

n) (yn(t) − y?
n)

=
∑

n

(pn(t) − p?
n)





∑

l∈E(n)

∑

f∈F

xf (t) − x?
f

cl

Hf
l





=
∑

f

(

xf (t) − x?
f

)





∑

(n,m)∈R(f)

pn(t) + pm(t)

c(n,m)

−
∑

(n,m)∈R(f)

p?
n + p?

m

c(n,m)





=
∑

f

(

xf (t) − x?
f

) (

qf (t) − q?
f

)

= L
∑

f

(

xf (t) − x?
f

) (

U ′
f (xf (t)) − U ′

f(x?
f )
)

≤ 0,

with strict inequality whenp(t) /∈ Ψε, due to the strict
concavity assumption ofUf(·). Then, by combining this result
with (14) and by invoking LaSalle’s theorem [31, Theorem
4.4], we conclude thatp(t)

t→∞−→ Ψε and hencex(t)
t→∞−→

x?(ε).

B. Continuous-time Scheduler

In this subsection we show that the Regulated MM Schedul-
ing Algorithm, along with the Congestion Control Algorithm
described in previous subsection, can achieve stability.

Recall thatΛ denotes the capacity region of the network.
Define

Ω =







x :
∑

l∈E(n)

∑

f∈F Hf
l xf

cl

≤ 1

3
, ∀n ∈ N







.

By Fact 2, we haveΩ ⊂ Λ
2 . Moreover, we know that the

optimum pointx?(ε) is strictly insideΩ. Thus,x?(ε) is strictly
inside the half of the capacity regionΛ2 .

The evolution of the scheduler’s queues in continuous-time
can be described as follows.

SCHEDULER - CONTINUOUS-TIME

Ṙf
nm(t) =

(

P f
nm(t) −

(

xf (t) +
(

Kn
f + 1

)

εr

))+

R
f
nm(t)

(17)

Q̇nm(t) =





∑

f

(

xf (t) + Kn
f εr

)

I
R

f
·n(t)>0H

f
nm − Pnm(t)





+

Qnm(t)
(18)

whereKn
f is the hop number of noden along the path of flow

f . Note that this number is upper-bounded byNmax where
Nmax is the maximum number of nodes along any flow’s path.
Notice that in the fluid limit, the scheduling ruleπ(t) satisfies
the condition (6) for every(n, m) ∈ L with Qnm(t) > 0.

Theorem 2:Starting from any initialR(0) and Q(0), we
have(R(t) + Q(t)) → 0 as t → ∞.

Proof: The proof uses the fact thatx?(ε) lies strictly
inside half of the capacity regionΛ2 , and a Lyapunov argument
that is based on the discrete-time analysis of [23]. The details
are moved to the Appendix.

IV. D ISCRETE-TIME , ASYNCHRONOUSMODEL ANALYSIS

In this section, we return to the discrete-time system model.
Here we do not assume synchronous computation which
is unrealistic in an actual network. Next, we describe the
discrete-time congestion controller mechanism. Then, we will
analyze this system.

A. Description of the Congestion Controller

We assume that when two nodes are matched by the MAC
layer scheduler, the relevant price and flow rate information
is shared between them. Therefore, the information updates
at the sources and the nodes are asynchronous. Then, let us
consider the following asynchronous congestion controller.

CONGESTIONCONTROLLER - DISCRETE-TIME

At the beginning of each time slot,t,
Sourcef computes:xf (t) = min

{

M, U
′−1

f

(

qf (τf (t))
L

)}
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Noden computes:

pn(t + 1) =



pn(t) +
∑

l∈E(n)

∑

f∈F

xf (τ
(n)
f (t))

cl

Hf
l

−
(

1

3
− ε

))+

,

where

qf (τf (t))
4
=

∑

(n,m)∈R(f)

pn(τf
n (t)) + pm(τf

m(t))

c(n,m)
(19)

andM > 2 max
l∈L

{cl}. Here we defineτf
n (t) ∈ [0, t] to be the

time slot at which the price information of noden (pn(·))
was sent, given that it is received at sourcef at slot t. Thus,
t − τf

n (t) is the random variable representing the number of
slots it took for pn(·) to be transfered to sourcef by the
underlying scheduling mechanism, given that it is receivedat
time slot t. And similarly, τ

(n)
f (t) ∈ [0, t] is the time slot at

which the rate information of sourcef (xf (.)) was sent, given
that it is received by noden at slot t. Further, letτf (t) be
the vector ofτf

n (t) for sourcef at time t, and also,τ (n)(t)

be the vector ofτ (n)
f (t) for noden at time t. Finally, L is

a positive constant. We are interested in the behavior of the
system whenL is large.

Also, let us introduce the notation:

yn(τ (n)(t))
4
=

∑

l∈E(n)

∑

f∈F

xf (τ
(n)
f (t))

cl

Hf
l (20)

Notice thatqf (τf (t)) (defined in (19)) is the estimated price
of flow f ’s path at timet which is computed using delayed
versions of the actual prices. On the other hand,qf (t) (defined
in (13)) assumes the instantaneous knowledge of all the prices
on flow f ’s path. Similar interpretation holds foryn(τ (n)(t))
andyn(t) (defined in (20) and (15)).

This model contains the essential components of the asyn-
chronous operation of the network. It is referred to as “Totally
Asynchronous” in [24]. Specifically, the amount of time it
takes for the flow rate and node price information to reach any
node or a source is captured by an unbounded random variable.
In the next section, we will prove that it asymptotically solves
the resource allocation problem described in (8).

B. Analysis of the Congestion Controller

Let ∆(t) be the vector{|t − τf
n (t)|, |t − τ

(n)
f (t)|}(n,f),

and defineτm = minn,f{τf
n (t), τ

(n)
f (t)}. Also, let P(t) be

the sequence of vectors(p(t),p(t − 1), · · · ,p(τm)). Then
(P(t), ∆(t)) forms the state of a Markov chain.

Consider the Lyapunov function,V (·), used in the
continuous-time analysis (Theorem 1). For notational conve-
nience, we will generally omit theε term in our analysis.
However, we will make the main statements withε. The
following theorem characterizes the drift of this Lyapunov
function.

Theorem 3:The mean drift satisfies:

E[∆Vt]
4
= E[V (p(t + 1)) − V (p(t)) | P(t), ∆(t)]

≤ − δ

Lγ
‖q(t) − q?(ε)‖ + Ĉ‖∆(t)‖2 + B̂ (21)

for some constantŝC, B̂ < ∞, γ ∈ (0, 1) and δ > 0. Here,
‖ · ‖ denotes Euclidean distance.

Furthermore, there exist somẽC, B̃ < ∞, and c > 0 such
that

E[∆Vt] ≤ −cL‖x̂(t) − x?(ε)‖2 + C̃‖∆(t)‖2 + B̃(22)

where we definêxf (t) = min
{

M, U
′−1

f

(

qf (t)
L

)}

, i.e., it is
the rate of flowf at time t if all the price information were
instantaneously available at the sources.

Before we provide the proof of Theorem 3 we give several
lemmas that will be used in the proof. First, we observe that
t − τf

n (t) is the amount of time it takes for noden’s price
information to reach sourcef . Similarly, t − τ

(n)
f (t) is the

amount of time it takes for the sourcef ’s rate information to
reach noden. These are random variables that depend on the
matchings chosen in the operation of the scheduler. To ensure
that each matching is chosen at least once with a positive
probability, recall that we slightly modified the MM Scheduler
used in [21], [23] in Section II. Specifically, when the maximal
matchings are being determined, with a very small probability,
we allow each node to pick a link that does not have any
packets to transmit in line. We now establish the following
result for the delays in exchanging price and rate information.

Lemma 1:There exists a constantD such that

P
(∣

∣t − τf
n (t)

∣

∣ > TD
)

≤ e−ν(D)T ∀n, f

P
(∣

∣

∣
t − τ

(n)
f (t)

∣

∣

∣
> TD

)

≤ e−η(D)T ∀n, f

whereν andη are some positive numbers depending onD.
Proof: Recall that M is a finite set containing all

the possible matchings. Also, letSf
n denote the sequence of

matchings needed to transmit the price information from node
n to sourcef , and similarly,S(n)

f denote the sequence of
matchings needed to transmit the rate information from source
f to noden.

Since each node tries to connect to all of its
neighbors with some positive probability,εs, we have:
P(Mi occurs at timet) ≥ δ, for all i, and for someδ > 0.
Hence, for each(n, f) pair, we can state that

P
(

Sf
n occurs in an interval of length|Sf

n|
)

≥ δ|S
f
n| > 0

A similar argument holds for anyS(n)
f as well. Let us define

D =
∑

n,f |Sf
n |+ |S(n)

f |, and letX be a random variable that

equals1 when all the matchings inSf
n andS

(n)
f occur within

the first D slots. Otherwise,X is equal to0. Then, due to
the above discussion, we can find someδ̂ ∈ (0, 1) such that
P (X = 0) ≤ (1 − δ̂), which denotes the probability that at
least one of the nodes (or sources) has not received any rate
(or price) update from one of the sources (or nodes) within
the lastD slots. Thus, we have

P
(∣

∣t − τf
n (t)

∣

∣ > D
)

≤ (1 − δ̂) ∀n, f
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P
(∣

∣

∣
t − τ

(n)
f (t)

∣

∣

∣
> D

)

≤ (1 − δ̂) ∀n, f

Next, suppose we look overTD slots. LetXi, i = 1, · · · , T
be the associated Bernoulli random variable for theith block
of durationD. Then

P
(∣

∣t − τf
n (t)

∣

∣ > TD
)

=
T
∏

i=1

P (Xi = 0)

≤ (1 − δ̂)T = e−ν(D)T ∀n, f.

A similar argument applies to
∣

∣

∣t − τ
(n)
f (t)

∣

∣

∣ , which completes

the proof with appropriately definedν(D) andη(D) parame-
ters.

The following two lemmas yield two different upper bounds
on similar expressions, and will be useful for the proof of
Theorem 3.

Lemma 2:Given anyB < ∞, we can find someγ ∈ (0, 1)
such that forL large enough, we have

B +
∑

f

{(

qf (t) − q?
f

)

(x̂f (t) − x?
f )
}

≤ − δ

Lγ
‖q(t) − q?‖I‖q(t)−q?‖≥ωLγ + ζI‖q(t)−q?‖≤ωLγ

whereδ, ζ andω are positive constants which are independent
of L.

Proof: This statement is proved in [12] for a large class
of utility functions and for the case of a single transmitter
transmitting to many receivers. Here, we consider the multi-
hop scenario and further generalize the utility functions.Nev-
ertheless, the arguments are very similar to those in [12] and
are moved to the Appendix.

Lemma 3:We have
∑

f

{(

qf (t) − q?
f

)

(x̂f (t) − x?
f )
}

≤ −cL‖x̂(t) − x?‖2,

wherec is a positive constant which is independent ofL.
Proof: We start by adding and subtractingLU ′

f (x̂f (t))
into the first factor within the summation, which yields
∑

f

{(

qf (t) − q?
f

)

(x̂f (t) − x?
f )
}

=
∑

f

(

qf (t) − LU ′
f (x̂f (t))

)

(x̂f (t) − x?
f ) (23)

+
∑

f

(

LU ′
f(x̂f (t) − LU ′

f(x?
f )
)

(x̂f (t) − x?
f ) (24)

We will analyze the terms (23) and (24) separately. We claim
that (23)≤ 0. To see this, we first note that, if̂xf (t) < M,
thenqf (t) = LU ′

f (x̂f (t)) and hence we have
(

qf (t) − LU ′
f(x̂f (t))

)

(x̂f (t) − x?
f ) = 0.

If, on the other hand, we havêxf (t) = M > x?
f , thenqf (t) <

LU ′
f(x̂f (t)) which implies that

(

qf (t) − LU ′
f(x̂f (t))

)

(x̂f (t) − x?
f ) ≤ 0.

Combining these two observations proves our claim.
Next, we turn our attention to (24). We start by noting that

(

LU ′
f(x̂f (t) − LU ′

f(x?
f )
)

(x̂f (t) − x?
f )

= −L
∣

∣U ′
f(x̂f (t) − U ′

f (x?
f )
∣

∣ |x̂f (t) − x?
f |, (25)

which follows from the strict concavity assumption onUf(·).
Also, due to Taylor expansion, we can find someyf(t)
betweenx̂f (t) andx?

f for which,

U ′
f (x̂f (t)) − U ′

f(x?
f ) = (x̂f (t) − x?

f )U ′′
f (yf (t)).

Using the assumption in (1), we can thus claim that there exists
somec > 0 which yields

∣

∣U ′
f(x̂f (t)) − U ′

f (x?
f )
∣

∣ ≥ c|x̂f (t) − x?
f |.

Substituting this into (25) and then (25) into (24) yields the
result.

Proof (Theorem 3): Notice that we can write

pn(t + 1) = pn(t) + yn(τn(t)) −
(

1

3
− ε

)

+ un(t),

whereun(t) is a nonnegative parameter that assures the non-
negativity ofpn(t + 1). We first start by showing that we can
ignore theun(t) term in the iteration. Towards this end, we
can write
(pn(t + 1) − p?

n)2 =

(

pn(t) + yn(τ (n)(t)) −
(

1

3
− ε

)

− p?
n

)2

(26)

+2

(

pn(t) + yn(τ (n)(t)) −
(

1

3
− ε

))

un(t) (27)

+u2
n(t) (28)

−2un(t)p?
n, (29)

for any n. Sincep?
n, un(t) ≥ 0, we have (29)≤ 0. We also

claim that (27)+(28)≤ 0. To see this, we observe that:un(t) =
0 if pn(t) + yn(τ (n)(t)) −

(

1
3 − ε

)

> 0, and thatun(t) =
−(pn(t) + yn(τ (n)(t)) −

(

1
3 − ε

)

) if un(t) > 0. These two
observations imply that (27)+(28)= −u2

n(t) ≤ 0. This proves
that (pn(t + 1) − p?

n)2 ≤ (26).

By using this result in the definition of∆Vt we get
E[∆Vt]

≤ 1

2

∑

n

[

yn(τ (n)(t)) −
(

1

3
− ε

)]2

+
∑

n

(pn(t) − p?
n)

[

yn(τ (n)(t)) −
(

1

3
− ε

)]

≤ B +
∑

n

(pn(t) − p?
n)

[

yn(τ (n)(t)) −
(

1

3
− ε

)]

= B +
∑

n

(pn(t) − p?
n)
[

yn(τ (n)(t)) − y?
n

]

+
∑

n

(pn(t) − p?
n)

(

y?
n −

(

1

3
− ε

))

(a)

≤ B +
∑

n

(pn(t) − p?
n)
[

yn(τ (n)(t)) − y?
n

]

= B +
∑

n

(pn(t) − p?
n) [yn(t) − y?

n]

+
∑

n

(pn(t) − p?
n)
[

yn(τ (n)(t)) − yn(t)
]

,
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for some constantB, where inequality(a) follows from (16).
Now, looking at the second term:
∑

n (pn(t) − p?
n) (yn(t) − y?

n)

=
∑

n

(pn(t) − p?
n)





∑

l∈E(n)

∑

f∈F

xf (t) − x?
f

cl

Hf
l





=
∑

f

(

xf (t) − x?
f

)





∑

(n,m)∈R(f)

pn(t) + pm(t)

c(n,m)

−
∑

l∈R(f)

p?
n + p?

m(t)

c(n,m)





=
∑

f

(

xf (t) − x?
f

) (

qf (t) − q?
f

)

=
∑

f

(

qf (t) − q?
f

)

(xf (t) − x̂f (t))

+
∑

f

(

qf (t) − q?
f

) (

x̂f (t) − x?
f

)

Therefore, we can rewrite the upper bound ofE[∆Vt] as:
E[∆Vt]

≤ B +
∑

f

(

qf (t) − q?
f

) (

x̂f (t) − x?
f

)

(30)

+
∑

f

(

qf (t) − q?
f

)

(xf (t) − x̂f (t)) (31)

+
∑

n

(pn(t) − p?
n)
[

yn(τ (n)(t)) − yn(t)
]

, (32)

where we recall thatxf (t) = min
{

M, U
′−1

f

(

qf (τf (t))
L

)}

and

x̂f (t) = min
{

M, U
′−1

f

(

qf (t)
L

)}

.

By the Lemma 2, we know that for someγ ∈ (0, 1),

(30) ≤ − δ

Lγ
‖q(t) − q?‖I‖q(t)−q?‖≥ωLγ

+ζI‖q(t)−q?‖≤ωLγ (33)

Alternatively, by Lemma 3, we can write

(30) ≤ −cL‖x̂(t) − x?‖2 + B. (34)

Next, let us consider (31). From the Taylor’s expansion,

|xf (t) − x̂f (t)| ≤
∣

∣

∣

∣

∣

qf (t) − qf (τf (t))

L.U ′′
f (x̃)

∣

∣

∣

∣

∣

for somex̃ ∈ [0, M ].
It is not difficult to see that we can find somēB < ∞ which

satisfies|pn(t) − pn(t − 1)| ≤ B̄, ∀n. Then we have:
(

qf (t) − q?
f

)

(xf (t) − x̂f (t))

≤
∣

∣qf (t) − q?
f

∣

∣

∣

∣qf (t) − qf (τf (t))
∣

∣

L
∣

∣

∣
U ′′

f (x̃)
∣

∣

∣

≤
∣

∣qf (t) − q?
f

∣

∣

2Nmax

∣

∣

∣pñ(f)(t) − pñ(f)(τ
f

ñ(f)(t))
∣

∣

∣

L
∣

∣

∣
U ′′

f (x̃)
∣

∣

∣
cl̃(f)

≤
∣

∣qf (t) − q?
f

∣

∣

2NmaxB̄
∣

∣

∣t − τf

ñ(f)(t)
∣

∣

∣

L
∣

∣

∣U ′′
f (x̃)

∣

∣

∣ cl̃(f)

≤
∣

∣qf (t) − q?
f

∣

∣

2NmaxB̄
∣

∣

∣t − τf

ñ(f)(t)
∣

∣

∣

L
∣

∣

∣U ′′
f (x̃)

∣

∣

∣

(35)

where Nmax is the maximum number of nodes along any
flow’s path, and

(l̃(f), ñ(f)) = arg max
l∈R(f),n∈l

∣

∣

∣

∣

pn(t) − pn(τf
n (t))

cl

∣

∣

∣

∣

.

Here the notationn ∈ l means that linkl is incident on node
n. To simplify the notation, let us define∆t

f

4
=
∣

∣

∣t − τf

ñ(f)(t)
∣

∣

∣.
Noting that becausep?

n = Lµ?
n andq?

f satisfies (11), we have
q?
f = %L for some constant%. Then, for each flowf , we get

the following cases:
Case 1:qf (t) ≤ LU ′

f(M). Using the condition (1) on utility
functions, we have:

(35) =
∣

∣qf (t) − q?
f

∣

∣

2NmaxB̄∆t
f

L
∣

∣

∣U ′′
f (x̃)

∣

∣

∣

≤ L
∣

∣U ′
f(M) + %

∣

∣

2mNmaxB̄∆t
f

L
= C1∆

t
f

where the constantC1 = 2
∣

∣

∣U ′
f (M) + %

∣

∣

∣mNmaxB̄ < ∞.

Case 2: LU ′
f(M) < qf (t) ≤ qf (τf (t)). Then, x̃ =

U
′−1

f ( q̃
L
) for someqf (t) ≤ q̃ ≤ qf (τf (t)). Also, from the

condition (2) on utility functions, we have:
∣

∣

∣U ′′
f

(

U
′−1

f ( q̃
L

)
)∣

∣

∣ ≥
c1

q̃
L

for some constantc1 > 0.
Therefore,

(35) =
∣

∣qf (t) − q?
f

∣

∣

2NmaxB̄∆t
f

L
∣

∣

∣U ′′
f

(

U
′−1

f ( q̃
L
)
)∣

∣

∣

≤
∣

∣

∣

∣

1 −
q?
f

qf (t)

∣

∣

∣

∣

2qf(t)NmaxB̄∆t
f

Lc1
q̃
L

≤
∣

∣

∣

∣

∣

1 +
%

U ′
f(M)

∣

∣

∣

∣

∣

2NmaxB̄∆t
f

c1
= C2∆

t
f

where the constantC2 =
∣

∣

∣1 + %
U ′

f
(M)

∣

∣

∣

2NmaxB̄
c1

< ∞.

Case 3: LU ′
f(M) < qf (τf (t)) < qf (t). Then, x̃ =

U
′−1

f ( q̃
L
) for someqf (τf (t)) ≤ q̃ ≤ qf (t). And we have:

(35) =
∣

∣qf (t) − q?
f

∣

∣

2NmaxB̄∆t
f

L
∣

∣

∣U ′′
f

(

U
′−1

f ( q̃
L
)
)∣

∣

∣

≤
∣

∣qf (t) − q?
f

∣

∣

2NmaxB̄∆t
f

Lc1
qf (τf (t))

L

≤
∣

∣

∣

∣

1 −
q?
f

qf (t)

∣

∣

∣

∣

2NmaxB̄

c1

qf (t)

qf (τf (t))
∆t

f

≤
∣

∣

∣

∣

∣

1 +
%

U ′
f(M)

∣

∣

∣

∣

∣

2NmaxB̄

c1

[

qf (t) − qf (τf (t))

U ′
f (M)L

+ 1

]

∆t
f

=
C3

L

(

∆t
f

)2
+ C2∆

t
f
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where the constantC3 =
∣

∣

∣1 + %
U ′

f
(M)

∣

∣

∣

(2NmaxB̄)2

c1U ′

f
(M) < ∞.

Case 4: qf (τf (t)) ≤ LU ′
f(M) < qf (t). Also using the

condition (1) on the utility functions,

(35) ≤
∣

∣qf (t) − q?
f

∣

∣

2mNmaxB̄∆t
f

L
≤

(∣

∣qf (t) − qf (τf (t))
∣

∣+
∣

∣qf (τf (t)) − q?
f

∣

∣

)

×
2mNmaxB̄∆t

f

L

≤
(

NmaxB̄∆t
f + L

∣

∣U ′
f (M) + %

∣

∣

) 2mNmaxB̄∆t
f

L

=
C4

L

(

∆t
f

)2
+ C5∆

t
f

where the constantC4 = 2m
(

NmaxB̄
)2

< ∞, and C5 =

2mNmaxB̄
∣

∣

∣U ′
f (M) + %

∣

∣

∣ < ∞.
Thus, combining the four cases by definingC6 =

max{C3, C4} andC7 = max{C1, C2, C5}, we have

(31) ≤ C6

L

∑

f

(

∆t
f

)2
+ C7

∑

f

∆t
f .

Finally, we consider (32). Recall that

yn(τ (n)(t)) − yn(t) =
∑

l∈E(n)

∑

f∈F

xf (τ
(n)
f (t)) − xf (t)

cl

Hf
l

Then we can write (32) as
∑

n

(pn(t) − p?
n)
[

yn(τ (n)(t)) − yn(t)
]

≤
∑

n

|pn(t) − p?
n|

∣

∣

∣

∣

∣

∣

∑

l∈E(n)

∑

f∈F

xf (τ
(n)
f (t)) − xf (t)

cl

Hf
l

∣

∣

∣

∣

∣

∣

≤
∑

n

|pn(t) − p?
n| 2Fmax

∣

∣

∣

∣

∣

∣

x
f̂(n)(τ

(n)

f̂(n)
(t)) − x

f̂(n)(t)

c
l̂(n)

∣

∣

∣

∣

∣

∣

where Fmax is the maximum number of flows which go
through any node, and

(l̂(n), f̂(n)) = arg max
l∈E(n),f∈F

∣

∣

∣

∣

∣

xf (τ
(n)
f (t)) − xf (t)

cl

Hf
l

∣

∣

∣

∣

∣

.

Also, for every flowf that goes through noden, we always
havepn ≤ qf . Therefore,

(32) ≤
∑

n

2Fmax

c
l̂(n)

∣

∣

∣qf̂(n)(t) + p?
n

∣

∣

∣

×
∣

∣

∣xf̂(n)(τ
(n)

f̂(n)
(t)) − x

f̂(n)(t)
∣

∣

∣

≤
∑

n

2Fmax

∣

∣

∣qf̂(n)(t) + p?
n

∣

∣

∣

×
∣

∣

∣xf̂(n)(τ
(n)

f̂(n)
(t)) − x

f̂(n)(t)
∣

∣

∣

Let

(l̄(n), n̄(n)) = arg max
l∈R(f̂(n)),m∈l

∣

∣

∣

∣

∣

pm(t) − pm(τ
f̂(n)
m (t))

cl

∣

∣

∣

∣

∣

,

and∆t
n

4
=
∣

∣

∣
t − τ

f̂(n)
n̄(n) (t)

∣

∣

∣
. Then, using a similar technique as

in the analysis of (31), we can finally argue that:

(32) ≤ C8

L

∑

n

(

∆t
n

)2
+ C9

∑

n

∆t
n

for some constantsC8, C9 < ∞.
Thus, if we use the upper bound in (33), we have:

E [∆Vt]

≤ − δ

Lγ
‖q(t) − q?‖I‖q(t)−q?‖≥ωLγ + ζI‖q(t)−q?‖≤ωLγ

+
∑

f

[

C6

L

(

∆t
f

)2
+ C7∆

t
f

]

+
∑

n

[

C8

L

(

∆t
n

)2
+ C9∆

t
n

]

≤ − δ

Lγ
‖q(t) − q?‖ + B̂ + Ĉ‖∆(t)‖2,

for someB̂, Ĉ < ∞.
Instead, if we use the upper bound in (34), we get

E [∆Vt] ≤ −cL‖x(t) − x?‖2 + B̃ + C̃‖∆(t)‖2.

This completes the proof of Theorem 3. �

Corollary 1:

lim sup
T→∞

1

T

T−1
∑

t=0

E

[‖q(t) − q?(ε)‖
L

]

≤ B

δL1−γ

Proof:
We start by taking the expectation of both sides of the
expression (21) overP(t), and then over∆(t):
E[V (p(t + 1)) − V (p(t)) | ∆(t)]

≤ − δ

Lγ
E [‖q(t) − q?(ε)‖ | ∆(t)] + Ĉ‖∆(t)‖2 + B̂

E[V (p(t + 1)) − V (p(t))]

≤ − δ

Lγ
E [‖q(t) − q?(ε)‖] + ĈE

[

‖∆(t)‖2
]

+ B̂

Then apply the Lemma 1:

E
[

∣

∣t − τf
n (t)

∣

∣

2
]

≤
∑

T

(TD)2e−ν(D)T

= D2
∑

T

(T )2e−ν(D)T = C10

for some constantC10 < ∞. We can also obtain the similar
bound:

E

[

∣

∣

∣t − τ
(n)
f (t)

∣

∣

∣

2
]

≤ D2
∑

T

(T )2e−η(D)T

= C11

for some constantC11 < ∞. Therefore, we will have
E
[

‖∆t‖2
]

is bounded by some constantC < ∞, or
E[V (p(t + 1)) − V (p(t)) | τ(t)]

≤ − δ

Lγ
E [‖q(t) − q?(ε)‖] + ĈC + B̂

Let B = CĈ + B̂, and we varyt from 0 up to T :

E [V (1) − V (0)] ≤ − δ

Lγ
E[‖q(0) − q?(ε)‖] + B

...

E [V (T ) − V (T − 1)] ≤ − δ

Lγ
E[‖q(T − 1) − q?(ε)‖] + B
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Therefore, adding both sides of the inequalities and re-
arranging the terms, we get

1

T

T
∑

t=0

E[‖q(t) − q?(ε)‖] ≤ E [V (0) − V (T )]Lγ

Tδ
+

BLγ

δ

≤ E [V (0)] Lγ

Tδ
+

BLγ

δ
Taking thelim sup asT goes to infinity yields the result.

Similarly, we can get an upper bound on the rate vectors.
Corollary 2:

lim sup
T→∞

1

T

T−1
∑

t=0

E
[

‖x̂(t) − x?(ε)‖2
]

≤ B

L
Proof: The proof follows the exact same arguments as

in Corollary 1, applied to (22).
Corollaries 1 and 2 respectively argue that asL increases,

q(t)
L

andx(t) tend toΞε andx?(ε) in the stated sense. Next,
we have the result for the positive recurrence of the Markov
chain.

Theorem 4:The Markov chain(P(t), ∆(t)) is irreducible,
apperiodic and positive recurrent.

Proof: It is easy to see that this Markov chain is
irreducible and apperiodic. From the result of Corollary 1,
we can find someB1 < +∞ such that

lim sup
T→∞

1

T

T−1
∑

t=0

E [‖q(t)‖] ≤ B1L
γ .

Thus, there exists someB2 < +∞ such that

lim sup
T→∞

1

T

T−1
∑

t=0

E

[

∑

n

pn(t)

]

≤ B2L
γ . (36)

If the Markov chain(P(t), ∆(t)) is not positive recurrent,

lim
t→∞

P





t−τm
∑

i=0

∑

n

pn(t − i) +
∑

n,f

∣

∣t − τf
n (t)

∣

∣

+
∑

n,f

∣

∣

∣t − τ
(n)
f (t)

∣

∣

∣ ≤ M̂



 = 0, ∀M̂ > 0.

That means, for everyε ∈ (0, 1), we can find aK such that

P





t−τm
∑

i=0

∑

n

pn(t − i) +
∑

n,f

∣

∣t − τf
n (t)

∣

∣

+
∑

n,f

∣

∣

∣t − τ
(n)
f (t)

∣

∣

∣ > M̂



 ≥ 1 − ε, ∀t ≥ K.

Also, pn(t) − 1
3 ≤ pn(t + 1) ≤ pn(t) + M̂ . Let us define

∆t
4
= t − τm, then we have:

t−τm
∑

i=0

∑

n

pn(t − i) +
∑

n,f

∣

∣t − τf
n (t)

∣

∣+
∑

n,f

∣

∣

∣t − τ
(n)
f (t)

∣

∣

∣

≤ (t − τm + 1)
∑

n

pn(t) + N

t−τm
∑

i=0

i

3
+ 2N(t − τm)

= (∆t + 1)
∑

n

pn(t) + N
∆t(∆t + 1)

6
+ 2N∆t

whereN is the number of all flows and nodes in the network.
Therefore,∀t ≥ K,

P

(

(∆t + 1)
∑

n

pn(t) + N
∆t(∆t + 13)

6
> M̂

)

≥ P





t−τm
∑

i=0

∑

n

pn(t) +
∑

n,f

∣

∣t − τf
n (t)

∣

∣

+
∑

n,f

∣

∣

∣
t − τ

(n)
f (t)

∣

∣

∣
> M̂



 ≥ 1 − ε.

Also, P
(

(∆t + 1)
∑

n pn(t) + N ∆t(∆t+13)
6 > M̂

)

=

∞
∑

τ=0

P (∆t = τ)P

(

(∆t + 1)
∑

n

pn(t)

+N
∆t(∆t + 13)

6
> M̂ |∆t = τ

)

≤
∞
∑

τ=R

P (∆t = τ) +

R
∑

τ=0

P (∆t = τ)

P

(

(R + 1)
∑

n

pn(t) +
NR(R + 13)

6
> M̂

)

Notice that P (∆t = τ) is exponentially decayed (see
Lemma 1). Hence, for everyδ ∈ (0, 1), we can find aR such
that

∑∞
τ=R P (∆t = τ) < δ. Also, letM̃ = M̂

R+1 −
NR(R+13)

6(R+1) .
Finally, we get

P

(

∑

n

pn(t) > M̃

)

≥ 1 − ε − δ, ∀t ≥ K.

Therefore,

lim sup
T→∞

1

T

T−1
∑

t=K

E

[

∑

n

pn(t)

]

≥ lim
T→∞

(T − K)

T
M̃(1 − ε − δ)

= M̃(1 − ε − δ)

ChooseM̂, ε, δ such thatM̃(1−ε−δ) > B2L
γ , then we get a

contradiction with (36). Thus, the Markov chain(P(t), ∆(t))
is positive recurrent.

V. D ISCUSSION ON THESTABILITY OF THE SYSTEM

In this section, based on the analysis in Sections III-B and
IV-B, we will provide a discussion why the regulators and the
queues are stable for the asynchronous, discrete-time model.

Recall that in Theorem 2, we proved the stability of the
continuous-time, fluid limit system by using the fact thatx(t)
will stay inside aδ neighborhood ofx?(ε) for t large enough.
Subsequently, in Section IV-B, we proved thatx(t) of the
asynchronous, discrete-time model can be made to be arbi-
trarily close tox?(ε) in an asymptotic and expected manner
(c.f. Corollary 2). Moreover, in Theorem 4, we proved the
positive recurrence of the Markov chain and can consequently
assume that the arrival processes are stationary. In fact, by
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using Jensen’s inequality and Ergodic theorem, we can argue
that for anyε̃ > 0, andk ≥ 0,

lim sup
T→∞

1

T

k+T−1
∑

t=k

∑

f

E
[

|xf (t) − x?
f (ε)|

]

≤
√

B

L
+ ε̃

Hence, given anỹδ > 0, we can chooseε andε̃ small enough,
andT andL large enough, so that for anyk ≥ 0,

1

T

k+T−1
∑

t=k

E
[

|xf (t) − x?
f |
]

< δ̃, ∀ f ∈ F , andT ≥ T .

Then, following the argument in [7] which essentially claims
that if the continuous-time, fluid limit system is stable and
the arrival processes satisfy those above conditions, thenthe
discrete-time, stochastic system is also stable. However,we do
not provide the details here due to space limitation.

VI. CONCLUSIONS

In this paper, we have considered the fair resource alloca-
tion problem in multi-hop wireless networks with a specific
interference model, and developed a cross-layer algorithm
to solve it. More specifically, we proposed a congestion
control algorithm for transport layer, and a fully distributed
scheduling algorithm for MAC layer. The main contribution
of the paper is to allow for unbounded delays in the feedback
between the components of the network. This is a crucial step
towards being able to actually implement a congestion control
mechanism in a real network, for time-varying delay is an
inseparable ingredient of a wireless network.

We proved that even when all the sources and nodes operate
in a totally asynchronous manner, our algorithms can achieve
flow rates that are arbitrarily close to the fair operating point.
Extensions to other interference models is a topic for future
research.

APPENDIX

Proof: [Theorem 2]
Consider the following Lyapunov function:
W (Q,R) = W1(Q) + ξW2(Q,R),

W1(Q) =
1

2

∑

(n,m)∈L

Qnm

c(n,m)





∑

(h,k)∈Υnm

Qhk

c(h,k)





W2(Q,R) =
1

2

∑

(n,m)∈L

(

∑

f Rf
nm + Qnm

)2

c(n,m)

where ξ is a positive parameter which will be chosen later.
First, considerW1(·):

Ẇ1(Q(t)) =
1

2

∑

(n,m)∈L





Q̇nm(t)

c(n,m)





∑

(h,k)∈Υnm

Qhk(t)

c(h,k)





+

(

Qnm(t)

c(n,m)

)





∑

(h,k)∈Υnm

Q̇hk(t)

c(h,k)









=
∑

(n,m)∈L

(

Qnm(t)

c(n,m)

)





∑

(h,k)∈Υnm

Q̇hk(t)

c(h,k)





We know from our analysis of the congestion controller that
x(t) → x?(ε) as t → ∞. Therefore, for everyρ > 0, there

existsT < ∞ such that
∣

∣

∣xf (t) − x?
f (ε)

∣

∣

∣ < ρ for t ≥ T and
for all f .

Also, noting a standard fact that the projection in (18) can
be ignored, we have:
Ẇ1(Q(t)) ≤∑{(n,m)∈L}

{(

Qnm(t)
c(n,m)

)

×
∑

(h,k)∈Υnm





(

∑

f (xf (t) + Nmaxεr)Hf
hk

)

c(h,k)
− πhk











.

In the fluid limit, the scheduling ruleπ(t) satisfies the condi-
tion (6) for every(n, m) ∈ L with Qnm(t) > 0. Thus,

Ẇ1(Q(t)) ≤∑{(n,m)∈L}

{(

Qnm(t)
c(n,m)

)

×
∑

(h,k)∈Υnm





(

∑

f (xf (t) + Nmaxεr)Hf
hk

)

c(h,k)



− 1







.

Becausex?(ε) is strictly inside Ω
2 , given anyε > 0, we can

find someϕ > 0 for which (x?
f (ε) + ϕ)f ∈ Ω

2 . Then, we can
chooseρ > 0 and εr > 0 small such thatρ + Nmaxεr < ϕ,
or (x?

f (ε)+ρ+Nmaxεr)f is strictly insideΛ
2 . Now, using the

same argument as in [23], we have:

∑

(h,k)∈Υnm





(

∑

f (xf (t) + Nmaxεr)Hf
hk

)

c(h,k)



− 1 ≤ −θ < 0

for someθ > 0 if Qnm(t) > 0. Thus,

Ẇ1(Q(t)) ≤ −θ
∑

{(n,m)∈L}

Qnm(t)

c(n,m)
.

Now, let us considerW2(·). Recall that
Q̇nm(t) +

∑

f Ṙf
nm(t)

=





∑

f

(

xf (t) + Kn
f εr

)

I
R

f
·n(t)>0H

f
nm − Pnm(t)





+

Qnm

+
∑

f

(

P f
nm(t) −

(

xf (t) +
(

Kn
f + 1

)

εr

))+

R
f
nm

Note thatP f
nm(t) can only positive ifQnm > 0. Then we

have the following cases:
• If Qnm > 0 and Rf

nm > 0 for all f , we remove the
projections:

Q̇nm(t) +
∑

f

Ṙf
nm(t) ≤ −

∑

f

εr

• If Qnm = 0 andRf
nm > 0 for all f , thenPnm(t) = 0,

Q̇nm(t) +
∑

f Ṙf
nm(t)

=





∑

f

(

xf (t) + Kn
f εr

)

I
R

f
·n(t)>0H

f
nm





+

−
∑

f

(

xf (t) +
(

Kn
f + 1

)

εr

)

≤ −
∑

f

εr
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• If Qnm > 0 andRg
nm = 0 for someg, then there exists

some constantχ such that
Q̇nm(t) +

∑

f Ṙf
nm(t)

=
∑

f

(

xf (t) + Kn
f εr

)

I
R

f
·n(t)>0H

f
nm − Pnm(t)

+
∑

f 6=g

P f
nm(t) −

(

xf (t) +
(

Kn
f + 1

)

εr

)

+
(

P g
nm(t) −

(

xg(t) +
(

Kn
g + 1

)

εr

))+

≤ −εrI{P
g
nm(t)≥xg(t)+(Kn

g +1)εr}
+χI{P

g
nm(t)<xg(t)+(Kn

g +1)εr} ≤ χ

Therefore, we can write
Ẇ2(Q(t),R(t))

=
∑

(n,m)∈L

(

∑

f Rf
nm(t) + Qnm(t)

)

c(n,m)

×



Q̇nm(t) +
∑

f

Ṙf
nm(t)





≤ −εr

∑

(n,m)∈L

(

∑

f Rf
nm(t) + Qnm(t)

)

c(n,m)
I{R

f
nm>0}

+χ
∑

(n,m)∈L

Qnm(t)

c(n,m)

Therefore,
Ẇ (Q(t),R(t)) = Ẇ1(Q(t),R(t)) + ξẆ2(Q(t),R(t))

≤ −(2θ − ξχ)
∑

(n,m)∈L

Qnm(t)

c(n,m)

−ξεr

∑

(n,m)∈L

(

∑

f Rf
nm(t) + Qnm(t)

)

c(n,m)
I{R

f
nm>0}

We can easily chooseξ such that2θ − ξχ > 0. Thus,

Ẇ (Q(t),R(t)) < 0 if Q + R 6= 0

= 0 if Q + R = 0

Then the result follows from Lyapunov’s stability theorem.

Proof: [Lemma 2] We define

Φ(t) =
∑

f

(

qf (t) − q?
f (ε)

)

(x̂f (t) − x?
f (ε)),

and
f̂ = arg max

f
|qf (t) − q?

f |.

Again, we will omit (ε) for notational convenience. Noting
that for all f we have

(qf (t) − q?
f )(x̂f (t) − x?

f ) ≤ 0

due to the fact thatU ′−1
f (·) is decreasing in its parameter, and

that x?
f (t) = U ′−1

f (
q?

f (t)

L
), we can write

Φ(t) ≤ −|q
f̂
(t) − q?

f̂
|
∣

∣

∣
x̂

f̂
(t) − x?

f̂

∣

∣

∣

There are two cases to consider: Ifx̂
f̂
(t) = M, then x̂

f̂
(t) −

x?

f̂
> M − cmax > cmax, sinceM is chosen to be larger than

2 maxl cl = 2cmax.

If, on the other hand,̂x
f̂
(t) < M, then we have

∣

∣

∣x̂f̂
(t) − x?

f̂

∣

∣

∣ = x?

f̂

∣

∣

∣

∣

∣

∣

∣

∣

U ′−1

f̂

(

q
f̂
(t)

L

)

U ′−1

f̂

(

q?

f̂

L

) − 1

∣

∣

∣

∣

∣

∣

∣

∣

. (37)

Notice that

q
f̂
(t) =

{

q?

f̂
− |q

f̂
(t) − q?

f̂
| ≥ 0 if q

f̂
(t) − q?

f̂
≤ 0,

q?

f̂
+ |q

f̂
(t) − q?

f̂
| ≥ 0 if q

f̂
(t) − q?

f̂
≥ 0.

Assuming thatU ′−1

f̂
(·) is a decreasing, convex function, we

can write
∣

∣

∣

∣

∣

∣

∣

∣

U ′−1

f̂

(

q?

f̂

L
− |q

f̂
(t)−q?

f̂
|

L

)

U ′−1

f̂

(

q?

f̂

L

) − 1

∣

∣

∣

∣

∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

∣

∣

∣

U ′−1

f̂

(

q?

f̂

L
+

|q
f̂
(t)−q?

f̂
|

L

)

U ′−1

f̂

(

q?

f̂

L

) − 1

∣

∣

∣

∣

∣

∣

∣

∣

.

Therefore, we have
∣

∣

∣

∣

∣

∣

∣

∣

U ′−1

f̂

(

q
f̂
(t)

L

)

U ′−1

f̂

(

q?

f̂

L

) − 1

∣

∣

∣

∣

∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

∣

∣

∣

U ′−1

f̂

(

q?

f̂

L
+

|q
f̂
(t)−q?

f̂
|

L

)

U ′−1

f̂

(

q?

f̂

L

) − 1

∣

∣

∣

∣

∣

∣

∣

∣

We consider the set ofq which satisfies‖q− q?‖ ≥ ωLσ,
whereω andL are positive constants andσ ∈ (0, 1). We are
interested in the behavior of the system asL tends to infinity.
The exact values ofω and σ depend on the utility functions
and other system parameters, and will be provided later in the
proof.

Notice that if‖q−q?‖ ≥ ωLσ, then|q
f̂
(t)−q?

f̂
| ≥ ω√

|N |
Lσ.

Then, we can write

(37) ≥ x?

f̂

∣

∣

∣

∣

∣

∣

∣

∣

U ′−1

f̂

(

q?

f̂

L
+ ω√

NL1−σ

)

U ′−1

f̂

(

q?

f̂

L

) − 1

∣

∣

∣

∣

∣

∣

∣

∣

Noting that q?

f̂
= %L for some% > 0, and invoking the

condition (3) on the utility functions, we can write: for‖q−
q?‖ ≥ ωLσ,

Φ(t) + B ≤ −|q
f̂
(t) − q?

f̂
|
(

x?
fc1L

−γ +
B
√

|N |
ω

L−σ

)

.

If we chooseσ ∈ (0, 1) such thatγ = σ, then for large enough
ω, we get the following expression for someδ > 0 andζ < ∞.

Φ(t) + B ≤ −‖q(t) − q?‖
Lγ

δI{‖q(t)−q?‖≥ωLγ}

+ζI{‖q(t)−q?‖<ωLγ}
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