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Learning to Control Renewal Processes with Bandit
Feedback
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We consider a bandit problem with K task types from which the controller activates one task at a time. Each

task takes a random and possibly heavy-tailed completion time, and a reward is obtained only after the task is

completed. The task types are independent from each other, and have distinct and unknown distributions

for completion time and reward. For a given time horizon τ , the goal of the controller is to schedule tasks

adaptively so as to maximize the reward collected until τ expires. In addition, we allow the controller to

interrupt a task and initiate a new one. In addition to the traditional exploration-exploitation dilemma, this

interrupt mechanism introduces a new one: should the controller complete the task and get the reward, or

interrupt the task for a possibly shorter and more rewarding alternative? We show that for all heavy-tailed

and some light-tailed completion time distributions, this interruption mechanism improves the reward linearly

over time. Applications of this model include server scheduling, optimal free sampling strategies in advertising

and adaptive content selection. From a learning perspective, the interrupt mechanism necessitates learning the

whole arm distribution from truncated observations. For this purpose, we propose a robust learning algorithm

named UCB-BwI based on median-of-means estimator for possibly heavy-tailed reward and completion time

distributions. We show that, in a K-armed bandit setting with an arbitrary set of L possible interrupt times,

UCB-BwI achieves O(K log(τ ) + KL) regret. We also prove that the regret under any admissible policy is

Ω(K log(τ )), which implies that UCB-BwI is order optimal.
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1 INTRODUCTION
In many real life problems, a server processes tasks with random completion times that are unknown

in advance, and the controller schedules these tasks so as to maximize the cumulative reward, e.g.,

the number of task completions, in a given time interval. In many social, economic and technological

systems, the service time distribution is often heavy-tailed, which implies that the mean residual

time to complete a task grows over time [4, 30]. As a consequence, in addition to the conventional

exploration-exploitation dilemma, the controller faces with a new dilemma: after initiating a task,

should it wait until completion and gather the reward, or make a new decision that could possibly
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serve faster at the expense of rejecting the reward and wasting the time already spent? As we will

show in this work, this interruption mechanism becomes crucial in maximizing the cumulative

reward in a given time interval. We model this problem as a continuous-time multi-armed bandit

(MAB) problem in which the controller has the option to interrupt a task any time and make a new

decision. Applications of this framework include task scheduling in a multi-server system (such as

a cloud computing system or a call center), adaptive routing in networks and optimal free-trial

strategy in marketing digital information goods (see Section 3).

In this paper, we consider a continuous-time bandit setting where the controller can make a

decision at any time. Each arm (or task type) is modeled as a renewal reward process, where

each task corresponds to a renewal epoch from the selected task type. Each task takes a random

completion time, which is unknown to the controller in advance, and a reward is obtained only

after the task is completed. The objective of the controller is to maximize the cumulative reward

until it runs out of time. Unlike the existing MAB models where the controller makes a decision

only after a task is completed [3, 34], we allow the controller to interrupt an ongoing task at any

time, and initiate a new task of possibly different type at the expense of rejecting the reward of

the last task. As we show in this paper, this interrupt mechanism becomes essential when the

completion time distribution is heavy-tailed.

From a learning perspective, implications of an interrupt mechanism are two-fold:

(1) The controller has to learn the whole distribution unlike the existing MAB models in which

learning only the first-order statistics is sufficient.

(2) This is an exploration-exploitation problem with possibly right-censored observations. In

order to see this, consider an interrupted task. Since the task is not finalized, the reward and

completion time realizations are not received, and the controller only receives the feedback

that the completion time exceeded a threshold. Also, the observation for a specific interrupt

time provides information about different interrupt times, therefore there is a structure in

this problem. As we will see, exploiting this structure in algorithm design becomes crucial in

optimizing the performance.

A good algorithm should address these considerations, and it must be statistically robust: in

most applications, the arms have diverse and potentially heavy-tailed completion time and reward

distributions, and an algorithm must be able to perform well under this heterogeneity. The objective

in this paper is to propose provably efficient and robust learning solutions to this problem.

1.1 Related Work
Multi-armed bandits have been the primary model for sequential decision problems that involve

exploration-exploitation trade-off in learning, which is said to be "a conflict evident in all human

action" byWhittle in [33]. As a result of this universality, there is a broad list of applications of MAB

models ranging from routing in networks to dynamic pricing. For excellent surveys in stochastic

bandit theory, we refer to [6] and [7].

Continuous-time bandits have been considered in different contexts. In [23] and [27], the problem

is explored from a classical bandit perspective, and Gittins index policies are proposed to maximize

cumulative reward. In [3, 19, 34, 35], continuous-time bandits are investigated from a frequentist

perspective. In all of these works, the completion times are assumed to be [0, 1]-valued random

variables. Also, the controller makes a decision only when a task is completed. However, in

many applications, especially in the ones that involve "human action", the completion times and

rewards naturally have heavy-tailed distributions [4], and thus an interrupt mechanism, i.e., a true
continuous-time bandit setting is required for optimal performance. Thus, the existing approaches

fall short to solve our problem, and the proposed algorithms cannot achieve sublinear regret.
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Bandits with heavy-tailed distributions were considered in [8, 26]. In both of these works, the

authors extend the existing results for sub-Gaussian distributions to the case where the reward
distributions are heavy-tailed. The setting in these works is still the classical discrete-time MAB

setting, and the challenge is to find robust estimators for heavy-tailed reward distributions. In

our setting, the duration of a task, which is subject to a constraint, is heavy-tailed, and thus new

dynamics are introduced to the problem.

1.2 Contributions
Our main contributions in this work are the following:

• We introduce the bandits with interrupts (BwI) framework. We identify the conditions on

the arm distributions under which interrupting an ongoing task is optimal. By using tools

from renewal theory, we determine an asymptotically optimal and tractable policy given arm

statistics (see Sections 2 and 4).

• We present concentration inequalities for renewal reward processes, which are fundamental

in algorithm design and analysis in our problem among many other applications (see Section

5.1).

• We propose a UCB-type learning algorithm for the BwI problem, called the UCB-BwIAlgorithm,

which is non-parametric in the sense that it requires no other assumptions on arm statistics

than the usual moment assumptions (see Section 5.3). Then, in Section 6, we prove that

UCB-BwI achieves O(K log(τ ) + KL) over a time interval τ with L being the cardinality of the

set of possible interrupt times. Moreover, we show that UCB-BwI is order-optimal in K ,L and

τ by showing that the regret under any admissible policy is Ω(K logτ ) as τ → ∞.

1.3 Notation
Throughout this paper, we denote the minimum of two numbers as min{a,b} = a∧b, and maximum

of two numbers as max{a,b} = a ∨ b interchangeably for any a,b ∈ R. The cardinality of a set A is

denoted as |A|, and the complement of a set A is denoted as Ac
. For any event E, IE denotes the

indicator function.

2 PROBLEM FORMULATION
We consider a set of K statistically independent task types (or arms), denoted by K = {1, 2, . . . ,K}.

To follow the bandit terminology, we will use "arms" synonymously with "task types". Each arm

corresponds to a stochastic process {(X (k )
n ,R

(k )
n ), n ≥ 1}. If arm k is activated (i.e., a task of type k

is initiated) at the time of n-th decision, it takes a random completion time X (k )
n to obtain the reward

R(k )
n at the end. For a given time horizon τ > 0, the sequential decision-making continues until

the time horizon expires. Both X (k )
n and R(k )

n are unknown to the controller when the decision is

made. The stochastic process {(X (k )
n ,R

(k )
n )} corresponding to arm k is independent and identically

distributed (iid) over n, therefore it is a renewal reward process. We assume that X (k )
n > 0 and

R(k )
n ≥ 0 are independent random variables, and the following moment condition is satisfied by all

arms:

max{E[(X (k)
1

)1+γ ],E[(R(k )
1
)1+γ ]} < ∞, ∀k ∈ K, (1)

for some γ ∈ (0, 1]. Therefore, this model includes heavy-tailed reward and completion time

distributions.

In the BwI problem, the goal is to maximize the cumulative reward collected within a given time

interval [0,τ ]. Consequently, the completion time of a task is as important as the reward it yields.

As a distinctive feature of our model, we give the controller the option to interrupt an ongoing task
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if it takes too much time. If a task is interrupted, the reward of that task is rejected, and a new task

is initiated immediately for a possibly more rewarding alternative. This introduces a new control

dimension to our model, which is not present in the existing bandit models. As it will be seen in

the next section, this control dimension is vital for optimal performance in a broad class of arm

distributions.

Formally, in the BwI problem, the controller has to make two decisions: the task type and the

interrupt time. Let B ⊂ R+ be the set of interrupt times that will be specified later. A policy

π = {πn}
∞
n=1

consists of two parts: πn = (In ,B
(In )
n ) ∈ K × B. A decision πn = (k,b) implies that a

task of type k is activated at the time of n-th decision, and an interrupt time of b time units from

the activation time is declared. For a control πn = (k,b), the completion time of a task is (X (k)
n ∧ b),

the reward is R(k )
n I{X (k )

n ≤b } , and therefore a stochastic feedback Yn is obtained as follows:

Yn(k,b) =
(
I
{X (k )

n ≤b }, X
(k )
n I{X (k )

n ≤b }, R
(k )
n I{X (k )

n ≤b }

)
. (2)

In words, the knowledge about (X (k)
n ,R

(k )
n ) is obtained only if the task is completed before b, and

only I
{X (k )

n ≤b } is obtained otherwise. Therefore, the problem at hand is an exploration-exploitation

problem in which the learning is conducted via right-censored feedback. Now we formally define

an admissible learning policy for this setting.

Definition 2.1 (Admissible Policy). Let Fn = σ (Y1,Y2, . . . ,Yn−1) be the history of the received

feedback up to n-th decision, where σ (Y ) denotes the sigma-field of a random variable Y . We call a

policy π = {πn}
∞
n=1

admissible if πn ∈ Fn for all n.

We call the period between n-th and (n + 1)-th decisions n-th epoch. In the traditional MAB

models, the number of epochs is a given deterministic quantity, which is equal to the time horizon.

However, in the BwI problem, the number of epochs until the time expires is random. In the

following, we define the number of epochs as a counting process.

Definition 2.2 (Counting Process). For a given admissible policy π , let

Sπn =
n∑
s=1

∑
(k,b)∈K×B

I{πs=(k,b)}
(
X (k )
s ∧ b

)
, (3)

be the total time spent at the end of the n-th epoch. Given a time horizon τ , the counting process
Nπ (τ ), which denotes the total number of completed tasks in [0,τ ] is defined as follows:

Nπ (τ ) = sup{n : Sπn ≤ τ }. (4)

Note that νπ (τ ) = Nπ (τ ) + 1 is known as the first passage time, and is a stopping time under any

admissible policy π [16, 18].

Definition 2.3 (Cumulative Reward under a Policy). Let π be an admissible policy. Then, the

cumulative reward under π is as follows:

Rewπ (τ ) =

Nπ (τ )∑
n=1

∑
(k,b)∈K×B

I{πn=(k,b)}R
(k )
n I{X (k )

n ≤b }, (5)

where Nπ (τ ) is the counting process in (4).

In Figure 1, we illustrate a sample path from the BwI process.
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Fig. 1. Illustration of a sample path for the BwI process. The completion time X (In )
n of the n-th task exceeds

the interrupt time B(In )n , so the task is interrupted. In the (n + 1)-th epoch, arm k is chosen, and the task is
completed before the interrupt time, yielding a reward of R(k )n+1

.

Definition 2.4 (Regret). For a given time horizon τ > 0, the optimal policy maximizes the

cumulative reward within [0,τ ]:

π opt = arg max

π
E
[
Rewπ (τ )

]
, (6)

where the maximization is over the set of all admissible policies. The objective in this paper is to

design online learning algorithms that have a good competitive performance with respect to π opt
.

The performance metric for this objective is the regret, which is defined as follows:

Reдπ (τ ) = E[Rewπ opt (τ )] − E[Rewπ (τ )]. (7)

The regret of a policy π is the loss suffered due to suboptimal decisions in both arm and interrupt

time selection.

In the next section, we formulate some problems that can be solved within the BwI framework.

3 NOTABLE EXAMPLES
In many technological, economic and social systems, resource allocation is performed over alterna-

tive tasks with randomly varying resource consumption. As such, the controller has to track and

possibly interrupt the resource consumption of each activated task for efficient utilization of the

budget. The BwI framework that we introduce and investigate in the paper is aimed at forming

the foundation for developing effective learning solutions for optimal resource allocation in such

problems. In the following, we note some notable examples, for which our proposed BwI framework

and design can be utilized.

(1) Adaptive Routing in Communications: In the first example, we consider an adaptive routing

problem with the objective of throughput maximization. In a broad class of communication systems,

the transmission times are unknown to the controller at the time of scheduling, and learned

via ACK/NACK type feedback [29]. For these systems equipped with ARQ control, the packet

transmission times might possibly follow a heavy-tailed distribution depending on the channel

statistics [21, 32]. In the absence of any statistical knowledge about the channels, the goal of the

controller is to learn the best channel based on the feedback so as to maximize the throughput.

As an instance of the systems described above, consider a simplistic point-to-point communi-

cation scenario with K parallel and independent channels with ARQ control to transmit packets
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successfully. If channel k is scheduled to transmit n-th packet, it takes X (k )
n units of time to com-

plete the transmission. The statistical properties of the channels are unknown, and learned by

ACK/NACK type feedback. For a given time horizon τ , the goal of the controller is to maximize

throughput, i.e., transmit as many packets as possible in the limited time interval [0,τ ]. Since the

time is limited, at each transmission, the controller determines an interrupt time of B(k )
n time units

to avoid extremely long transmission times. If the ACK signal does not arrive within B(k )
n time units

after the transmission, then the session is interrupted and a new session is initiated with a possibly

different channel. This adaptive scheduling procedure can be posed as an optimization problem as

follows:

max

π
E
[ Nπ (τ )∑

n=1

I
{X (k )

n ≤B(k )
n }

]
.

It is shown in [21, 32] that the retransmission protocol might lead to heavy-tailed completion

times X (k )
n even if all the system components are light-tailed. As we will show in the next section,

there is a finite optimal interrupt time if the transmission time has a heavy-tailed distribution.

In the absence of channel statistics, the controller must learn the whole distribution of X (k )
n via

ACK/NACK type feedback to choose the optimal channel and interrupt time. Thus, this adaptive

routing problem falls into the BwI framework.

Akin to the classical multi-armed bandit framework guiding the solution of many learning-

optimization problems, our BwI framework can form the foundation for the solution of a large class

of stochastic scheduling problems by extending the model to specific bandit scenarios. For example,

in a realistic communication system, if the transmission time is too long for a channel, then it will

possibly yield a long transmission time if it is scheduled immediately for retransmission. In order

to model such scenarios, the BwI model can be extended to a sleeping [24] or Markovian [1] bandit

setting. On the other hand, the controller might transmit a new packet without waiting for the

ACK signal of the previous transmission, which can be modeled by a delayed feedback extension of

the BwI framework [22].

(2) Task Scheduling in Data Centers: Consider a computing system with a single processor and K
different user types with distinct usage characteristics. Let the task length of a user of type k be

denoted as X (k)
n , and a payoff R(k )

n is received at the end of the service. For example, if the goal is

to maximize throughput, there is a unit reward, i.e., R(k )
n = 1, after each service completion. For

a given time horizon τ , which is the duration of the busy period of the processor, the goal is to

maximize the total reward in [0,τ ] by scheduling tasks. Empirical studies in a variety of private

enterprise, campus and cloud data centers indicate that the task sizes and arrivals exhibit highly

heavy-tailed characteristics in such systems [5, 20], therefore the sequential scheduling problem

subject to time constraints can be solved within the BwI framework.

(3) Optimal Free Trial Strategy: Advertising through free samples is ubiquitous in markets for a big

variety of goods such as games, software-as-a-service (SaaS) applications or material goods. In such

scenarios, there are multiple types of target populations with distinct utilization preferences. In

order to make use of the budget efficiently while maximizing the revenue, user characterization and

resource allocation must be performed in an optimal and data-driven manner. In a simplistic market

model, for a type-k user, the free-to-paid conversion takes X (k)
n time (or resource), and a reward

of R(k )
n is obtained if the user buys the product. Depending on the users’ behavioral preferences

such as free riding, X (k )
n might follow a heavy-tailed distribution. For empirical studies, we refer to

[15, 31]. This type of heavy-tailed behavior necessitates limiting the amount of free sampling for

some user types. In order to maximize the number of free-to-paid conversions within an allowed

campaign resource budget τ , the controller has to find the optimal target population along with
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an optimal length of free-trials. Thus, this problem can be formulated as an instance of the BwI
setting. We note that it is possible to address multiple customer types simultaneously by using a

combinatorial bandit [11] extension of the BwI framework, which is a direction of future research.

4 OPTIMAL POLICYWITH KNOWN STATISTICS
In this section, we investigate the characteristics of the optimal policy for the problem (6) when all

arm statistics are given as oracles. Note that (6) is a stochastic knapsack problem, and the solution

is NP-hard even if all distributions are known [14], which makes the learning and competitive

analysis intractable. In order to solve this problem, we focus on approximation algorithms for the

BwI problem. In the following, we propose a simple static policy, and show that the optimality gap

it is O(1) as τ → ∞, which implies an effective finite time performance and asymptotic optimality.

We begin by formally defining the concept of static policies.

Definition 4.1 (Static Policy). Let k ∈ K and b ∈ B. For any τ > 0, the static policy π (k )(b) pulls

the arm k with a fixed interrupt time b > 0 consistently until the time expires, i.e., (In ,B
(In )
n ) = (k,b)

for all n under π (k )(b).

Note that for any (k,b) ∈ K × B, the observed stochastic process under the static policy π (k )(b)
is iid over n, thus it is a renewal reward process. As a fundamental result of the renewal theory, the

time average reward per unit time under π (k )(b) converges to a positive constant as τ → ∞:

lim

τ→∞

E[Rewπ (k )(b)(τ )]

τ
=
E[R(k )

1
I
{X (k )

1
≤b }]

E[X (k )
1

∧ b]
. (8)

Hence, this constant, which is called the reward rate, is the growth rate of the reward over time,

and it will be the main quantity of interest throughout the paper.

Definition 4.2 (Renewal Reward Rate). For any (k,b) ∈ K × B, the (renewal) reward rate under

the static policy π (k)(b) is defined as follows:

r (k)(b) =
E[R(k )

1
I
{X (k )

1
≤b }]

E[X (k )
1

∧ b]
. (9)

r (k )(b) is the ensemble average reward per unit time.

Intuitively, if the arm k is chosen, and each task is interrupted at a fixed time b > 0 consistently,

then the total reward obtained between [0,τ ] is O
(
τ · r (k )(b)

)
.

Let the optimal interrupt time be defined as follows:

b∗k = sup{b ∈ B : r (k )(b) ≥ r (k)(b ′),∀b ′ ∈ B}. (10)

In the following, we investigate the nature of b∗k depending on the joint distribution of (X (k )
n ,R

(k )
n )

in the most general case of B = R+ ∪ {∞}.

Proposition 4.3 (Optimal Interrupt Time). Interrupting a task before its completion is optimal,
i.e., b∗k < ∞ if and only if the following holds:

E[X (k )
1

− b |X (k )
1
> b] > E[X (k )

1
]. (11)

for some b > 0.
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Proof. Take (k,b) ∈ K×B and let q = P(X1 ≤ b) and 1b = I{X (k )
1

≤b } . We can write E[X (k)
1

∧b] =

E[X (k)
1

1b ] + b(1 − q). Then,

r (k)(b) −
E[R(k )

1
]

E[X (k )
1

]
= E[R(k)

1
]

( q

E[X (k )
1

1b ] + b(1 − q)
−

1

E[X (k )
1

]

)
,

=
E[X (k )

1
(1 − 1b )] − b(1 − q) − E[X (k )

1
]

E[X (k )
1

∧ b]E[X (k )
1

]/E[R(k )
1
]

.

By using the identity

E[X (k )
1

− b |X (k )
1
> b] = E[X (k)

1
(1 − 1b )] − b(1 − q),

we can deduce that:

r (k )(b) −
E[R(k)

1
]

E[X (k )
1

]
=
E[X (k)

1
− b |X (k )

1
> b] − E[X (k )

1
]

E[X (k )
1

∧ b]E[X (k )
1

]/E[R(k )
1
]
.

Therefore, b∗k < ∞ if and only if E[X (k )
1

− b |X (k )
1
> b] > E[X (k )

1
] for some b ∈ (0,∞). □

The quantity E[X (k )
1

− b |X (k)
1
> b] that arises in (11) is called mean residual life, and it quantifies

the mean waiting time to get the reward given that the controller has already waited for b > 0 time

units.

The intuition behind Proposition 4.3 is as follows. At each time instance after a decision, the

controller faces a dilemma: continue the ongoing task to get the immediate reward, or interrupt

and re-initiate a new task. If there exists b > 0 that satisfies (11), then the controller has to wait

longer than the average completion time to get the reward, thus interrupting is optimal.

Interruption improves the reward rate for a large class of completion time distributions, including

all heavy-tailed and some light-tailed distributions. In the following, we consider some specific

classes of distributions, and investigate the behavior of r (k )(b) with respect to the interrupt time b.

Corollary 4.4 (Interrupts for Some Specific Distributions). Consider the case where R(k )
n is

independent of X (k )
n .

(1) If X (k )
n has a heavy-tailed distribution, then interrupting is optimal, i.e., b∗k < ∞.

(2) If E[X (k )
n − b |X (k )

n > b] is an increasing function of b > 0, then b∗k < ∞.
(3) IfX (k)

n ∼ Exp(λ) for some λ > 0, then r (k )(b) = r (k )(b ′) for all b,b ′ > 0. Exponential distribution
is the only completion time distribution with this property.

(4) If E[X (k )
n − b |X (k )

n > b] is a monotonically decreasing function of b > 0, then b∗k = ∞.

Remark 1. We make the following observations from Corollary 4.4:

• Tails are important for optimal performance: for two distributions with the same first-order

statistics (E[X (k )
n ],E[R(k )

n ]), tail statistics might yield very different reward rates r (k )(b) when
the interrupt mechanism is employed. If interruption is not employed and b∗k < ∞, then there

is a loss that grows linearly in τ .
• Most light-tailed distributions have decreasing mean residual life functions, including Gauss-

ian, uniform, logistic, Laplace and gamma distributions [30]. Part (4) of Corollary 4.4 implies

it is optimal to wait until a task is completed for such distributions.

• Exponential distribution serves as a barrier case: interruption does not make a difference if the

completion time is exponentially distributed as a consequence of the memoryless property.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 43. Publication date: June 2019.



Learning to Control Renewal Processes with Bandit Feedback 43:9

• Although the optimal interrupt time is finite for all heavy-tailed, and infinite for most

light-tailed completion time distributions, there exist light-tailed distributions for which

interruption at a finite time is optimal. Part (2) suggests an example class of completion time

distributions that includes hyperexponential distribution.

Proof. (1) is a direct consequence of Property 2.2 in [9]. For (2) and (4), we have E[X (k )
1

|X (k )
1
>

0] = E[X (k )
1

] since X (k )
n > 0, and therefore monotonicity of the mean residual life implies the

corresponding results. For exponential random variables, it holds thatE[X (k )
1

−b |X (k )
1
> b] = E[X (k)

1
]

for all b, which is an alternative form of the memoryless property.

□

We illustrate the above results forX (k )
n ∼ Pareto(1, 1.2) in Fig. 2 (a) andX (k )

n ∼ Loдnormal(1, 2.75)

in Fig. 2 (b) with Rn = 1 for all n.

10-8 10-6 10-4 10-2 1 102 104
0

0.5

1

1.5

2

2.5
(b)

100 102 104
0

0.05

0.1

0.15
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0.25

0.3

0.35

0.4
(a)

Fig. 2. The renewal reward rate r (k )(b) with respect to b for (a) X (k)
n ∼ Pareto(1, 1.2) and (b) X (k )

n ∼

Loдnormal(1, 2.75). Interruption yields significant gains in the average reward per unit time for heavy-tailed
completion time distributions.

Note that interrupting a task at the optimal interrupt time yields significant gains for Pareto

distribution, and the impact of interruption becomes drastic in the case of a log-normal distribution

with high variability.

From (8), it is seen that a natural approximate algorithm to the optimal policy π opt
is the static

policy which maximizes r (k )(b) over all (k,b) pairs, which we formally define in the following.

Definition 4.5 (Optimal Static Policy). The optimal static policy, denoted by π ∗
, makes the follow-

ing choice at n-th epoch:

π ∗
n = arg max

(k,b)∈K×B

r (k )(b),

for all n until the time expires.

In the following, we analyze the performance of this static policy by considering the optimality

gap with π opt
, and conclude that it achieves an almost-optimal finite-time performance, as well as

asymptotic optimality as τ → ∞.
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Proposition 4.6 (Performance of the Optimal Static Policy). The optimality gap for the
optimal static policy π ∗ bounded for all τ > 0:

max

π
E[Rewπ (τ )] − E[Rewπ ∗ (τ )] ≤ 2 max

k ∈K
E[R(k )

1
], ∀τ > 0.

Consequently, π ∗ is asymptotically optimal as τ → ∞.

Proof. Proof of Proposition 4.6 is based on the concept of stopped random walks, and given in

Appendix A for the interested reader. □

Remark 2. Proposition 4.6 has a very important consequence: the expected reward under the

simple static policy π ∗
has only a bounded gap with the best possible expected reward, which can

only be achieved by an NP-hard algorithm for all τ > 0.

In the next section, we propose a UCB-type learning algorithm for the BwI problem.

5 ALGORITHM DESIGN
In this section, we propose a learning algorithm for the BwI problem that converges to the optimal

static policy π ∗
fast enough to yield minimal regret. The learning algorithm has a two-fold objective:

(1) learning the optimal interrupt times for all arms, (2) choosing the arm with maximum reward

rate. As it was pointed out in Remark 1, interrupt times heavily depend on the tails. Therefore,

unlike the traditional bandit models where learning only the first moment suffices, the learning

algorithm in this problem must learn the whole distribution.
In most real-life problems, the controller has to decide the interrupt time within a discrete set.

For example, in the optimal free trial strategy example of Section 3, the duration of free trials is

usually measured in terms of days. In digital systems, the processors make decisions discrete in

time. Therefore, in this paper, we consider a given finite but arbitrary B that includes infinite

interrupt time (i.e., no interrupt) as an element.

Assumption 1 (Finitely Many Interrupt Times). For L > 1, let the set of interrupt times be

B = {b1,b2, . . . ,bL} for any user-determined {bi , i = 1, 2, . . . ,L}. Let

0 < b1 < b2 < . . . < bL = ∞,

without loss of generality.

The design strategy will be as follows: each arm-interrupt time pair (k,b) will be a distinct

decision, and the objective will be to learn the (k,b) pair with maximum reward rate. In the absence

of the arm statistics, an upper confidence bound for the reward rate r (k )(b) will be used as a

surrogate. This will be accomplished in three steps:

(1) In Section 5.1, we propose an estimator for the reward rate r (k )(b) based on median-of-means

technique, and show that it has an exponential convergence rate by novel concentration

inequalities.

(2) In Section 5.2, we examine the specific information structure of the problem to boost the

learning rate.

(3) Finally, in Section 5.3, we develop a UCB-type algorithm based on the concentration inequal-

ities we propose, which exploits the information structure of the problem to achieve low

regret.

5.1 Concentration Inequalities for Renewal Reward Processes
Recall that for each (k,b) ∈ K × B, the observed stochastic process:

{(X (k )
n ∧ b,R(k )

n I{X (k )
n ≤b }),n ≥ 1} (12)
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is a renewal reward process, and the aim is to find concentration inequalities for r (k )(b) from the

first s observations. In the next lemma, we present a concentration result for estimating the ratio of

two expected values, e.g., reward rate, by a generic estimator.

Lemma 5.1 (Concentration of Rates). Let {(Un ,Vn), n ≥ 1} be a sequence of iid vectors with
finite mean, and µ̄s = (Ūs , V̄s ) be a generic mean estimator for (E[U1],E[V1]). Let

∆0(ϵ) =
(
1 +
E[V1]

E[U1]

) ϵ

ϵ + E[U1]
, ∀ϵ > 0. (13)

Then, for any p-norm ∥.∥p , p ≥ 1 defined over R2, the following inequality is satisfied:

P
( V̄s
Ūs
<
E[V1]

E[U1]
− ∆0(ϵ)

)
≤ P(∥µ̄s − µ∥p > ϵ), (14)

for all s ≥ 1.

Note that the above concentration inequality yields an upper confidence bound for the reward rate

by considering the deviations ofUn and Vn from their means.

Proof. For any ϵ > 0, let the high-probability set As (ϵ) be defined as follows:

As (ϵ) = {∥µ̄s − µ∥p ≤ ϵ}.

For any outcome ω ∈ As (ϵ), it is easy to verify the following:

V̄s (ω)

Ūs (ω)
> r − ∆0(ϵ),

since the minimum value possible of V̄s and the maximum value of Ūs in the set As (ϵ) are E[V1] − ϵ
and E[U1] + ϵ , respectively. Therefore, the following set inclusion holds:{ V̄s

Ūs
<
E[V1]

E[U1]
− ∆0(ϵ)

}
⊂

{
∥µ̄s − µ∥p > ϵ

}
,

which directly implies the result. □

For the observed process (12), the empirical reward rate with s samples is defined as follows:

r̂ (k )s (b) =

s∑
i=1

R(k)
i I{X (k )

i ≤b }

s∑
i=1

(X (k)
i ∧ b)

. (15)

By the fundamental renewal theorem, it is well-known that the empirical reward rate converges

to the reward rate almost surely: r̂ (k)s (b) → r (k )(b) almost surely as s → ∞ [2, 16]. Therefore, the

empirical estimator r̂ (k )s (b) shows up as a natural candidate for estimating r (k )(b). However, for
heavy-tailed distributions that satisfy the moment condition (1) for some γ ∈ (0, 1], it can be shown

by using Lemma 5.1 and Chebyshev’s inequality that the following holds:

P
(
r̂ (k )s (bL) ≤ r (k )(bL) − ∆0(ϵ)

)
= O

(
1

sγ ϵ1+γ

)
,

i.e., convergence rate of r̂s (bL) is polynomial rather than exponential. Moreover, as it is shown with

a lower bound for the convergence rate in [8, 10], this bound is tight. This immediately implies

that the empirical reward rate is weak for heavy-tailed distributions, and thus falls short for our

application.

For estimating the reward rate, in the following, we present a robust estimator called median-of-

means estimator based on [8, 28], which provides exponential convergence rate.
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Definition 5.2 (Median-of-Means Estimator). Let {(Un), n ≥ 1} be a sequence of random variables.

For δ ∈ (0, 1) and s samples, let

w =
⌊
8 log(e

1

8 δ−1) ∧
s

2

⌋
,

be the number of blocks, andm = ⌊s/w⌋ be the block-length. For j = 1, 2, . . . ,w , let

Ûj =
1

m

jm∑
i=(j−1)m+1

Ui ,

be the sample mean of block j. The median-of-means estimator is computed as follows:

Ūs = median{Û1, Û2, . . . , Ûw }.

Definition 5.3 (Median-of-Means Estimator for Reward Rate). Given a renewal reward process

{(X (k )
n ,R

(k )
n ), n ≥ 1}, for any b ∈ B, let

V (k )
i = R(k )

i I{X (k )
i ≤b },

U (k )
i = X (k )

i ∧ b,
(16)

for all i = 1, 2, . . . , s . Let Ū (k)
s (b) and V̄ (k )

s (b) be the median-of-means estimators for {(U (k )
i ), i ≤ s}

and{(V (k )
i ), i ≤ s}, respectively. Then, the median-of-means estimator r̄ (k)s (b) for the reward rate

r (k )(b) is defined as follows:

r̄ (k)s (b) =
V̄ (k )
s (b)

Ū (k )
s (b)

, (17)

Intuitively, the median-of-means estimator boosts the confidence of a sequence of independent

weak estimators (samplemean estimator in this case) by taking themedian of them. This successfully

eliminates the effect of the outliers due to the heavy tails, and provides fast convergence. In the

following, we analyze the performance of the median-of-means estimator for the reward rate.

Proposition 5.4 (Concentration Ineqalities for Renewal Processes). Consider a renewal
reward process {(X (k )

n ,R
(k )
n ), n ≥ 1} that satisfies the moment assumption (1) for some γ > 0. For any

b ∈ B, letU (k )
i = X (k )

i ∧ b and V (k )
i = R(k )

i I{X (k )
i ≤b } for all i ≤ s , and

max

{
E[|U (k)

1
− E[U (k )

1
]|1+γ ],E[|V (k)

1
− E[V (k )

1
]|1+γ ]

}
= u .

Then, for any b ∈ B and δ ∈ (0, 1), the median-of-means estimator, r̄s (b), satisfies the following:

P
(
r̄ (k )s (b) ≤ r (k )(b) − ∆0(ϵ(δ ))

)
≤ δ ,

where

ϵ(δ ) = (12u)
1

1+γ

(
16 log(2e

1

8 δ−1)

s

) γ
1+γ
, (18)

and
∆0(ϵ) =

ϵ

E[U (k )
1

] + ϵ

(
1 + r (k )(b)

)
.

Proposition 5.4 uses the concentration properties of the median-of-means estimator to yield an

upper confidence bound on the reward rate in conjunction with Lemma 5.1.
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Proof. By taking p = ∞, Proposition 5.1 with union bound yields the following upper bound:

P
(
r̄ (k )s (b) ≤ r (k )(b) − ∆0(ϵ)

)
≤ P(Ū (k)

s > E[U (k)
1

] + ϵ) + P(V̄ (k )
s ≤ E[V (k )

1
] − ϵ).

Taking ϵ = ϵ(δ ), application of Lemma 2 in [8] to each term on the RHS above gives the upper

bound. □

Note that the inequalities in Prop. 5.4 require knowledge of arm statistics, which are assumed to be

unknown in our case. For the learning problem, we make the following assumptions.

Assumption 2. For the BwI problem, we assume that the following quantities are known a priori:

(1) γ ∈ (0, 1] and u ∈ R such that

max

{
E
[��X (k )

1
− E[X (k)

1
]
��1+γ ] ,E[��R(k )

1
− E[R(k)

1
]
��1+γ ]} ≤ u, (19)

for all k ∈ K .

(2) A lower and upper bound on the mean completion time and reward, respectively:

Rmax > max

k ∈K
E[R(k)

1
],

µmin ≤ min

k ∈K
E[X (k )

1
∧ b1].

(20)

The following corollary to Prop. 5.4, which requires much less knowledge about the arm statistics,

will be fundamental in algorithm design and analysis.

Corollary 5.5. Given the parameters in Assumption 2, let

∆(x) =
(
1 + Rmax/µmin

) x

µmin + x
, (21)

for any x > 0. Then, the following inequality holds for any δ > 0:

P
(
r̄ (k )s (b) ≤ r (k )(b) − ∆

(
ϵ(δ )

) )
≤ δ , (22)

where ϵ(δ ) is defined in (18) and r̄ (k )s (b) is the median-of-means estimator for the reward rate.

Proof. With the corresponding parameter choices, for any ϵ > 0, it is easy to show the following:

∆(ϵ) > ∆0(ϵ),

where ∆0 is defined in (13). This implies that

P
(
r̄ (k )s (b) ≤ r (k )(b) − ∆(ϵ)

)
≤ P

(
r̄ (k )s (b) ≤ r (k)(b) − ∆0(ϵ)

)
.

Thus, we get the inequality in (22). □

In the next subsection, we examine a specific information structure of the BwI problem.

5.2 Information Structure
The decision (k,b) ∈ K × B yields the following stochastic observation:

Yn(k,b) =
(
I
{X (k )

n ≤b }, X
(k )
n I{X (k )

n ≤b }, R
(k )
n I{X (k )

n ≤b }

)
.

For any pair of interrupt times bl < bl ′ , we have the following relation between the observation

vectors:

Yn(k,bl ) ∈ σ
(
Yn(k,bl ′)

)
,
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where σ (Z ) denotes the sigma field of a random variable Z . Accordingly, the completion time and

reward for (k,bl ) is obtained from the observation for (k,bl ′) as follows:

X (k )
n ∧ bl =

(
X (k )
n ∧ bl ′

)
∧ bl ,

R(k )
n I{X (k )

n ≤bl }
=
(
R(k )
n I{X (k )

n ≤bl ′ }

)
I
{X (k )

n ≤bl }
.

(23)

This immediately implies that any observation vector for the decision (k,bl ′) can be directly used for
(k,bl ) via the transformation in (23). Note that the feedback for the decision (k,bl ) provides some

information for (k,bl ′) for l < l ′, but it is not very useful as the right tail is censored. Therefore,

the information structure is asymmetric.

As a consequence of the aforementioned structure, for fixed k , each decision (k,bl ) has available
samples from (k,bl ′) for all l

′ > l . In order to quantify the improvement in the convergence rate due

to the information structure, for l ∈ {1, 2, . . . ,L}, let T (k )
l (n) =

∑n
i=1
I
{Ii=k,B

(k )
i =bl }

be the number of

(k,bl ) decisions among the first n decisions. Then, the effective sample size of the decision (k,bl ) is
as follows:

T̄ (k )
l (n) =

∑
j≥l

T (k )
j (n). (24)

Note that the effective sample size T̄ (k)
l (n) is significantly larger thanT (k )

l (n), which implies a much

faster convergence in estimation. The effect of this structure in the regret performance will be

examined in Section 6.

In the following section, we propose a UCB-type algorithm that exploits the information structure.

5.3 UCB-BwI Algorithm
In this subsection, we will introduce a low-complexity and order-optimal algorithm called the

UCB-BwI Algorithm and denoted as π BwI
.

Design strategy: If all arm statistics, thus {
(
r (k )(b)

)
, (k,b) ∈ K × B} are known, then one can

express the optimal static policy π ∗
n as the solution of the following optimization problem:

(In ,B
(In )
n ) = arg max

(k,b)∈K×B

r (k )(b), ∀k ∈ K, (25)

In the absence of the knowledge of r (k )(b), the controller has to learn the arm statistics while

maximizing the cumulative reward. The basic idea behind UCB-BwI is to use upper confidence

bounds proposed in Corollary 5.5 as a surrogate for r (k )(b).
Observation sequence: Under the UCB-BwI Algorithm, the sequence of observations for (k,bl )

is the following:

{(X (k )
i ∧ bl ,R

(k )
i I{X (k )

i ≤bl }
) : 1 ≤ i ≤ n,π BwI

i = (k,bl ′),∀l ≤ l ′}. (26)

Each time a decision π BwI
i = (k,bl ′) is made for l ′ ≥ l , a sample is obtained for (k,bl ) via the

transformation in (23). Recall that the number of samples for (k,bl ) after n-th decision is T̄ (k )
l (n),

the effective size defined in (24).

Definition 5.6 (UCB-BwIAlgorithm). For (k,bl ), the median-of-means estimator for the observation

sequence (26) of size s = T̄ (k )
l (n), denoted by r̄ (k )n,s (bl ), is computed by using (17). Let

βu,γ = (12u)
1

1+γ
32

γ
1+γ , (27)

where u is the centralized moment of order (1 + γ ) defined in (19), and

ϵn,s = βu,γ
[
log

(√
2e

1

16 (n + 1)2
)

s

] γ
1+γ
,∀n, s ∈ N. (28)
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Then, the arm and interrupt time pair is chosen under UCB-BwI as follows:(
In+1,B

(In+1)

n+1

)
∈ arg max

(k×bl )∈K×B

{
r̄ (k )
n,T̄ (k )

l (n)
(bl ) + ∆

(
ϵn,T̄ (k )

l (n)

)}
,

where ∆ is defined in (21). At each epoch, the above optimization can be performed in two steps:

first, the optimal interrupt time B(k )
n+1

is determined for each arm k , and then the optimal (k,B(k )
n+1

)

is chosen. The UCB-BwI Algorithm is summarized in Algorithm 1.

Remark 3. We know that the optimal static policy under known statistics selects the arm with

the maximum reward rate. A natural idea under unknown statistics is to use an empirical estimator

for the reward rate and add an upper-confidence correction to encourage exploration. However,

due to the fact that the distributions can be potentially heavy-tailed, the following modifications

must be made compared to traditional UCB-type algorithms:

(1) r̄ (k )(b) is a median-of-means estimator instead of the usual sample mean estimator. As it

was noted in Section 5.1, the empirical reward rate will not have exponential concentration

around the reward rate, whereas the median-of-means estimator does.

(2) The UCB correction term typically involves T (k )
l (n), the number of (k,bl ) decisions in the

first n epochs. As mentioned in Section 5.2, each decision yields information about others

as a result of the information structure. Therefore, the UCB correction term involves the

effective sample size, T̄ (k )
l (n), of the relevant decisions. Additionally, the heavy-tail parameter

γ appears in the exponent of the UCB correction term. Note that if γ = 1, i.e., Var (X (k )
1

) and

Var (R(k )
1
) exist, then we obtain the same convergence rate and the correction term as the

sub-Gaussian case up to a coefficient, which implies the effectiveness of the estimator. On

the other hand, the coefficients βu,γ can be very large, which makes the UCB conservative in

practice.

In order to investigate the value of exploiting the information structure in the numerical examples,

we also propose the following UCB-based naive algorithm which does not exploit the information

structure.

Definition 5.7 (UCB-N Algorithm). Let r̄n,T (k )
l (n)(b) be the median-of-means estimator based on

observations from only (k,b) decisions up to n-th epoch. The UCB-N Algorithm, which is denoted

as π N
, makes a decision as follows:

(In+1,B
(In+1)

n+1
) ∈ arg max

(k,bl )∈K×B

{
r̄ (k )
n,T (k )

l (n)
(bl ) + ∆

(
ϵ (k )n,Tl (n)

)}
,

where ϵn,s is defined in (28).

6 PERFORMANCE ANALYSIS
In this section, we analyze the performance of the UCB-BwI Algorithm by providing a distribution-

dependent regret upper bound, and then showing that this performance is order-optimal in K , L
and τ by a regret lower bound.

6.1 Regret Upper Bound for UCB-BwI
The main result of this section is the following regret upper bound for the UCB-BwI Algorithm.

Theorem 6.1 (Regret Upper Bound for UCB-BwI). Under Assumption 2, let (Rmax , µmin , u) be
given as in (19) and (20). Then, the regret under π BwI is upper bounded for all τ > 0 as follows:

Reдπ BwI (τ ) ≤
∑

k :d (k )>0

[
C(k)

log

( τ

µmin

)
+O

( L(
d (k )min

) 1

γ

)]
+O(KL),
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Algorithm 1: UCB-BwI Algorithm

input :B: Set of interrupt times, τ : Time

1 Initialization:
2 Sπ

0
= 0;

3 n = 0;

4 Rewn = 0;

5 for k = 1, 2, . . . ,K do
6 for l = 1, 2, . . . ,L do
7 n = n + 1;

8 In = k , B
(k )
n = bl ;

9 Sπn = Sπn−1
+min{X (k)

n ,bl };

10 if X (In )
n ≤ B(In )

n and Sπn ≤ τ then
11 Rewn = Rewn−1 + R

(k )
n · I

{X (k )
n ≤bl }

;

12 while Sπn ≤ τ do
13 n = n + 1;

14 for k = 1, 2, . . . ,K do
15 Compute B(k)

n ; // Interrupt time for arm k .

16 Start the process In ; // Arm selection at step n. Sπn = Sπn−1
+min{X (In )

n ,B
(In )
n };

17 if X (In )
n ≤ B(In )

n and Sπn ≤ τ then
18 Rewn = Rewn−1 + R

(k )
n · I

{X (k )
n ≤bl }

;

where

C(k ) = 128(24u)
1

γ

( 1 +
Rmax
µmin

µmin

) γ +1

γ
[ ( 1

d (k )min

) 1

γ +
( 1

d (k )
) 1

γ
]
, (29)

for

d (k )min = min

l,l ∗(k )

{
r (k )(b∗k ) − r (k )(bl )

}
,

d (k ) = max

(k ′,b)
r (k

′)(b) − r (k )(b∗k ).
(30)

According to Theorem 6.1, the regret grows at a rate O(K log(τ ) + KL). Similar to the traditional

bandit settings, an increasing number of potential actions obliges the controller to make more

suboptimal decisions in the learning process, leading to a higher regret. Therefore, a larger set

of interrupt times, B, incurs a higher regret as expected. However, as a result of the specific

information structure, the coefficient of the time-dependent term in the regret,C(k)
, is independent

of L = |B|.

Proof. We will provide a proof sketch for Theorem 6.1 here. The complete proof can be found

in Appendix B. A similar proof strategy is followed in [35] in the context of budgeted bandits.

First, note that the decision times are random and depend on the sample path as well as the

policy. Moreover, the total number of decisions, Nπ (τ ), is a random variable that depends on the

realizations. In the following, we tackle these difficulties in two steps: first we express the regret of
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a policy in terms of the number of suboptimal decisions. In the second step, we analyze the number

of suboptimal decisions under π BwI
to obtain a regret upper bound.

Step 1. Regret in terms of the number of suboptimal decisions:
The objective in this step is to express the regret in terms of the number of epochs when a

suboptimal decision (k,b) is made.

Let r ∗ = maxk,b r (k )(b). The overshoot function, which upper bounds the expected reward of

the last initiated and uncompleted task, is defined as follows:

Φπ (τ ) = r
∗
∑
k,l

P
(
πνπ (τ ) = (k,bl )

)
E[X (k)

νπ (τ )
∧ bl ], (31)

where νπ (τ ) = Nπ (τ ) + 1 is the first passage time under π . Then, for any τ > 0, the regret under π
can be upper bounded as:

Reдπ (τ ) ≤ E
[ Nπ (τ )∑

n=1

∑
k,l

I{πn=(k,bl )}

(
r ∗ − r (k )(bl )

)
µmax

]
+ 2 max

k
E[R(k )

1
] + Φπ (τ ). (32)

The RHS of (32) can be interpreted as follows: for each decision (k,bl ), the difference r
∗ − r (k )(bl )

corresponds to the regret rate (per unit time), and multiplication of the regret rate by µmax , an

upper bound for the average completion time, yields an upper bound for the regret of an epoch.

Let n̄ > 0 be a given integer. Under an admissible policy π , the regret upper bound in (32) can be

decomposed into two parts:

Reдπ (τ ) ≤
∑
k,l

E[T (k )
l (n̄)]

(
r ∗ − r (k )(bl )

)
µmax

+ KL · r ∗µmax

∑
n>n̄

P(Nπ (τ ) > n) + Φπ (τ ) + 2 max

k
E[R(k)

1
]. (33)

Intuitively, the upper bound in (33) corresponds to the regret when the process continues for n̄
pulls, and then maximal possible regret is incurred for every pull until the time τ expires. Therefore,

the natural choice for n̄ is a high-probability upper bound for Nπ (τ ). For any δ ∈ (0, µmin), let

n̄ = n̄δ,τ = τ/(µmin − δ ). Then, the following result can be obtained:∑
n>n̄δ ,τ

P
(
Nπ (τ ) > n

)
= O

(
1

δ 2

)
, (34)

by using the renewal relation {Nπ (τ ) > n} ⊂ {Sπn ≤ τ } and a concentration inequality for the

controlled random walk Sπn . This implies that:

Reдπ (τ ) ≤
∑
k,l

E[T (k)
l (n̄δ,τ )]

(
r ∗ − r (k )(bl )

)
µmax + Φπ (τ ) +O

(KL
δ 2

)
. (35)

The results we obtained so far dealt with the continuous nature of the problem, and provided

a connection between the continuous-time process and the number of pulls

{
T (k )
l (n)

}
under an

admissible policy π . In the last step, we investigate the performance of π BwI
in terms of

{
T (k )
l (n)

}
to prove the upper bound.

Step 2: Number of suboptimal decisions under π BwI:
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In this part, we investigate the performance of the UCB-BwI Algorithm. Let d (k ) and d (k )min be as

defined in (30). Under π = π BwI
, for all k , we have the following results for the number of epochs a

suboptimal interrupt time is chosen:

E[T (k )
l (n̄)] ≤

(
C(k)
l −C(k)

l+1

)+
log(n̄) +O(1), ∀l > l∗(k),

E[T (k )
l (n̄)] = O

( (
d (k )min

)− 1+γ
γ
)
, ∀l < l∗(k).

where x+ = max{x , 0} for any x ∈ R, and

C(k )
l = 128(24u)

1

γ

(
1 + r (k )(bl )

d (k )l E[X
(k )
1

∧ bl ]

) γ +1

γ
.

From this, the following upper bound for the expected number of suboptimal time decisions can be

established: ∑
l,l ∗(k )

E[T (k )
l (n̄)] ≤ max

l>l ∗(k )
C(k )
l log(n̄) +O

( L

(d (k )min)
γ

)
.

Consequently, the coefficient of the logarithmic term is independent of the size of the interrupt set,

which implies low regret even for a large interrupt set. Also, this result implies that the overshoot

under π BwI
is O(1).

For each suboptimal arm k , we can prove the following upper bound for the expected number of

epochs a suboptimal arm is chosen together with its optimal interrupt time:

E[T (k)
l ∗(k )(n̄)] ≤ 128(24u)

1

γ

( 1 +
Rmax
µmin

d (k )µmin

) γ +1

γ
log(n̄) +O(1). (36)

The equation (36) implies that each suboptimal arm, paired with its optimal interrupt time, is chosen

for at most logarithmically many epochs under the UCB-BwI Algorithm.

Substituting the upper bounds for E[T (k )
l (n̄)] to (35), and minimizing the resulting upper bound

over δ ∈ (0, µmin) yields the the regret upper bound in Theorem 6.1. □

6.2 Regret Lower Bound for Admissible Policies
In this section, we will analyze the regret lower bounds for the class of admissible policies that

include UCB-BwI. As it will be seen, the regret under any such policy grows at a rate Ω(K logτ ),
which implies that UCB-BwI is order optimal.

Consider a K-armed bandit with B = {b1,b2, . . . ,bL}. For each arm k ∈ K , the arm process

is distributed according to a parametric distribution (X (k )
n ,R

(k)
n ) ∼ Pθ (k ) where θ (k ) ∈ Θk for a

parameter set Θk , and let Θ = Θ1 × Θ2 × . . . × ΘK be the parameter set for the problem. Note that

the arm distributions do not need to belong to the same family of distributions in this case. As in

(2), an observation from arm k with interrupt time bl is denoted as a vector:

Yn(k,b) =
(
I
{X (k )

n ≤b }, X
(k )
n I{X (k )

n ≤b }, R
(k )
n I{X (k )

n ≤b }

)
.

Given θ = (θ (1),θ (2), . . . ,θ (K )), the distribution of Yn(k,b
∗
k ) is denoted as P (k)

θ . For each k ∈ K , we

define the following subset of Θ:

Θ∗
k = {(θ (1), . . . ,θ (K )) ∈ Θ : r (k )(b∗k ) ≥ r (k

′)(b∗k ′), ∀k ′ ∈ K}.

Note that Θ∗
k is the set of parameters for which arm k is optimal. After these definitions, we make

the following assumptions which are analogous to those in [25].

Assumption 3. For a given B and Θ, we assume the following:
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• Interior of any Θ∗
k is non-empty, i.e., int(Θ∗

k ) , ∅ for any k .

• The true parameter θ = (θ (1),θ (2), . . . ,θ (K )) lies in the interior of a partition:

θ ∈ int(Θ∗
1
),

where we assumed that Arm 1 is optimal without loss of generality.

If this technical assumption is satisfied by the problem instance, the following regret lower bound

holds for all admissible policies.

Theorem 6.2 (Regret Lower Bound for Admissible Policies). Under Assumption 3, consider
an admissible policy π that satisfies the uniform optimality condition:

E[T (k )
l (n)] = o(nα ), ∀α > 0,n → ∞, ∀k . (37)

Let

Dk (θ | |θ
′) = E[log

dP (k )
θ

dP (k )
θ ′

(Y1(k,b
∗
k ))],

be the Kullback-Leibler (KL) divergence between P (k )
θ and P (k )

θ ′ . Then, the following lower bound holds
for any δ > 0:

lim inf

τ→∞

Reдπ (τ )

log

( τ
µmax+δ

) ≥ µmin

∑
k,1

d (k )

inf

θ ′∈Θ∗
k

Dk (θ | |θ ′)
−O

(
1

δ 1+γ

)
, (38)

where d (k ) = max

(k,b)
r (k )(b) − r (k )(b∗k ), µmin = min

(k,b)
E[X ∧ b] and µmax = max

k
E[X (k )

1
].

Theorem 6.2 implies that the regret under a "good" policy that satisfies (37) is Ω(K log(τ )) for a
K-armed bandit problem with a set of L interrupt times. Recall that the regret under UCB-BwI is

O(K log(τ )) by Theorem 6.1. Hence, these two results imply that UCB-BwI is order-optimal in K , L
and τ .

Proof. The proof is given in Appendix C. □

6.3 Discussion
It is interesting to note that the regret under UCB-BwI grows over time at a rate O(K logτ ), which
is independent of L. The main reason for this is the information structure of the problem. If instead

there were no such correlation between the interrupt time decisions, it is straightforward to obtain

a regret lower bound of Ω(KL logτ ) by using a Lai-Robbins style approach. As such, a scaling gain

of O(1/L) is achieved from the use of the information structure by our design. This result is similar

in spirit to earlier results in [13] or [12, 17] in that they also exploit different information structures

to achieve scaling gains. However, our setting has a different particular information structure that

stems from the dynamics of the renewal processes, which is optimally exploited in terms of τ , K
and L by UCB-BwI.

7 NUMERICAL RESULTS
To corroborate the theoretical results we obtained in Section 6, we investigate the regret performance

of UCB-BwI in various settings. In order to investigate the effect of exploiting the information

structure, we also evaluate the performance of UCB-N.
(1) Adaptive Task Scheduling with Interruptions:
In the first example, we consider the adaptive task scheduling problem during the busy period

of a single server. The completion time of n-th task is X (1)
n , learned by the controller via feedback
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only after the completion. At the beginning of the task, the controller determines an interrupt time

B(1)
n . If the task is not completed within B(1)

n time units after the initiation, it is discarded and the

succeeding task is initiated. The goal is to maximize the number of completed tasks within [0,τ ] by

learning the optimal interrupt time, thus R(1)
n = 1 for all n.

In communication systems with ARQ control, the task completion times have a heavy-tailed

distribution [21, 32]. In order to model such systems, we consider a scenario where the task

completion time has a Pareto(1, 1.4) distribution. We consider the following set of interrupt times:

BL = {3, 6, 9, . . . , 3(L − 1),∞}, L > 1, (39)

In Figure 3, the regret performances of UCB-BwI and UCB-N are presented for L ∈ {4, 12}.
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Fig. 3. The regret performances of πBwI and πN for the adaptive task scheduling problem. An expanding set
of interrupt times has a drastic effect on the regret under πN while the increase in the regret under πBwI is
not significant.

From Figure 3, we observe that the regret under UCB-N grows significantly as the size of the

information set increases from 4 to 12. On the other hand, the increase in the regret under UCB-BwI
is considerably small. This verifies the result of Theorem 6.1: the exploitation of the regret yields

significant scaling gains over time as the interrupt set expands.

(2) Adaptive Task Scheduling with Multiple Types:
In the second example, we investigate the performance of UCB-BwI in a bandit setting with

three arms of distinct statistical characteristics. This example models the adaptive task scheduling

problem with three task types. For a given time horizon τ , the objective of the scheduler is to
maximize the number of completed tasks in [0,τ ] by learning the optimal arm and interrupt time

pair. In order to exhibit the effectiveness of the non-parametric approach, we consider a highly

diverse set of completion time distributions:

• Arm 1: X (1)
n ∼ Pareto(1, 1.4).

• Arm 2: X (3)
n ∼ Exp(1/3).

• Arm 3: X (2)
n ∼ Uni f orm(0, 6).

The reward rates for these distributions are plotted in Figure 4. From Figure 4, we observe that

both Arm 2 and Arm 3 yield higher reward rates than Arm 1 without interruption. However, Arm

1 yields the optimal reward rate if it is paired with the optimal interruption time. Therefore, an
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Fig. 4. The renewal reward rates for Pareto(1, 1.4), Exp(1/3) andUni f orm(0, 6) completion time distributions.
Without interruption, Arm 2 and Arm 3 yield higher reward rates than Arm 1. However, Arm 1 achieves the
optimal reward rate with optimal interruption.

algorithm must learn not only the first-order statistics but the complete distribution of an arm to

achieve sublinear regret.

The regret performance of the UCB-BwI Algorithm is presented in Figure 5 for the set of interrupt

times BL defined in (39). In this example, large interrupt sets are considered to include potentially

large optimal interrupt times due to the unknown and diverse arm statistics. From Figure 5, we
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Fig. 5. The regret performance of UCB-BwI for a three-armed bandit with Pareto(1, 1.4), Exp(1/3) and
Uni f orm(0, 6) completion time distributions.

observe that although the set of interrupt times grows significantly from 4 to 64 possible interrupt

times, this has little effect on the regret performance of the UCB-BwI. This suggests that BwI provides
an effective solution to the statistically diverse problem instances where the set of interrupt times

is large.
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In Figure 6, for each (k,b) ∈ K×B16, we present the fraction of (k,b) decisions for a time horizon

τ = 4 × 10
4
under the UCB-BwI Algorithm. From Figure 6, we observe that bL is chosen more fre-
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Fig. 6. The fraction of (k,b) decisions under the UCB-BwI Algorithm. UCB-BwI makes a balanced exploration
of the most informative interrupt time bL yielding low regret.

quently than other suboptimal interrupt times under UCB-BwI. Note that bL is the most informative

decision among all interrupt times since it provides a complete feedback for each decision as a

result of the information structure. Consequently, UCB-BwImakes a balanced exploration of bL , and
the optimal interrupt time for each arm is learned with low regret even for a large set of interrupt

times.

8 CONCLUSIONS
In this work, we introduced a novel continuous-timemulti-armed bandit framework where each arm

corresponds to a distinct renewal process. In this setting, each arm pull initiates a task, and a reward

is obtained after the completion of the task. We showed that enabling the controller to interrupt

a task yields significant gains in the expected cumulative reward within a given time interval.

We characterized the optimal policy given arm statistics, and observed that all heavy-tailed and

some light-tailed completion time distributions require such an interrupt mechanism for optimal

performance. For the learning problem, the interrupt mechanism obliges the learner to learn the

whole distribution rather than just the mean, and this is done via censored observations due to task

interruption. For this purpose, we proposed a non-parametric algorithm based on median-of-means

estimator called the UCB-BwI Algorithm. By construction, UCB-BwI exploits the specific information

structure of the problem. We proved that the regret under UCB-BwI isO(K logτ +KL) for a set of L
interrupt times. By a regret lower bound, we also proved that UCB-BwI is order optimal in τ ,K and

L.
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A PROOF OF PROPOSITION 4.6
Proof. The proof consists of two stages: for a given τ > 0, we first find a lower bound for the

expected reward under the optimal static policy π ∗
. Then, we find an upper bound for the maximum

expected reward among all admissible policies. The difference between these quantities gives an

upper bound for the optimality gap.

(1) Lower bound for E[Rewπ ∗ (τ )]

For any k , let the static policy π (k )
be defined as π (k )

n = (k,b∗k ) for alln whereb∗k = arg max

b ∈B
r (k )(b)

is the optimal interrupt time for arm k . Recall that the first hitting time νπ (k ) (τ ) = Nπ (k ) (τ ) + 1 is a

stopping time. Thus, by Wald’s equation, we have:

E[Rewπ (k ) (τ )] = E[νπ (k ) (τ )]E[R
(k)
1
I
{X (k )

1
≤b∗

k }
] − E[R(k )

ν (k )(τ )
I
{X (k )

ν (k )(τ )
≤b∗

k }
]. (40)

By the key renewal theorem, we have E[νπ (k ) (τ )] ≥ τ/E[X (k )
1

∧ b∗k ] [2]. Thus, we can lower bound

the expected reward under π (k )
as follows:

E[Rewπ (k ) (τ )] ≥ τr (k )(b∗k ) − E[R
(k )
1
], (41)

since E[R(k )
ν (k )(τ )

I
{X (k )

ν (k )(τ )
≤b∗

k }
] ≥ E[R(k )

ν (k )(τ )
] holds, and R(k )

1
and ν (k )(τ ) are independent. Therefore,

we have the following lower bound for the expected reward under π ∗
:

E[Rewπ ∗ (τ )] ≥ τ max

k,b
r (k)(b) − max

k
E[R(k )

1
], (42)

for all τ > 0.

(2) Upper bound for E[Rewπ opt (τ )]
Consider an admissible policy π . The total time spent until the completion of the n-th task, Sπn ,

defined in (3) is a controlled random walk with positive increments, therefore we have I{Sπn ≤τ } ≤

I{Sπn−1
≤τ } with probability 1. Thus, we can upper bound the cumulative reward under π as follows:

E[Rewπ (τ )] = E
[ ∞∑
n=1

∑
(k,b)

I{Sπn ≤τ }I{πn=(k,b)}R
(k )
n I{X (k )

n ≤b }

]
,

≤ E
[ ∞∑
n=1

∑
k,b

I{Sπn−1
≤τ }I{πn=(k,b)}E[R

(k )
n I{X (k )

n ≤b }]

]
,

≤ E
[ Nπ (τ )∑

n=1

∑
k,b

I{πn=(k,b)}E[R
(k )
n I{X (k )

n ≤b }]

]
+max

k
E[R(k )

1
],

where the second line holds as a result of the independence of R(k )
n I{X (k )

n ≤b } and I{S
π
n−1

≤τ }I{πn=(k,b)}
under an admissible policy. Note that the upper bound above corresponds to the expected reward

under π including the reward of the incomplete final task. Since E[R(k )
n I{X (k )

n ≤b }] = r
(k )(b)E[X (k )

n ∧b],

we have the following upper bound:

E[Rewπ (τ )] ≤ max

k,b
r (k )(b) · E

[ Nπ (τ )∑
n=1

∑
k,b

I{πn=(k,b)}
(
X (k )
n ∧ b

) ]
+max

k
E[R(k)

1
], (43)
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For the first term on the RHS of (43), we have the following inequality:

Nπ (τ )∑
n=1

∑
k,b

I{πn=(k,b)}
(
X (k )
n ∧ b

)
≤ τ , (44)

which holds for all sample paths since it is the total time passed before the last activated (but

uncompleted) task. Hence, from (43) and (44), we have the following upper bound that holds for

any admissible policy π :

E[Rewπ (τ )] ≤ τ max

k,b
r (k )(b) +max

k
E[R(k )

1
], (45)

for all τ > 0. Since the above upper bound holds for any π , it also yields an upper bound for

E[Rewπ opt (τ )].
From (41) and (45), we have the following upper bound for the optimality gap:

E[Rewπ opt (τ )] − E[Rewπ (τ )] ≤ 2 · max

k
E[R(k )

1
], (46)

for any τ > 0.

The following holds for the asymptotic performance of π ∗
:

1 ≤ lim

τ→∞

E[Rewπ opt (τ )]

E[Rewπ ∗ (τ )]

≤ lim

τ→∞

τ max

k,b
r (k )(b) +maxk E[R

(k )
1
]

τ max

k,b
r (k )(b) − maxk E[R

(k )
1
]
= 1, (47)

where the second line follows from (41) and (45). (47) directly implies that

lim

τ→∞

E[Rewπ opt (τ )]

E[Rewπ ∗ (τ )]
= 1,

and therefore π ∗
is asymptotically optimal as τ → ∞. □

B PROOF OF THEOREM 6.1
The proof of Theorem 6.1 builds on three lemmas that we prove in this section. First, we establish

the connection between the regret and the number of suboptimal decisions by the following lemma.

Lemma B.1. For µmax = maxk E[X
(k )
1

] and r ∗ = maxk,b r (k )(b), let

Φπ (τ ) = r
∗
∑
k,l

P
(
πνπ (τ ) = (k,bl )

)
E[X (k )

νπ (τ )
∧ bl ].

Then, the regret under any admissible policy π can be upper bounded as follows:

Reдπ (τ ) ≤ E
[ Nπ (τ )∑

n=1

∑
k,l

I{πn=(k,bl )}

(
r ∗ − r (k )(bl )

)
µmax

]
+ 2 max

k
E[R(k )

1
] + Φπ (τ ), (48)

for all τ > 0.

Proof. In order to prove the lemma, we first find an upper bound for the cumulative reward

under the optimal policy E[Rewπ opt (τ )], and then find a lower bound for E[Rewπ (τ )], both in terms

of the counting process Nπ (τ ).

(1) Upper Bound for E[Rewπ opt (τ )]
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By (45), we have the following inequality:

E[Rewπ opt (τ )] ≤ r ∗τ +max

k
E[R(k )

1
]. (49)

Under policy π , the following holds for any τ by the definition of Nπ (τ ):

τ ≤

Nπ (τ )+1∑
n=1

∑
k,l

I
{In=k,B

(k )
n =l }

(X (k )
n ∧ bl ). (50)

Hence, by (49) and (50), we obtain the following upper bound for the optimal reward:

E[Rewπ opt (τ )] ≤ E
[ Nπ (τ )∑

n=1

∑
k,l

I{πn=(k,bl )}r
∗E[X (k )

n ∧ bl ]
]
+max

k
E[R(k )

1
] + Φπ (τ ), (51)

(2) Lower Bound for E[Rewπ (τ )]
In order to find a lower bound for E[Rewπ (τ )], we follow a similar proof technique with the

proof of Proposition 4.6.

E[Rewπ (τ )] = E
[ ∞∑
n=1

∑
(k,b)

I{Sπn ≤τ }I{πn=(k,b)}R
(k )
n I{X (k )

n ≤b }

]
,

≥ E
[ ∞∑
n=1

∑
(k,b)

I{Sπn−1
≤τ }I{πn=(k,b)}E[R

(k)
n I{X (k )

n ≤b }]

]
,

≥ E
[ Nπ (τ )∑

n=1

∑
(k,b)

I{πn=(k,b)}r
(k )(b)E[X (k )

n ∧ b]
]
− max

k
E[R(k )

1
], (52)

The upper bound is obtained by taking the difference between (51) and (52).

□

The number of arm pulls, Nπ (τ ), in Lemma B.1 is a random variable that depends on the

observations. Note that the regret is an increasing function of Nπ (τ ), therefore we can simplify the

analysis by using a high-probability upper bound for Nπ (τ ).

Lemma B.2. For δ ∈ (0, µmin), let

n̄δ,τ =
τ

µmin − δ
,

and

χδ (τ ) =
exp(−2n̄δ,τδ

2/b2

1
)

1 − exp(2δ 2/b2

1
)
.

Then,

Reдπ (τ ) ≤
∑

(k,l ):r (k )(bl )<r ∗
E
[
T (k)
l (n̄δ,τ )

] (
r ∗ − r (k )(bl )

)
µmax + Φπ (τ ) + 2 max

k
E[R(k )

1
]

+ K · L · r ∗ · χδ (τ ) · µmax . (53)
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Proof. By using the fact that I{πn=(k,b),Sπn ≤τ } ≤ I{πn=(k,b)} , we can decompose the regret upper

bound in (52) as follows:

Reдπ (τ ) ≤
∑
k,l

E[T (k )
l (n̄)]

(
r ∗ − r (k )(bl )

)
µmax + Φπ (τ ) + 2 max

k
E[R(k )

1
]

+ K · L · r ∗ · µmax ·
∑
n>n̄

P(Nπ (τ ) > n). (54)

for any n̄ ∈ N. By using the renewal relation

{Nπ (τ ) > n} ⊂ {Sπn ≤ τ },

and since b1 ≤ bl for all l , we have the following:

{Nπ (τ ) > n} ⊂ {

n∑
j=1

∑
k,l

I
{Ij=k,B

(k )
j =bl }

(X (k)
j ∧ bl ) ≤ τ }

⊂ {

n∑
j=1

∑
k

I{Ij=k }(X
(k )
j ∧ b1) ≤ τ }. (55)

For δ ∈ (0, µmin), let n̄ = n̄δ,τ = τ/(µmin − δ ) in (54). Then, since all random variables in (55) is

bounded in [0,b1], we have the following inequality:

P
(
Nπ (τ ) > n

)
≤ P

( n∑
j=1

∑
k

I{Ij=k }(X
(k )
j ∧ b1) ≤ τ

)
,

≤ exp

(
−

2nδ 2

b2

1

)
, ∀n > n̄δ,τ ,

by Azuma-Hoeffding inequality. From this, it immediately follows that∑
n>n̄δ ,τ

P
(
Nπ (τ ) > n

)
≤ χδ (τ ) = O

(
1/δ 2

)
,

which concludes the proof. □

The results so far made a plausible connection between the regret and the number of suboptimal

decisionsT (k)
l (n̄δ,τ ). In the final step, we find upper bounds for the number of suboptimal decisions

under π BwI
.

Lemma B.3. Let d (k )l = r
(k )(b∗k ) − r (k )(bl ), d (k ) = r ∗ − r (k )(b∗k ), and recall that

max

{
E
[
|X (k )

1
− E[X (k )

1
]|1+γ

]
,E

[
|R(k )

1
− E[R(k)

1
]|1+γ

]}
≤ u .

Then we have the following results.

(a) For l , l∗(k), let

C(k )
l = 128(24u)

1

γ

(
1 + r (k )(bl )

d (k )l E[X
(k)
1

∧ bl ]

) γ +1

γ
,
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with C(k )
L+1
= 0. Then, ∑

l>l ∗(k )

E[T (k )
l (n̄)] ≤ max

l>l ∗(k )
C(k)
l log

(
1.25n̄

)
+ L

π 2

3

, (56)∑
l<l ∗(k )

E[T (k )
l (n̄)] = O

( L

(d (k )l )1+1/γ

)
. (57)

for all n̄ > 0.

(b) For k such that r (k)(b∗k ) < r ∗, let

C̃(k ) = 128(24u)
1

γ

(
1 + r (k )(b∗k )

d (k)E[X (k )
1

∧ b∗k ]

) γ +1

γ
.

Then,

E[T (k)
l ∗(k )(n̄)] ≤ C̃(k )

log

(
1.25n̄

)
+
π 2

3

. (58)

for any n̄.

Proof. (a) Let ∆(k)
l,n = ∆

(
βu,γ

[
log(

√
2e

1

16 (n+1)2)

T̄ (k )
l (n)

] γ
1+γ

)
from Definition 5.6, and define the following

events:

E(k )
1,n =

{
r̄ (k )
n,T̄ (k )

l∗(k )(n)
+ ∆(k )

l ∗(k ),n ≤ r (k )(b∗k )
}
,

E(k )
2,n =

⋃
l>l ∗(k)

{
r̄ (k )
n,T̄ (k )

l (n)
> ∆(k )

l,n + r
(k )(bl )

}
,

E(k )
3,n =

⋃
l>l ∗(k)

{
T̄ (k )
l (n) ≤

C(k )
l

2

log(
√

2e
1

16 n̄2)

}
.

Then, it can be shown by contradiction (similar to Theorem 2.1 in [7]) that the following relation is

true: {
In+1 = k,B

(k )
n+1
> l∗(k)

}
⊂ E(k )

1,n ∪ E(k )
2,n ∪ E(k )

3,n . (59)

Since T̄ (k )
l (n̄) =

∑
j≥l T

(k )
j (n̄) for all l due to the information structure, we can express E(k)

3,n in a more

explicit form:

E(k )
3,n ⊂

⋃
l>l ∗(k )

{
T (k )
l (n) ≤

(
C(k )
l −C(k )

l+1

)+
log

(
1.25n̄

)}
,

where x+ = max{x , 0}. This directly demonstrates the effect of the information structure: the

exploration of the suboptimal interrupt time decisions is greatly reduced by the mutual feedback

coming from the higher interrupt time decisions.

Thus, we have the following:∑
l>l ∗(k )

E[T (k )
l (n̄)] ≤

∑
l>l ∗(k )

(
C(k )
l −C(k )

l+1

)+
log(1.25n̄) +

∞∑
n=1

(
P(E(k )

1,n) + P(E
(k )
2,n)

)
. (60)

Note that

∑
l>l ∗(k)(C

(k )
l −C(k )

l+1
)+ = maxl>l ∗(k)C

(k )
l with the definitionC(k )

L+1
= 0, and the RHS of (60)

is upper bounded by Lπ 2/3 by the concentration inequality in Lemma 5.5. This concludes the proof

of (56).
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The equation (57) is proved by using the same argument for l < l∗(k). Note that every sample

from the optimal interrupt time is useful for l < l∗(k) due to the information structure. This implies

that the effective sample size T̄ (k )
l (n) grows linearly over time for all l < l∗(k), i.e., T̄ (k )

l (n) = Θ(n),

while only O(log n̄) exploration is necessary. Hence, E[T (k)
l (n̄)] = O(1) for all l < l∗(k).

(b) This part is proved in an identical way as Part (a).

□

The function Φπ BwI (τ ) is O(1) for all light-tailed completion time distributions as the mean of

the stopping summand E[X (k )
νπ (τ )

] is bounded if the variance exists [2]. When the variance of the

completion time does not exist, i.e., the completion time distribution is heavy-tailed, not interrupting

the task is suboptimal by Corollary 4.4. Therefore, the probability of not interrupting the final task

vanishes as τ → ∞, which implies that the overshoot function is bounded.

So far, we established a connection between the regret and the number of suboptimal decisions

under a policy, and then provided upper bounds for the number of suboptimal decisions under

UCB-BwI. In the final stage, we substitute the upper bounds for E[T (k )
l (n̄δ,τ )] into the regret rate

expression in (53) to establish the main result:

Reдπ BwI (τ ) ≤
K∑
k=1

[
C(k )

log

( τ

µmin − δ

)
+O

( L(
d (k )min

) 1

γ

)]
+O

(KL
δ 2

)
,

where C(k ) = maxl>l ∗(k )C
(k)
l + C̃

(k)
.

C PROOF OF THEOREM 6.2
In order to prove the theorem, we first find a regret lower bound based on the regret rate notion

that was used in the proof of Theorem 6.1.

Lemma C.1. For any k ∈ K , let

d (k) = max

(k ′,b)
r (k

′)(b) − r (k )(b∗k ),

and µmin = mink ′ E[X
(k ′)
1

∧ b1]. Then, for any admissible policy π , we have the following regret lower
bound:

Reдπ (τ ) ≥ µmin

∑
k :d (k )>0

d (k) · E[T (k )
l ∗(k )(nδ,τ )] −O(1), (61)

where nδ,τ =
τ

µmax+δ
for any δ > 0.

The intuition behind Lemma C.1 is as follows: each suboptimal arm decision under π yields a

regret rate of r ∗ − r (k)(b∗k ). Since µmin is a lower bound for the mean completion time of each epoch,

the RHS of (61) yields a lower bound for the regret.

Proof. The proof follows from the identical steps as Lemma B.1 and Lemma B.2, so we will

provide a proof sketch here.

In the first step, by bounding E[Rewπ (τ )] similar to Lemma B.1, we can show the following result

for all n:

Reд(τ ) ≥ µmin ·

(
(
∑
k

d (k)) E[Nπ (τ ) ∧ n] −
∑
k

E[n −T (k )
l ∗(k )(n)] d

(k )
)
− 2Φπ (τ ) −O(1), (62)

where Φπ (τ ) is the overshoot function defined in (31).
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In the second step, we show that the following holds under any policy that satisfies the universal

optimality condition (37):

E[Nπ (τ ) ∧ nδ,τ ] = nδ,τ −O
(

1

δ 1+γ

)
. (63)

This result is proved by using concentration inequalities similar to the proof of Lemma B.2. Substi-

tuting (63) into (62) yields the result. □

Lemma C.1 establishes a connection between the number of suboptimal decisions under a good

policy π and its regret. In the following, we provide lower bounds for the number of suboptimal

decisions based on [25].

Lemma C.2. Under Assumption 3, for any π that satisfies

E[T (k )
l ∗(k )(n)] = o(n

α ), ∀α > 0,n → ∞, (64)

for any suboptimal arm k , the following lower bound holds:

lim inf

n→∞

E[T (k )
l ∗(k )(n)]

logn
≥

∑
k :d (k )>0

d (k )

inf

θ ′∈Θ∗
k

Dk (θ | |θ ′)
, (65)

where

Dk (θ | |θ
′) = E[log

dP (k )
θ

dP (k )
θ ′

(Y1(k,b
∗
k ))],

is the Kullback-Leibler (KL) divergence between P (k)
θ and P (k )

θ ′ .

Proof. We present a Lai-Robbins style lower bound here, which makes use of the change of

measure argument as in [25]. Consider a suboptimal interrupt time indexed by k , 1 and θ ∈ Θ∗
1
.

First, by Assumption 3, we can find θ ′ ∈ Θ∗
k such that the following holds for sufficiently small

ϵ > 0:

Dk (θ | |θ
′) ≤ (1 + ϵ) inf

¯θ ∈Θ∗
k

Dk (θ | | ¯θ ). (66)

Let

D̂n =

n∑
s=1

log

dP (k )
θ

dPθ ′

(Ys (k,b
∗
k )),

be the empirical Kullback-Leibler distance. For the ϵ > 0 in (66), let deterministic sequences of real

numbers an and cn be defined as follows:

an =
1 − ϵ

Dk (θ | |θ ′)
logn,

cn = (1 + ϵ/2)an · Dk (θ | |θ
′).

Thus, we can express P(T (k )
l ∗(k)(n) ≤ an) as follows:

P(T (k)
l ∗(k )(n) < an) = P(T

(k)
l ∗(k )(n) < an , D̂n ≤ cn) + P(T

(k )
l ∗(k)(n) < an , D̂n > cn). (67)

In the following, we show that both terms on the RHS of (67) is o(1) as n → ∞.

In order to show that the first term on the RHS of (67) vanishes as n → ∞, we make use of the

change of measure along with the universal optimality of the policy. Let A = {T (k )
l ∗(k )(n) = nk , D̂nk ≤
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cn} for a given deterministic sequence (cn). Then, it is easy to show the following by using a change

of measure argument:

P(A) ≤ ecnP′(A),

where P and P′ are the joint distribution of the history under θ and θ ′
, respectively. Similarly, let

E′ be the expectation under θ ′
. Then, we have the following:

P(T (k )
l ∗(k )(n) = nk , D̂nk ≤ cn) ≤ ecnP′(T (k )

l ∗(k )(n) < an), (68)

≤ ecn
E′[n −T (k)

l ∗(k )(n)] − o(n)

n − an
,

= o(1), n → ∞,

where the first line follows from the above change of measure argument, the second line follows

from Markov inequality and the universal optimality assumption for suboptimal interrupt times,

and the last line follows from the assumption that the policy is universally optimal.

In order to prove that the second term on the RHS of (67) vanishes as n → ∞, first observe that

{T (k )
l ∗(k )(n) < an , D̂T (k )

l∗(k )(n)
> cn} ⊂ {max

s<an
D̂s > cn}. (69)

Let A′ = {T (k )
l ∗(k)(n) < an , D̂T (k )

l∗(k )(n)
> cn}. Then, for

λn = cn − an · Dk (θ | |θ
′) = ϵ · an · Dk (θ | |θ

′)/2,

the following inequalities hold:

P(A′) ≤ P
(
max

s<an
D̂s > cn

)
, (70)

≤ P
(
max

s<an
|D̂s − s · Dk (θ | |θ

′)| > λn
)

≤
an

λ2

n
Var

(
log

dP (k)
θ

dP (k)
θ ′

(Ys (k,b
∗
k ))

)
,

where the first line follows from the relation (69), and the last line follows from Kolmogorov’s max-

imal inequality for martingales [16]. Note that Var
(

log

dP (k )
θ

dP (k )
θ ′
(Ys (k,b

∗
k ))

)
≤ 4 for any distribution,

and
an
λ2

n
→ 0 as n → ∞. Thus, the second term on the RHS of (67) vanishes as n → ∞ as well, which

implies that,

P(T (k )
l ∗(k)(n) < an) = 1 − P(T (k )

l ∗(k )(n) > an) = o(1), n → ∞.

Hence, by Markov inequality, the following inequality holds:

E[T (k )
l ∗(k )(n)]

an
≥ 1 + o(1), n → ∞. (71)

By using (66), we deduce that the following holds:

lim inf

n→∞

E[T (k )
l ∗(k )(n)]

logn
≥

1 − ϵ

1 + ϵ

1

inf

¯θ ∈Θ∗
k

Dk (θ | | ¯θ )
, (72)

which completes the proof. □
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Substituting the lower bound for the number of suboptimal decisions in Lemma C.2 to the regret

lower bound in Lemma C.2 yields the result.
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