
2

Proactive Caching for Low Access-Delay Services under
Uncertain Predictions

RAN LIU, Northeastern University
EDMUND YEH, Northeastern University
ATILLA ERYILMAZ, Ohio State University

Network tra�c of delay-sensitive services has become a dominant part in the network. Proactive caching with
the aid of predictive information has been proposed as a promising method to enhance the delay performance,
which is one of the principal concerns of such services. In this paper, we analytically investigate the problem of
how to e�ciently utilize uncertain predictive information to design proactive caching strategies with provably
good access-delay characteristics. First, we derive an upper bound for the average amount of proactive service
per request that the system can support. Then we analyze the behavior of a family of threshold-based proactive
strategies with a Markov chain, which shows that the average amount of proactive service per request can
be maximized by properly selecting the threshold. Finally, we propose the UNIFORM strategy, which is
the threshold-based strategy with the optimal threshold, and show that it outperforms the commonly used
Earliest-Deadline-First (EDF) type proactive strategies in terms of delay. We perform extensive numerical
experiments to demonstrate the in�uence of thresholds on delay performance under the threshold-based
strategies, and speci�cally compare the EDF strategy and the UNIFORM strategy to verify our results.

CCS Concepts: •Mathematics of computing→ Queueing theory; Stochastic processes; Mathematical
optimization; • Networks → Packet scheduling; Network performance analysis;

Keywords: Proactive Caching; Prefetching; Queueing Theory; Markov Chain

ACM Reference Format:
Ran Liu, Edmund Yeh, and Atilla Eryilmaz. 2019. Proactive Caching for Low Access-Delay Services under
Uncertain Predictions. In Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, 1, Article 2 (March 2019). ACM, New
York, NY. 46 pages. https://doi.org/10.1145/3311073

1 INTRODUCTION
The tra�c load in the network has been growing dramatically in recent years. Among all types
of tra�c in the network, delay-sensitive tra�c, such as video, gaming, virtual reality (VR) and
augmented reality (AR), has been a dominant component. According to a report from Cisco [7],
video tra�c takes up 73% of all the IP tra�c in 2016 and is forecasted to be 82 % by 2021; Internet
gaming tra�c will grow nearly tenfold from 2016 to 2021; and the VR and AR tra�c will increase
20-fold from 2016 to 2021. The delay performance of delay-sensitive services has a great impact
on the revenue of companies like Amazon and Google[12]. Therefore, it is crucial to improve the
delay performance of delay-sensitive services in communication networks.

Authors’ addresses: Ran Liu, Electrical and Computer Engineering, Northeastern University, 460 ISEC Building, 805 Columbus
Avenue, Boston, MA, 02115, rliu1@ece.neu.edu; Edmund Yeh, Electrical and Computer Engineering, Northeastern University,
413 ISEC Building, 805 Columbus Avenue, Boston, MA, 02115, eyeh@ece.neu.edu; Atilla Eryilmaz, Electrical and Computer
Engineering, Ohio State University, 708 Dreese Laboratories, 015 Neil Avenue, Columbus, OH, 43210, eryilmaz.2@osu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the
full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2476-1249/2019/3-ART2 $15.00
https://doi.org/10.1145/3311073

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

2:2 Ran Liu, Edmund Yeh, and Atilla Eryilmaz

Distributed caching techniques are seen as an e�ective method to achieve this goal, and there has
been extensive work in this area, such as [21],[10],[13]. Caching networks can reduce a considerable
amount of tra�c by caching data objects locally, and thereby greatly reduce the time and network
resources to fetch the requested data object from the server.
Proactive caching techniques, which take advantage of predictive information of user requests

and network states, utilize the spare bandwidth resources and potentially place the data objects
in the caches before requests are generated. In [4], two experimental cases were carried out to
show the promise of proactive caching in 5G wireless networks. There has also been considerable
literature on prediction methods based on user behaviors (e.g., [16],[1]), which showed certain
predictability of user demands. However, these work did not reveal the fundamental insights on
how much improvement in system performance we can expect by utilizing prediction information.

There has been some recent analytical work on studying the fundamental bene�ts achieved from
predictive information and proactive scheduling in networks. In [19], the authors characterized
the diversity and multicasting gains of proactive caching using large-deviations theory under
the assumption of perfect predictions. In [15] and [18], the authors studied a cost optimization
problem in a multi-user single-server system with proactive scheduling. The authors proposed a
model with uncertainties in user demands and channel states, and designed a proactive scheduling
algorithm, which was proved to be asymptotically optimal in cost. In [2], the authors considered
a pro�t maximization problem for a carrier and a cost minimization problem for users with
predictive information of user demands. In [9], the authors studied the delay performance of a
backpressure algorithm in a downlink system with perfect predictions, where the requested objects
and corresponding request epochs are accurately predicted. The authors proved that the average
queueing delay asymptotically goes to 0 as the prediction window size goes to in�nity. They also
analyzed the impact of prediction window size on the delay performance. Following this work,
the authors of [22] studied the fundamental queueing performance of a single queue proactive
system. They analyzed a variety of scenarios with di�erent arrival and service processes, di�erent
prediction window sizes, and di�erent types of imperfect predictions. They showed that proactive
services exponentially reduce delay, especially in a lightly-loaded case. A related work [6] designed
and analyzed a predictive scheduling algorithm which maximizes the timely-throughput, which is
the total tra�c received before the deadlines. All the work mentioned above shows that taking
advantage of predictive information greatly improves the system performance.
Our work aims to study the characteristics of proactive caching based on uncertain predictive

information from a fundamental queueing theory perspective. Di�erent from the work of [22],
we not only look at the basic queueing dynamics of the proactive system but also further explore
how to strategically utilize uncertain predictions to enhance delay performance. In terms of delay
performance, we take the Earliest-Deadline-First (EDF) type strategy, which has been widely used
in network scheduling problems, as a competitive baseline in our analysis. There have been many
work (e.g., [3],[17] and [11]) which studied the delay performance of the EDF strategy. In the
proactive caching context, we consider the ’deadlines’ to be the predicted arrival epochs. The
authors of [9] has proved that the EDF strategy achieves optimal delay performance under perfect
predictions.

The main contributions and the structure of this paper are listed as follows:

• We propose a request model which characterizes the request uncertainty by introducing a
potential request process. We aim to maximize the average amount of proactive service for
each request. We introduce our system model and problem formulation in Section 2.

• Based on the request-model with uncertainty, we reveal the iterative nature of bandwidth
resource assignment between reactive service and proactive service, by comparing the EDF

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

Proactive Caching for Low Access-Delay Services under Uncertain Predictions 2:3

strategy with a First-Come-First-Serve reactive strategy as an example. As a result, we derive
an upper bound on how much proactive service per request that the system can support. We
discuss the comparisons and derive the bounds in Section 3.

• For the purpose of analysis, we de�ne a family of threshold-based proactive strategies, where
the threshold determines the maximal amount of proactive service to be done for each future
potential request. We construct a Markov chain to analyze the asymptotic behaviors of
the proactive system under the threshold-based strategies. We prove that the UNIFORM
strategy, which is the threshold-based strategy with the optimal threshold, is the solution to
the optimization problem we proposed. We obtain an important insight on how to design
an optimal proactive strategy: the strategy should balance proactive service among the
predictions in nearer future and farther future based on prediction uncertainties. We present
the threshold-based strategies, the corresponding Markov chain, and the corresponding
analysis in Section 4.

• We analytically compare the delay performance of the EDF type strategy with the UNIFORM
strategy. Although one would intuitively expect the EDF strategy to achieve desirable delay
performance based on its performance in previous network scenarios, we prove that the
delay performance of the EDF strategy is always worse than the UNIFORM strategy in all
the non-trivial cases. We show the analysis in Section 5.

• We conduct extensive range of experiments to show the delay performance of the threshold-
based strategies with di�erent thresholds. Speci�cally, we compare the delay performance
of the UNIFORM strategy with the EDF strategy in multiple network scenarios, with the
reactive scheme as a baseline. The results show that proactive caching not only greatly
improves delay performance in lightly-loaded cases as concluded in [22], but also works
exceedingly well in the heavily-loaded scenario with the UNIFORM strategy. We also carry
out experiments to show the impact of prediction window size on the delay performance for
practicality concerns. The UNIFORM strategy still shows excellent delay performance with
simple modi�cations. We show the numerical results in Section 6.

2 SYSTEMMODEL
2.1 Network Model
We consider a system with one server providing delay-sensitive services to the user, as shown in
Figure 1. The system operates in continuous time from time 0. The user receives service from the
server at a constant rate of µ bits/sec .

Request Processes: Requests arrive at the server according to the processes shown in Figure 2.
The requests request same-sized data objects of s bits. The Potential Request Process is a Poisson
Process {P (t) ; t > 0} with an overall arrival rate of �, where the ith arrival, i.e. Potential Request
i , requests object ri 2 Z+ at time ti 2 R+, where 0 < t1 < t2 < The Actual Request Process
{A (t) ; t > 0} is a thinned version of P (t) where each arrival on P (t) is an arrival on A (t) with
probability p, independent of all other arrivals. Let {Ri ; i = 1, 2, . . .} be IID Bernoulli (p) indicator
random variables where Ri = 1 if the ith arrival on P (t) is an arrival on A (t). Thus, A (t) is a
Poisson process with an average arrival rate �p. For convenience, we denote an actual request with
its index in P (t) instead of A (t).

An important assumption we make is that every potential request requests a di�erent object, i.e.
ri , r j ,8i , j , i.e., the catalog size is assumed to be in�nite. This assumption is motivated by many
practical problems, e.g. 1) prefetching problems, where each prefetched object is usually considered
to be speci�c for one user request, 2) applications where data objects are highly dynamic, like live
streaming, online gaming, sensing data, cloud computing, etc., and 3) the small likelihood that a

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

2:4 Ran Liu, Edmund Yeh, and Atilla Eryilmaz

Fig. 1. Network Model

Fig. 2. Arrival Processes

user would request for the objects that are recently requested. For more general applications, our
aim is to (for simplicity) exclude the impact of popularity distributions and focus on the potential
gains of proactive caching in the presence of uncertain predictive information.

Predictions: At time 0, the server knows the sequence of objects (r1, r2, r3,) to be requested
by the arrivals in {P (t)}, and the probability p. It has no prior knowledge of the precise arrival
epochs {ti }, or the realizations of the indicator random variables {Ri }. The server observes A (t)
but not P (t). At time t > 0, the sequence of indices for future potential requests from the server’s
viewpoint, or the prediction window1, is:

Π (t) = (I (t) + 1, I (t) + 2, I (t) + 3, . . .) (1)

where I (t) is de�ned as:

I (t) , max {i |ti < t ,Ri = 1} (2)

i.e. the index of the most recent actual request before time t . The server proactively works on
request i only if i 2 Π (t) at time t .
The idea of this prediction model originates from perfect prediction models used in the work

of [18], [9]. With our prediction model, we are able to tractably model uncertainties in whether
potential requests are realized, as well as uncertainties in the request arrival epochs.

2.2 Service Model
In this section, we �rst describe the reactive scheme, where the server works only on requests made
by actual request arrivals. We then introduce the proactive schemes where the server works on
future potential requests when not serving requests made by actual requests.

Reactive Scheme: The server node serves only arrivals in the actual request process A (t) based
on strategy �R as described below. Upon observing an actual request i at time ti , the object ri is
placed into the tail of a FIFO Queue with V (ti) of un�nished work, which is transmitted back to
the user at rate µ, whereV (t) is de�ned as the total number of bits waiting to be transmitted in the
queue at time t in the reactive scheme. If V (t) = 0, the system is idle at t .

Proactive Schemes: The server can proactively send a data object, partially or in entirety, to the
user, which can store the data object in a local cache. Since our focus is on the e�ects of uncertain
predictions, we assume for simplicity that the cache size is in�nite.

Let Ui (t)  s be the proactive work done for request i by time t , i.e. the number of bits of object
ri sent to the user and stored in the cache by time t . Notice that for a request i , there is no reason
1We assume the prediction window size to be in�nite for simplicity of analysis. This assumption guarantees that the server
always has predicted requests on which to do proactive work.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

Proactive Caching for Low Access-Delay Services under Uncertain Predictions 2:5

to continue to proactively serve it after tH (i), where H (i) , min
�
j � i |R j = 1

represents the �rst

potential request after i which is realized. Let

Ui , min
�
s,Ui

�
tH (i)

�
be the total proactive work done for request i . For an actual request i (Ri = 1),Ui = min {s,Ui (ti)}.
De�ne Si = s � Ui = max

�
0, s �Ui

�
tH (i)

�
as the reactive part of object ri which remains

to be transmitted after the server stops proactively serving request i . For an actual request
i , Si = s � Ui = max{0, s � Ui (ti)} bits need to be transmitted reactively at ti . Let U (t) ,�
UI (t)+1 (t) ,UI (t)+2 (t) ,UI (t)+3 (t) , . . .

�
be the set of Ui (t)’s where i 2 Π (t). At time t , based on

U (t), the prediction window Π (t) and the queue size V (t), a stationary proactive rate allocation
strategy �P at the server is de�ned as:

� (V (t) ,Π (t) ,U (t)) =
�
�V (t) , �I (t)+1 (t) , �I (t)+2 (t) , �I (t)+3 (t) , . . .

where �V (t) is the rate allocated to serve the queue of V (t), and �I (t)+i (t) , i � 1, is the rate
allocated to fetch object rI (t)+i at time t . We assume that the data in V (t) has higher priority than
proactive tra�c. That is, if V (t) > 0, then

Õ
i 2Z+ �I (t)+i (t) = 0. Thus, we consider the set �P of

proactive strategies �P satisfying:
• (Reactive State) If V (t) > 0:

�V (t) = µ,
1’
i=1

�I (t)+i = 0 (3)

• (Proactive State) If V (t) = 0:

�V (t) = 0,
1’
i=1

�I (t)+i = µ (4)

• The limiting average amount of proactive work received per potential request

U , lim
t!1

ÕI (t)
i=1 Ui

I (t) (5)

exists for �P .
An example of a strategy in �P is the Earliest-Deadline-First (EDF) strategy. In the EDF strategy,
if V (t) = 0 at time t , then � � (t) = µ, where � (t) = min

i 2Π(t)
{i |Ui (t) < s}. We use EDF strategy as an

important baseline policy throughout the paper for the purpose of analysis and comparisons. Given
a sample path of arrival epochs and {Ri } realizations, the evolutions of un�nished work in V (t)
under the EDF strategy and under the reactive scheme �R are compared, as shown in Figure 3.

2.3 Problem Formulation
As shown in Figure 3, there is less tra�c served reactively in the proactive EDF scheme as compared
with the reactive scheme. Reducing reactive tra�c is doubly desirable since (1) the delay is reduced,
and (2) there is more time for the server to do proactive work. Motivated by this, we study an
optimization problem where the objective is to maximize the average amount of proactive work
done for each request. Given �, µ, p and s , our optimization problem then can be formulated as:

maximize
�P

U (�P) (6)

subject to �P 2 �P

where �P is de�ned in (3)-(5). Let �⇤ be an optimal solution to problem (6) and let Umax , U (�⇤)
denote theU achieved by �⇤. The solution to (6) is discussed and presented in Sections 3 and 4.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

2:6 Ran Liu, Edmund Yeh, and Atilla Eryilmaz

Fig. 3. The system runs from time 0 to t . Potential requests 1 to 8 arrive at t1 to t8 respectively during this
period of time, with all potential requests realized except for request 6. The evolution of unfinished workV (t)
under the reactive scheme is plo�ed in blue and the evolution in the proactive scheme with the EDF strategy
is plo�ed in red, with the corresponding states marked on the time axis. We also show the rate allocation in
the proactive scheme.

Operating Regimes: In fact, there is a limited region of � we are interested in. In the region
0  � < µ

s , Umax = s,w .p.1 by Corollary 2 in [9] and Theorem 2 in [22]. With knowledge of Π (t),
the server is able to proactively serve every request before its arrival epoch with probability 1, even
if every request is realized. In the region � � µ

ps , the arrival rate of the actual request process is
beyond the stability region of the network. According to [8], full knowledge of the future does not
enlarge the stability region of the system. Thus, the queue V (t) cannot be stabilized in this region.
This implies that the server almost always works reactively, sparing no bandwidth for proactive
service. In the region µ

s  � < µ
ps , an optimal solution �⇤ to problem (6) is proposed and analyzed

in Section 4. Thus, we have the following fact:

Umax =

8>>><
>>>:

s,w .p.1 i f 0  � < µ
s

U (�⇤) , i f
µ
s  � < µ

ps

0,w .p.1 i f
µ
ps  �

(7)

Delay Performance: The corresponding delay of �⇤ is analyzed in Section 5. For a given
�P 2 �P , we de�ne the delay of an actual request i as

Di =

(
V (ti)
µ + Si

µ , i f Si > 0 and Ri = 1
0, otherwise

where V (ti)
µ is the waiting time of object ri in the queue at the server, and Si

µ is the transmission
time of the reactive part of object ri . De�ne the limiting average delay per actual request as:

D , lim
t!1

Õ
i 2Z+:ti<t,Ri=1 Di

A (t)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

Proactive Caching for Low Access-Delay Services under Uncertain Predictions 2:7

Table of Notations
V (t) Un�nished reactive work at server node
s Object size
µ Constant service rate of the system
P (t) Potential request process
A (t) Actual request process
� Average arrival rate of P (t)
p Probability that each potential request is realized
ti Arrival epoch of potential request i
Ri Indicator random variable for whether request i is realized
Ui Total amount of proactive service for request i
Ui (t) Amount of proactive service for request i by time t
Si Amount of reactive work for request i
Π (t) Prediction window
I (t) Index of the latest actual request before time t
� (t) Index of the request to practively serve at t
U Limiting time average proactive service per potential request
UA Limiting time average proactive service per actual request
U ⇤ Maximum limiting average proactive service per potential request
��P Threshold-based strategy with threshold �
Xn Markov chain
�n Epoch of the nth transition

Table 1. Table of Notation

Denote the average delay per actual request under �⇤ by D�⇤ . We will derive the closed-form
expression of D�⇤ , and analytically demonstrate its advantage relative to average delay of the EDF
proactive strategy.

3 RELATION BETWEEN REACTIVE SCHEME AND PROACTIVE SCHEMES
Proactive caching makes use of available link capacity when the system is idle (under the reactive
scheme). A natural question to ask is how much proactive work can be done for each request on
average. We can gain intuition from the example in Figure 3. First, the idle period in the reactive
scheme can be utilized for proactive service. Then, by proactively serving actual requests (i.e.,
1,2,3,4,5,7,8), reactive tra�c is reduced so that available link capacity can be utilized more frequently
for proactive service. This is indicated in Figure 3 by the intervals marked by solid red, named
"Proactive Served". In the following, we study the characteristics of proactive service and derive an
upper bound onU .

Consider a set of sample paths corresponding to arrival epochs {ti : i = 1, 2, . . .} and realizations
{Ri = zi : i = 1, 2, . . .} (zi 2 {0, 1}) under both the reactive scheme and a proactive scheme PsiP .
We make the following de�nitions. The amount of time that �P 2 �P works in the proactive state
(namely Proactive Proactive) from 0 to t is:

TPP (t) , |{� 2 (0, t] : V (�) = 0}| (8)

The amount of time that �P 2 �P works in reactive state (namely Proactive Reactive) from 0 to t is:

TPR (t) , |{� 2 (0, t] : V (�) > 0}| (9)

The limiting fraction of time that �P 2 �P works in the reactive state and in the proactive state,
respectively, are:

�PR , lim
t!1

TPR (t)
t
, �PP , lim

t!1
TPP (t)

t
(10)

Before we continue to study the relation between the reactive scheme and the proactive scheme,
we �rst de�ne two important properties of proactive strategies.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

2:8 Ran Liu, Edmund Yeh, and Atilla Eryilmaz

D��������� 1 (P������� 1 �� P�������� S���������). A proactive strategy �P 2 �P satis�es
Property 1 if the following condition is satis�ed:

lim
t!1

Õ1
i=I (t)+1Ui (t)

t
= 0,w .p.1 (11)

The term
Õ1

i=I (t)+1Ui (t) represents the total amount of proactive work done for potential requests
in the prediction window Π (t) up to t . Although this part of proactive work may be requested
eventually in the future, it does not contribute to the reduction of reactive work by time t . IfÕ1

i=I (t)+1Ui (t) scales with t , it is likely that the corresponding U can be further improved by a
strategy which invests more proactive service into requests in the near future. We will later formally
analyze the in�uence of this property on our objective in Theorem 1.

Before introducing the next property, we �rst de�ne

UA , lim
t!1

Õ
i 2Z+:iI (t),Ri=1Ui

A (t)
as the limiting average amount of proactive work done per actual request.

P���������� 1. For all �P 2 �P , we have

U � UA, w .p.1

P����. Please refer to Appendix A for the proof. ⇤

We then have the following de�nition of the second property:

D��������� 2 (P������� 2 �� P�������� S���������). A proactive strategy satis�es Property 2 if
the following condition is satis�ed:

UA = U ,w .p.1 (12)

Proposition 1 implies that in our setting, the average amount of proactive work per actual request
is no more than the average amount of proactive work per potential request. On the other hand, it
is more desirable that more proactive services are done for actual requests. With Property 1 and 2,
we have the following theorem of proactive strategies.

T������ 1. Given µ, �, s and p as system parameters, the limiting fractions of time that the server
works in the proactive state and the reactive state, respectively, under �P 2 �P satisfy

�PP  µ � �ps

µ (1 � p) ,w .p.1, �PR � (�s � µ)p
µ (1 � p) ,w .p.1

Equality holds in both inequalities if and only if the proactive strategy satis�es both Property 1 and
Property 2.

P����. Please refer to Appendix B for the proof. ⇤

Theorem 1 implies that in order tomaximize the fraction of time that the systemworks proactively,
or equivalently minimize the fraction of time that the systemworks reactively, the proactive strategy
�P must satisfy both Property 1 and Property 2. On the other hand, recall that we are interested in
the operating regime µ

s  � < µ
ps . If � =

µ
s , we have �PR = 0,w .p.1 if and only if �P satis�es both

Property 1 and Property 2. If � = µ
ps , we have �PR � 1,w .p.1, which implies that the system almost

always works reactively with any proactive strategy �P 2 �P . These results are consistent with
previous discussions before (7).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

Proactive Caching for Low Access-Delay Services under Uncertain Predictions 2:9

De�ne

S , lim
t!1

Õ
i 2Z+:Ri=1,iI (t) Si

A (t) (13)

as the limiting average amount of reactive work of each actual request. Then based on Theorem 1,
we have the following corollary onU and S .

C�������� 1. Given µ, �, s and p satisfying µ
s  � < µ

ps , the limiting average amount of proactive
work per potential request under strategy �P 2 �P satis�es

U  µ � p�s

� (1 � p) , U
⇤,w .p.1 (14)

The limiting average amount of reactive work per actual request under strategy �P 2 �P satis�es

S � �s � µ

� (1 � p) , S
⇤,w .p.1 (15)

where equality holds in both inequalities if and only if strategy �P satis�es both Property 1 and
Property 2.

P����. Please refer to Appendix C for the proof. ⇤

Corollary 1 shows that the limiting average amount of proactive work done per potential request
is maximized if and only if a proactive strategy �P satis�es both Property 1 and Property 2. By
Property 2, UA is maximized under the same condition. Therefore, the optimal solution to the
objective in (6) should be proactive strategies which satisfy both Property 1 and Property 2. We
will construct such a proactive strategy, and also explain why the EDF strategy is not an optimal
solution in the next section.

4 THRESHOLD-BASED PROACTIVE STRATEGY AND MARKOV CHAIN
In order to construct an optimal proactive strategy to solve (6), we �rst de�ne a family of threshold-
based strategies in �P . We then analyze the asymptotic behaviors of the threshold-based proactive
strategies by constructing and analyzing a corresponding Markov chain. Using this analysis, we
relate the threshold-based strategies to Property 1 and Property 2, and construct an optimal solution
to the problem (6) by choosing a speci�c threshold for the threshold-based strategies.

4.1 Threshold-Based Proactive Strategies

We describe the threshold-based strategies ��
P in Algorithm 1. Speci�cally, we de�ne � 2 (0, s]

as the threshold parameter. When working proactively, the threshold-based strategy ��
P works

on request � (t) at time t , where � (t) = min
i 2Π(t)

{i |Ui (t) < �} is the �rst request in the prediction

windowΠ (t)which has not received � bits of proactive service. By the de�nition of ��
P , the process

{� (t) ; t > 0} is non-decreasing. In order to study the impact of � on the threshold-based proactive
strategies, we construct and analyze a corresponding Markov chain under given �.

4.2 Markov Chain of System under ��
P

We construct a Markov chain corresponding to the system under ��
P , using methods applied in the

analysis of M/G/1 queues and G/M/1 queues [20],

D��������� 3 (M�����C���� �� ��� P�������� S������������
P). LetT

� , (�0,�1,�2, . . . ,�n , . . .)
be the sequence of transition epochs, where each �n ,n = 0, 1, . . . satis�es 1)V

�
�
+
n
�
= 0; 2)U� (� +n)

�
�
+
n
�
=

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

2:10 Ran Liu, Edmund Yeh, and Atilla Eryilmaz

Algorithm 1 Threshold-based Strategies ��
P

1: Main Procedure S�����_���(�)
2: Choose the threshold as � ;
3: Initialize V (t), Π (t)
4: while t > 0 do
5: if Request i arrives at t then
6: Put reactive part Si of request i into the tail of the queue V (t).
7: Update prediction window Π (t)
8: end if
9: % Reactive work
10: if V (t) > 0 then
11: Transmit data from the head of the queue V (t) with full rate µ .
12: end if
13: % Proactive work
14: if V (t) = 0 then
15: Set � (t) = min

i2Π(t)
{i |Ui (t) < � }

16: % � (t) is the earliest potential request in Π(t) which has received less than � bits of proactive service
17: if U� (t) (t) < � then
18: Transmit data of r � (t) at full rate µ
19: end if
20: end if
21: end while
22: End Procedure

Fig. 4. Example: Transitions in the proactive system with �
�
P , with � = s

2

0, and 3) �
�
�
+
n
�
> P

�
�
+
n
�
. The discrete-time process {Xn : n = 0, 1, . . .} with state space Z+ is de�ned

as:

Xn = �
�
�
+
n
�
� P

�
�
+
n
�
,n = 0, 1, 2, . . . (16)

In Proposition 2, we will show that {Xn} is a Markov chain. We interpret the three conditions in
De�nition 3 as follows. Condition 1) means that there is no reactive tra�c to serve right after �n ,
so the server can proactively serve requests in Π

�
�
+
n
�
. Condition 2) means that at �n , the server

starts to proactively work on request �
�
�
+
n
�
, which has not received proactive service before �+n .

The last condition means that the potential request to be proactively served at �+n should be a
potential request which has not arrived in {P (t)} by �+n . To summarize, the discrete-time process
{Xn : n = 0, 1, . . .} is constructed by sampling the system at {�n : n = 0, 1, . . .} when the server
starts to proactively work on a future potential request.

At each epoch �n ,n 2 Z+, the nth transition in the Markov chain occurs.Xn = �
�
�
+
n
�
�P

�
�
+
n
�
,n =

0, 1, 2, . . ., represents how far the proactive service process {� (t) ; t � 0} is ahead of the potential
arrival process {P (t) ; t � 0} at epoch �+n . Figure 4 shows an example of how the transition epochs

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

Proactive Caching for Low Access-Delay Services under Uncertain Predictions 2:11

{�n : n = 0, 1, . . .} are chosen.
Example: In the example shown in Figure 4, we choose � = s

2 in the threshold-based strategy.
We make the following observations on the evolution of the process.

(1) No arrival occurs in (�0,�1). The server �nishes proactively serving request 1 at �1, and starts
to proactively serve request 2. The process in (�1,�2) evolves in the same way.

(2) In (�2,�3), the server proactively serves request 3; requests 1 and 2 arrive, with 1 realized and
2 not realized. At �3, the server starts to proactively serve request 4.

(3) In (�3,�4), request 3, 4, 5 arrive with only request 3 realized, before the server can �nish
proactively serving � bits of request 4. Because the server cannot observe the arrival of
request 4 or 5, it keeps proactively serving request 4 until � 0. At � 0, the server starts to
proactively serve request 5 2 � (� 0) = (4, 5, . . .). Nevertheless, condition 3) in De�nition 3
is not satis�ed at � 0 (� (� 0+) � P (� 0+) = 0 < 1). Thus, � 0 is not a transition epoch. At �4, the
server starts to proactively serve request 6. Since conditions (1)-(3) in De�nition 3 are all
satis�ed, �4 is a transition epoch.

(4) In (�4,�5), request 6 arrives and is realized before it receives � bits proactively. Thus, it is
served reactively until all bits are received. Since there is no arrival before it �nishes, we
have I (�5) = P (�5) = 6, so that the server starts proactively serving request 7, and �5 is a
transition epoch.

We de�neAn , P
�
�
+
n+1

�
�P

�
�
+
n
�
as the number of potential arrivals in (�n ,�n+1], andTn , �n+1�

�n as the nth inter-transition time. Starting from Xn = xn ,xn 2 Z+, the requests P (�n) , . . . , P (�n)+
xn � 1 have already received � bits of proactive service by �n , and the request P (�n) + xn just starts
to be proactively served from �

+
n . If An � xn , we have Xn+1 = 1. If An < xn , Xn+1 depends on

An . In the following proposition, we formally describe the evolution of {Xn ;n � 0} and show its
Markovian property.

P���������� 2. The discrete-time process {Xn ;n � 0} de�ned in De�nition 3 for the proactive
system under ��

P is Markovian, with the evolution

Xn+1 = max {Xn + 1 �An , 1} ,n = 0, 1, . . . (17)

P����. Please refer to Appendix D for the proof. ⇤

Wenow consider the transition probabilities {Pr {Xn+1 = xn+1 |Xn = xn} : 8xn 2 Z+,8xn+1 2 Z+}.
First we consider the probability that An = k given that Xn = xn > k , k = 0, 1, 2, In this case,
k arrivals happen before the server proactively serves � bits for request P

�
�
+
n
�
+ xn . Each arrival

needs to be reactively served with exactly s � � bits if realized. Due to the memoryless property of
{P (t) ; t > 0} and the independence of indicator random variables {Ri }, the probability of An = k
is independent of xn given xn > k . Then we have the following de�nition:

p
�
k , Pr {An = k |Xn = xn ,xn > k} ,k = 0, 1, 2, . . . (18)

Then the transition probabilities can be written as:

p
�
xnxn+1 , Pr {Xn+1 = xn+1 |Xn = xn}

=

8>>><
>>>:

0, xn+1 � xn + 2
p
�
k , xn+1 = xn + 1 � k, 0  k < xnÕ1
k=xn p

�
k , xn+1 = 1

,8xn 2 Z+,8xn+1 2 Z+ (19)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

2:12 Ran Liu, Edmund Yeh, and Atilla Eryilmaz

Or equivalently, we can write the transition probabilities in matrix form:

P
� =

266666664

Õ1
k=1 p

�
k p

�
0Õ1

k=2 p
�
k p

�
1 p

�
0Õ1

k=3 p
�
k p

�
2 p

�
1 p

�
0

. .

377777775
(20)

where the empty entries are 0. Notice that it is structurally similar to the transition probability
matrix of the Markov chain of G/M/1 queue in [20].
Although we have developed the structure of the transition probability matrix, the probabili-

ties
n
p
�
k : k = 0, 1, 2, . . .

o
are still unknown. In the following theorem, we are going to prove an

important result of the probabilities.

P���������� 3. The probabilities
n
p
�
k : k = 0, 1, 2, . . .

o
satisfy the following relationships:

1’
k=0

p
�
k (1 � k)

8>>><
>>>:

> 0, i f � < U
⇤

= 0, i f � = U ⇤

< 0, i f � > U
⇤

(21)

whereU ⇤ = µ�p�s
�(1�p) , as de�ned in (14).

P����. Please refer to Appendix E for the proof. ⇤

Although we obtain some knowledge about transition probabilities of the Markov chain from
Proposition 3, a remaining problem of the Markov Chain is the distribution ofTn and An . IfTn = 1
with a positive probability, the next transition may never happen. Therefore, we have the following
proposition on the expectations of Tn and An .

P���������� 4. In the Markov Chain of the proactive system with ��
P as de�ned in De�nition 3,

we have:

E [Tn |Xn = xn] < 1, E [An |Xn = xn] < 1, 8xn 2 Z+, 8� 2 (0, s] (22)

P����. Please refer to Appendix F for the proof. ⇤

Proposition 4 implies that Pr {Tn < 1} = 1, Pr {An < 1} = 1,8n 2 Z+. Therefore transitions in
the corresponding Markov chain will almost surely happen in �nite time.

To investigate the asymptotic behavior of the system, we need to characterize the recurrence of
the Markov chain of the system. Based on Proposition 3 and Proposition 4, we have the following
theorem on the recurrence of the Markov chain of the proactive system under ��

P .

T������ 2. The Markov chain of the proactive system with ��
P is 1) transient if � < U

⇤, 2) positive
recurrent if � > U

⇤, and 3) null recurrent if � = U ⇤.

P����. From Proposition 3, we can easily prove that:

1’
k=0

p
�
k k

8>>><
>>>:

< 1, i f � < U
⇤

= 1, i f � = U ⇤

> 1, i f � > U
⇤

(23)

In Section 10.3.3 of [14], the relation between
Õ1

k=0 p
�
k k and the recurrence of the corresponding

Markov chain is discussed. To be speci�c, the conclusion is that the Markov chain is 1) positive

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

Proactive Caching for Low Access-Delay Services under Uncertain Predictions 2:13

recurrent if
Õ1

k=0 p
�
k k > 1, 2) null recurrent if

Õ1
k=0 p

�
k k = 1, and 3) transient if

Õ1
k=0 p

�
k k < 1. Our

conclusion directly follows. ⇤

Theorem 2 characterizes the relationship between � and the recurrence of the Markov chain
under ��

P . The recurrence of the corresponding Markov chain under di�erent � is the crucial key
to investigating the relationship between Property 1 and Property 2 with the threshold-based
strategies. In the following, we are going to discuss this relationship.

Property 1 of the Threshold-based Strategies: First, we focus on Property 1 and the threshold-
based strategies in the following lemma.

L���� 1. A threshold-based strategy satis�es Property 1 if and only if the corresponding Markov
chain satis�es:

lim
n!1

Xn

n
= 0, w .p.1

P����. Please refer to Appendix G for the proof. ⇤

Lemma 1 transforms the conditions for Property 1 from the continuous sense in De�nition 1 to a
discrete condition based on transitions in the Markov chain. The term limn!1

Xn
n is closely related

to the recurrence of the Markov chain, which has been characterized in Theorem 2. Then we have
the following theorem on Property 1 of the threshold-based strategies.

T������ 3. A threshold-based strategy satis�es Property 1 if and only if � � U
⇤.

P����. Please refer to Appendix H for the proof. ⇤

Another way of stating Theorem 3 is that a threshold-based strategy satis�es Property 1, if and
only if the corresponding Markov chain is recurrent. Recall that the states Xn ’s represent the gaps
between the proactive service process {� (t) ; t > 0} and the potential process {P (t) ; t > 0}. If the
corresponding Markov chain is recurrent, the state Xn = 1 will always happen. This implies that
the proactive service done e�ectively reduces the reactive tra�c of the requests which have arrived,
which is also the insights of Property 1.

Property 2 of the Threshold-based Strategies: Next, we are going to discuss Property 2 of
the threshold-based strategies. As we discussed in Proposition 1,U � UA is true due to our service
model. Predictions are likely to receive more proactive service if they are unrealized. Because of
our assumptions on the orderliness of predictions in Π (t), the predictions which have arrived but
not realized are always the earliest predictions in Π (t). Intuitively, a threshold-based strategy with
a larger �, which prefers to serve the earliest predictions in Π (t), is more likely to achieve U > UA.
We rigorously characterize the relationship of the threshold-based strategies and Property 2 in the
following theorem.

T������ 4. The threshold-based strategy ��
P satis�es Property 2 if and only if �  U

⇤.

P����. Please refer to Appendix I for the proof. ⇤

Theorem 4 veri�ed our previous intuitions. Similar to Theorem 3, Theorem 4 has an equivalent
statement: the threshold-based strategy ��

P satis�es Property 2, if and only if the corresponding
Markov chain is NOT positive recurrent. As we discussed,U > UA is more likely to happen when
the strategy proactively works on the requests which have arrived but not realized. This only
happens when the system transits to state Xn = 1. In a transient or null recurrent case, the system
state Xn = 1 does not happen comparably often as n. As a result, Property 2 is satis�ed in these
cases.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

2:14 Ran Liu, Edmund Yeh, and Atilla Eryilmaz

Based on Property 1 and Property 2 of the threshold-based strategies as characterized in Theorem
3 and 4, we have the following corollary which solves the optimization problem (6).

C�������� 2. U in (6) is maximized with a threshold-based proactive strategy ��
P if and only if

� = U ⇤.

P����. By combining Theorem 3, Theorem 4 and Corollary 1, the corollary directly follows. ⇤

Based on the corollary, �U ⇤
P is a solution to the optimization problem (6). Notice that this is the

only threshold-based strategy which maximizes U , and it is the only case where the corresponding
Markov chain is null recurrent.
We obtained the following valuable insights about the characteristics of an optimal proactive

strategy under prediction uncertainties. First, the strategy should not overemphasize predictions
which are near in the future, as how the EDF strategy works, in order to account for the fact that
the potential requests may not be realized. Second, it should not overemphasize predictions which
are far in the future, in order to provide su�cient proactive services for the requests which may
arrive in the near future. Balancing these two e�ects as a function of the prediction uncertainties is
the key to designing a desirable proactive strategy.

5 DELAY COMPARISON BETWEEN UNIFORM AND EDF STRATEGIES
In this section, we focus on two special proactive strategies, which are the EDF (Earliest-Deadline-
First) type strategy and the UNIFORM strategy. The EDF strategy can be seen as the threshold-based
strategy with � = s , which means the server will always �rst proactively work on the �rst request
in Π (t) which has not been completely proactively served. The EDF strategy has been widely used
in many scheduling problems in queueing systems. Intuitively, reducing tra�c at the beginning of
a congested period might be the most e�cient way to reduce delay. In our case where all objects
have a uniform size, the EDF strategy works the same as the shortest remaining time �rst (SRTF)
strategy, which achieves the optimal delay in a reactive queueing system. In a proactive system,
the authors of [9] have proved that the EDF strategy can achieve asymptotic optimality in terms
of delay when the size of the prediction window goes to in�nity with full knowledge of future
requests and their arrival epochs. However, we will show that the UNIFORM strategy outperforms
the EDF strategy in terms of delay in the case with uncertain predictions.

First, we derive an important property of the UNIFORM strategy in the following corollary.

C�������� 3. Given µ, �, s and p as system parameters which satisfy µ
s  � < µ

ps , the system
operates under the UNIFORM strategy �U ⇤

P . Then the limiting empirical distribution ofUi satis�es

lim
t!1

1
I (t)

I (t)’
i=1

(Ui = U
⇤) = 1,w .p.1 (24)

P����. Please refer to Appendix J for the proof. ⇤

The Corollary 3 shows that the requests under the UNIFORM strategy receiveU ⇤ bits of proactive
service with probability 1. Consequently, the reactive work of each actual request is S⇤ with
probability 1. Since almost all actual requests receive the same amount of proactive service, we call
this strategy UNIFORM. In the following, we derive the closed-form expression for the average
delay per actual request under the UNIFORM strategy.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

Proactive Caching for Low Access-Delay Services under Uncertain Predictions 2:15

C�������� 4. Given µ, �, s and p as system parameters which satisfy µ
s  � < µ

ps , the average
delay DU (N I FORM) per actual request under the UNIFORM strategy �U ⇤

P can be expressed as:

DU =
(�s � µ) (2µ � µp � �ps)
2µ� (1 � p) (µ � �ps) ,w .p.1 (25)

If we de�ne DR(eacti�e) as the average delay of each actual request under the reactive scheme, the ratio
of DU

DR
can be expressed as:

DU

DR
=

(�s � µ) (2µ � µp � �ps)
�s (1 � p) (2µ � s�p) ,w .p.1 (26)

P����. Please refer to Appendix K for the proof. ⇤

The ratio in (26) directly compares the delay of UNIFORM strategy against the reactive scheme,
and we will plot it in Section 6. Next, we compare the average delay of the UNIFORM strategy
against EDF strategy.

C�������� 5. Given µ, �, s and p as system parameters which satisfy µ
s  � < µ

ps , the average
delay of UNIFORM strategyDU (N I FORM) is no greater than the EDF strategyDE(DF) with probability 1:

DU  DE ,w .p.1 (27)

The equality holds if and only if p = 0.

Notice that 0  p < µ
�s < 1, so p = 0 is the only value where the equality holds.

P����. Please refer to Appendix L for the proof. ⇤

The proof of Corollary 5 reveals the insights on why the UNIFORM strategy outperforms the
EDF strategy. First, the EDF strategy satis�es Property 1 but not Property 2. As a result, the average
reactive work per actual request S is larger under the EDF strategy by Corollary 2, which means
the server needs to deal with more reactive work on average. Second, the unbalanced allocation
of proactive rates in the EDF strategy impacts the delay performance. As shown in Figure 3, the
EDF strategy works well when requests are realized, like the �rst 5 requests. However, when the
�rst future potential request seen by the server is not realized, the EDF strategy usually achieves
awful delay performance. Also take Figure 3 as an example. Request 6 receives a lot of proactive
services but it is not realized, which causes request 7 to be served almost completely reactively.
Consequently, request 8 su�ers from large queueing delay.

6 NUMERICAL EVALUATION
We perform extensive experiments to study the delay performance of threshold-based strategies.
Speci�cally, we compare the UNIFORM strategy with the EDF strategy, with the reactive scheme
as a baseline. In our simulations, we consider the same topology as in Figure 1. We set µ = 10 and
s = 1 in all of our experiments.

In our simulations, we gradually change the threshold � from 0 to s and compare the average
delay per actual request in each case. Speci�cally, when � = s , the strategy becomes the EDF
strategy; when � = U ⇤, the strategy becomes the UNIFORM strategy; and when � = 0, the system
is in reactive scheme. The product term �p determines how heavily the network is loaded, and
we choose �p = 6 as the lightly-loaded network scenario and �p = 9.6 as the heavily-loaded
network scenario. With each �xed value of �p, we gradually changed � from 10 to 20 and choose

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

2:16 Ran Liu, Edmund Yeh, and Atilla Eryilmaz

Fig. 5. Comparisons among threshold-based
methods: �p = 6

Fig. 6. Comparisons among threshold-based
methods: �p = 9.6

p correspondingly, to evaluate the e�ects of prediction uncertainties on the delay performance.
We set the simulation time to be 107 seconds, which is long enough to alleviate the in�uence of
randomness.

6.1 Infinite Prediction Window Scenarios
We �rst demonstrate the delay performance of threshold-based strategies under an in�nite predic-
tion window.

Figures 5 and 6 show the delay performance of threshold-based strategies, with di�erent thresh-
olds and di�erent prediction uncertainties. The x-axis represents the threshold �, which gradually
changes from 0 to s . Each curve corresponds to a (�,p) combination with the same product �p.
Each vertical dotted line represents the thresholdsU ⇤ of the UNIFORM strategy under each (�,p)
combination, which shares same color with the corresponding curve. Notice that the delay of the
EDF strategy is shown at x = s = 1, and the delay of the reactive scheme is shown at x = 0.

Here are some interesting observations on the plots:
• The vertical lines perfectly mark the minimum point on each curve. This implies that the
UNIFORM strategy always achieves the best delay performance among all the threshold-based
strategies.

• If we compare two curves with di�erent (�,p) combinations, we can see that the delay
performance of the curve with larger p and smaller � outperforms the one with smaller p and
larger �, until they overlap. This is because larger p and smaller � imply higher predictability,
so that the proactive strategy has the potential to achieve a more desirable delay performance.
The overlapping part is due to the choice of a overly-small threshold �. As a result, almost
every request receives � bits of proactive service, even in the case with higher predictability.
This implies the signi�cance of Property 1.

• If we compare the two �gures, we observe that the curves between � = s = 1 and � = U ⇤ is
�atter in the lightly-loaded scenario. This implies that delay performance is less sensitive to
threshold � when the network is less congested. In the heavily-loaded case, the choice of
threshold � is more crucial to achieve desirable delay performance.

In order to make more straightforward comparisons among the EDF strategy, the UNIFORM
strategy and the reactive scheme, we plotted the average delay achieved by these strategies in
Figures 7 and 8. We observe that the delay performance of the EDF strategy becomes much worse,
relative to the delay performance of reactive scheme, in the heavily-loaded scenario than that in

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

Proactive Caching for Low Access-Delay Services under Uncertain Predictions 2:17

Fig. 7. Comparisons among EDF,UNIFORM and
Reactive Schemes: �p = 6

Fig. 8. Comparisons among EDF,UNIFORM and
Reactive Schemes: �p = 9.6

the light-loaded scenario. However, the delay performance of the UNIFORM strategy is relatively
stable in both scenarios relative to the reactive scheme.
In Figures 9 and 10, we compare queue size evolutions under the EDF strategy, the UNIFORM

strategy and reactive scheme. From these �gures, we can observe some insights of the EDF strategy
and the UNIFORM strategy. In Figure 9, we observe that many requests do not receive any proactive
service under the EDF strategy. The UNIFORM strategy can almost always keep the queue size at a
low level. This is because the EDF strategy assigns proactive service in a very imbalanced manner,
while the UNIFORM strategy assigns proactive resources almost uniformly among all requests. In
Figure 10, the di�erences are magni�ed. When the network experiences heavy congestion due to
randomness in the arrival process, the EDF strategy fails to e�ectively control the burstiness, but
the UNIFORM strategy is able to steadily keep the queue size at a very low level. This di�erence
directly causes the gap between the delay performance of the EDF strategy and the UNIFORM
strategy in the heavily-loaded scenario.

In Figure 11, we plot the theoretical ratio of average delay under the UNIFORM strategy to that
of reactive scheme, as calculated in Corollary 4. In this plot, � is chosen to be from 10 to 50, and
since �ps < µ, p is chosen from 0 to 10/� correspondingly. With a �xed �, the system is more
congested with a larger p. The UNIFORM strategy can achieve a stable advantage over the reactive
scheme in delay performance with a �xed �, as observed. Even in a very congested case with bad
predictions (� = 50 and p approaches 0.2), the UNIFORM strategy still can achieve a roughly 20%
advantage over the reactive scheme.

6.2 Finite Prediction Window Scenarios
In practice, prediction algorithms can only predict user requests in a near future. We experimentally
study the impact of prediction window size on delay performance in this section. A �nite prediction
window Π (t) = (I (t) + 1, I (t) + 2, . . . , I (t) +W) is considered, where only W predictions are
available for any t > 0. In this case, there is a possibility that all the potential requests in Π (t) have
been proactively served with � bits. When it happens, the system has to be idle until there are new
predictions available.
We carried out a series of experiments to �nd out the impact of prediction window sizeW on

the delay performance of EDF and UNIFORM strategies. We also consider A Modi�ed-UNIFORM
(M-UNIFORM) strategy, as described in Algorithm 2. After every available prediction in Π (t)
receives � bits of proactive service, the M-UNIFORM strategy will start to proactively serve the
requests which have received the fewest bits from proactive service.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

2:18 Ran Liu, Edmund Yeh, and Atilla Eryilmaz

Fig. 9. �eue Size Evolution Comparisons among
Reactive Scheme, EDF strategy andUNIFORM strat-
egy: �p = 6

Fig. 10. �eue Size Evolution Comparisons among
Reactive Scheme, EDF strategy andUNIFORM strat-
egy: �p = 9.6

Fig. 11. Theoretical Delay Comparison be-
tween UNIFORM Strategy and Reactive
Scheme

Fig. 12. Comparisons among EDF,UNIFORM and
Modified-UNIFORM: �p = 6

Fig. 13. Comparisons among EDF,UNIFORM and
Modified-UNIFORM: �p = 9.6

Figures 12 and 13 show the delay performance of these strategies. The delay performance of
the EDF strategy converges faster with respect toW . It means that the EDF strategy does not
require a large prediction window to achieve its best delay performance. On the other hand, the
UNIFORM strategy converges much slower, especially in the heavily-loaded case. It also requires a
large prediction window size for the UNIFORM strategy to outperform the EDF strategy, especially
in the heavily-loaded case. However, the UNIFORM strategy is able to greatly improve the delay
performance with a few simple modi�cations. We can observe that the performance of the M-
UNIFORM strategy in the small-window region is greatly improved, comparing with the UNIFORM
strategy. In Figure 13, the UNIFORM strategy requires the window sizeW to be greater than 32 to

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

Proactive Caching for Low Access-Delay Services under Uncertain Predictions 2:19

Algorithm 2Modi�ed UNIFORM Strategy
1: Main Procedure S�����_R��(U ⇤)
2: Choose the threshold asU ⇤ ;
3: Initialize V (t) , I (t) , Π (t)
4: while t > 0 do
5: %Keep the system running
6: if Request i arrives at t then
7: Put reactive part Si of request i into the tail of the queue V (t).
8: Update prediction window Π (t)
9: end if
10: if V (t) > 0 then
11: % Reactive work
12: Transmit data from the head of the queue V (t) with full rate µ .
13: end if
14: if V (t) = 0 then
15: % Proactive work
16: Decide i = min

I (t)+�>i>I (t)
{i |Ui (t) < U ⇤ }

17: % i is the earliest potential request which has received less than � bits of proactive service in Π (t)
18: if i == null then
19: %All potential requests in � have receivedU ⇤ bits of proactive work
20: Decide j = min

I (t)+�> j>I (t)

�
j |Uj (t) < s

21: if Uj (t) < s then
22: Transmit data of r j with full rate µ
23: end if
24: if j == null then
25: %Every request in Π (t) has been fully proactively served
26: Stay idle
27: end if
28: else
29: if Ui (t) < U ⇤ then
30: Transmit data of ri with full rate µ
31: end if
32: end if
33: end if
34: end while
35: End Procedure

outperform the EDF strategy in terms of delay. However, the M-UNIFORM strategy outperforms
the EDF strategy even whenW = 1.

7 CONCLUSIONS
In this paper, we looked into the fundamental queueing dynamics of proactive caching strategies
under uncertain predictions and developed insights on how to design proactive strategy to achieve
desirable delay performance in a single queue system. We solved an optimization problem of
maximizing the limiting average amount of proactive service per request. By comparing queueing
dynamics in the proactive scheme and reactive scheme under the same sample path, we derived a
tight upper bound on the objective with uncertain predictive information of future requests. We
proposed a family of threshold-based strategies, and constructed the Markov chain of the system
to analyze the asymptotic behavior of the proactive system. Consequently, we found the optimal
strategy, i.e. the UNIFORM strategy, by properly choosing the threshold in the threshold-based
strategies, which corresponds to a null recurrent Markov chain. We obtained important insights
about the characteristics of an optimal proactive strategy: the strategy should balance the amount of
proactive work between the potential requests which are arriving sooner and the ones arriving later,
based on the uncertainties in predictions. We derived the closed-form expression of average delay
per actual request under the UNIFORM strategy, and analytically compared it with the commonly
used EDF type strategy. We showed that the UNIFORM strategy outperforms the EDF strategy in
all the non-trivial scenarios, which is veri�ed by extensive numerical experiments under di�erently

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

2:20 Ran Liu, Edmund Yeh, and Atilla Eryilmaz

congested network scenarios. Experimental results also showed that delay can be dramatically
decreased by proactive caching techniques not only in the lightly-loaded region as claimed in [22],
but also in the heavily-loaded case if properly designed. Our work provides valuable insights on
how to optimally design a proactive strategy to improve the delay performance in the system.

ACKNOWLEDGMENTS
The authors gratefully acknowledges support from National Science Foundation grants CNS-
1718355, OAC-1659403, CNS-NeTS-1514260, CNS-NeTS-1717045, CMMI-SMOR-1562065, CNS-ICN-
WEN-1719371, and CNS-SpecEES-1824337 as well as from research grants by Intel Corp. and Cisco
Systems.

REFERENCES
[1] Mohamed Ahmed, Stella Spagna, Felipe Huici, and Saverio Niccolini. 2013. A Peek into the Future: Predicting the

Evolution of Popularity in User Generated Content. In Proceedings of the Sixth ACM International Conference on Web
Search and Data Mining (WSDM ’13). ACM, New York, NY, USA, 607–616. https://doi.org/10.1145/2433396.2433473

[2] Faisal Alotaibi, Sameh Hosny, John Tadrous, Hesham El Gamal, and Atilla Eryilmaz. 2015. Towards A Marketplace for
Mobile Content: Dynamic Pricing and Proactive Caching. arXiv:1511.07573[cs.GT].

[3] Matthew Andrews. 2000. Probabilistic end-to-end delay bounds for earliest deadline �rst scheduling. In INFOCOM
2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, Vol. 2.
IEEE, 603–612.

[4] E. Bastug, M. Bennis, and M. Debbah. 2014. Living on the edge: The role of proactive caching in 5G wireless networks.
IEEE Communications Magazine 52, 8 (Aug 2014), 82–89. https://doi.org/10.1109/MCOM.2014.6871674

[5] Dimitri P Bertsekas, Robert G Gallager, and Pierre Humblet. 1992. Data networks. Vol. 2. Prentice-Hall International
New Jersey.

[6] Kun Chen and Longbo Huang. 2018. Timely-throughput optimal scheduling with prediction. IEEE/ACM Transactions
on Networking (2018).

[7] Cisco. 2017. The Zettabyte Era: Trends and Analysis. White Paper (2017).
[8] Leonidas Georgiadis, Michael J. Neely, and Leandros Tassiulas. 2006. Resource Allocation and Cross-Layer Control in

Wireless Networks. Foundations and Trends in Networking 1, 1 (2006), 1–144. https://doi.org/10.1561/1300000001
[9] Longbo Huang, Shaoquan Zhang, Minghua Chen, Xin Liu, Longbo Huang, Shaoquan Zhang, Minghua Chen, and Xin

Liu. 2016. When Backpressure Meets Predictive Scheduling. IEEE/ACM Trans. Netw. 24, 4 (Aug. 2016), 2237–2250.
https://doi.org/10.1109/TNET.2015.2460749

[10] Stratis Ioannidis and Edmund Yeh. 2018. Adaptive Caching Networks With Optimality Guarantees. IEEE/ACM Trans.
Netw. 26, 2 (April 2018), 737–750. https://doi.org/10.1109/TNET.2018.2793581

[11] Mehdi Kargahi and Ali Movaghar. 2006. A method for performance analysis of earliest-deadline-�rst scheduling policy.
The Journal of Supercomputing 37, 2 (2006), 197–222.

[12] Ron Kohavi and Roger Longbotham. 2007. Online Experiments: Lessons Learned. Computer 40, 9 (Sept 2007), 103–105.
https://doi.org/10.1109/MC.2007.328

[13] Milad Mahdian and Edmund Yeh. 2017. MinDelay: Low-latency Forwarding and Caching Algorithms for Information-
Centric Networks. arXiv:1710.05130[cs.NI].

[14] Sean P. Meyn and Richard L. Tweedie. 1993. Markov chains and stochastic stability.
[15] Leela Srikar Muppirisetty, John Tadrous, Atilla Eryilmaz, and Henk Wymeersch. 2015. On proactive caching with

demand and channel uncertainties. In 2015 53rd Annual Allerton Conference on Communication, Control, and Computing
(Allerton). 1174–1181. https://doi.org/10.1109/ALLERTON.2015.7447141

[16] Henrique Pinto, Jussara M. Almeida, and Marcos A. Gonçalves. 2013. Using Early View Patterns to Predict the
Popularity of Youtube Videos. In Proceedings of the Sixth ACM International Conference on Web Search and Data Mining
(WSDM ’13). ACM, New York, NY, USA, 365–374. https://doi.org/10.1145/2433396.2433443

[17] Vijay Sivaraman and Fabio Chiussi. 2000. Providing end-to-end statistical delay guarantees with earliest deadline �rst
scheduling and per-hop tra�c shaping. In Proceedings IEEE INFOCOM 2000. Conference on Computer Communications.
Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. IEEE, 631–640.

[18] John Tadrous and Atilla Eryilmaz. 2016. On Optimal Proactive Caching for Mobile Networks With Demand Uncertain-
ties. IEEE/ACM Transactions on Networking 24, 5 (October 2016), 2715–2727. https://doi.org/10.1109/TNET.2015.2478476

[19] John Tadrous, Atilla Eryilmaz, and Hesham El Gamal. 2013. Proactive resource allocation: Harnessing the diversity
and multicast gains. IEEE Transactions on Information Theory 59, 8 (2013), 4833–4854.

[20] Ronald W Wol�. 1989. Stochastic modeling and the theory of queues. Pearson College Division.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

Proactive Caching for Low Access-Delay Services under Uncertain Predictions 2:21

[21] Edmund Yeh, Tracey Ho, Ying Cui, Michael Burd, Ran Liu, and Derek Leong. 2014. VIP: A Framework for Joint Dynamic
Forwarding and Caching in Named Data Networks. In Proceedings of the 1st ACM Conference on Information-Centric
Networking (ACM-ICN ’14). ACM, New York, NY, USA, 117–126. https://doi.org/10.1145/2660129.2660151

[22] Shaoquan Zhang, Longbo Huang, Minghua Chen, and Xin Liu. 2017. Proactive Serving Decreases User Delay
Exponentially: The Light-Tailed Service Time Case. IEEE/ACM Trans. Netw. 25, 2 (April 2017), 708–723. https:
//doi.org/10.1109/TNET.2016.2607840

A PROOF OF PROPOSITION 1

First we consider the terms
ÕI (t)
i=1 Ui (ti)
I (t) and

Õ
i2Z+ :Ri =1,iI (t)Ui (ti)

A(t) .
ÕI (t)
i=1 Ui (ti)
I (t) is the average of terms in

{Ui (ti) : i  I (t)} by t .
Õ
i2Z+ :Ri =1,iI (t)Ui (ti)

A(t) is the average of the samples in {Ui (ti) : i  I (t) ,Ri = 1}
selected from {Ui (ti) : i  I (t)} if Ri = 1. One important fact is that Ui (ti) is independent of Ri ,
because the server has no knowledge of Ri before ti . Because Ri ’s are IID, we have:

lim
t!1

ÕI (t)
i=1 Ui (ti)
I (t) = lim

t!1

Õ
i 2Z+:Ri=1,iI (t)Ui (ti)

A (t) ,w .p.1 (28)

Recall thatUi = Ui (ti) if Ri = 1, andUi � Ui (ti) if Ri = 0. So we have:

lim
t!1

ÕI (t)
i=1 Ui

I (t) � lim
t!1

ÕI (t)
i=1 Ui (ti)
I (t) (29)

lim
t!1

Õ
i 2Z+:Ri=1,iI (t)Ui

A (t) = lim
t!1

Õ
i 2Z+:Ri=1,iI (t)Ui (ti)

A (t) (30)

By combining the equations above, we have:

lim
t!1

ÕI (t)
i=1 Ui

I (t) � lim
t!1

Õ
i 2Z+:Ri=1,iI (t)Ui

A (t) ,w .p.1 (31)

Therefore by de�nitions ofU andUA, we haveU � UA,w .p.1.

B PROOF OF THEOREM 1
First we make the following de�nitions similar to (8), (9) and (10):

The amount of time that �R works in idle state (namely Reactive Idle) from 0 to t is:

TRI (t) , | {� 2 (0, t] : V (�) = 0} | (32)

The amount of time that �R works in busy state (namely Reactive Busy) from 0 to t is:

TRB (t) , | {� 2 (0, t] : V (�) > 0} | (33)

The limiting fraction of time that �R works in idle state is:

�RI , lim
t!1

TRI (t)
t

(34)

The limiting fraction of time that �R works in busy state is:

�RB , lim
t!1

TRB (t)
t

(35)

Comparing reactive scheme with proactive scheme under the same sample path, de�ne the
system state at time t as "Proactive Served", if �R works in busy state at time t , and �P works in
proactive state at time t . The total time that �P works in "Proactive Served" state is:

TPS (t) , | {� 2 (0, t] : VP (�) = 0,VR (�) > 0} | (36)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

2:22 Ran Liu, Edmund Yeh, and Atilla Eryilmaz

where VP (t) is the un�nished work in proactive scheme at t and VR (t) is the un�nished work in
reactive scheme at t . The corresponding time intervals are marked in Figure 3.

Observe the system at time t when V (t) = 0 in both reactive scheme and proactive scheme. All
the potential requests i 2 {i : ti < t}, the corresponding realizations {Ri : ti < t} and the resulting
{Ui (t) : ti < t} of strategy�P have been determined, so the entire timeline from 0 to t can be divided
in two states in both reactive scheme and proactive scheme, as shown in Figure 3. Consequently,
we have:

TRB (t) +TRI (t) = TPR (t) +TPP (t) = t (37)

An important fact to be noticed here is that:

TPP (t) = TPS (t) +TRI (t) (38)

Then by (36):

µTPS (t) =
’

i 2Z+:Ri=1,iI (t)
Ui (t) (39)

where the term
Õ

i 2Z+:Ri=1,iI (t)Ui (t) is the total amount of proactive work received by all the
actual requests from time 0 to t .

Next, the total proactive work done by time t equals µTPP (t) by the de�nition of TPP (t), and it
satis�es the follow equation:

µTPP (t) =
I (t)’
i=1

Ui (t) +
1’

i=I (t)+1
Ui (t) (40)

where the term
ÕI (t)

i=1 Ui (t) is the total proactive work done for requests i 2 {i 2 Z+ : i  I (t)}, andÕ1
i=I (t)+1Ui (t) is the total proactive work done for requests i 2 {i 2 Z+ : i > I (t)}. Therefore the

summation of these two terms equals the total amount of proactive work done by time t .
Then based Proposition 1, we have:

limt!1

Õ
i2Z+ :Ri =1,iI (t)Ui (t)

t

limt!1
ÕI (t)
i=1 Ui (t)

t

=
limt!1

A(t)
t

Õ
i2Z+ :Ri =1,iI (t)Ui (t)

A(t)

limt!1
I (t)
t

ÕI (t)
i=1 Ui (t)
I (t)

=
limt!1

A(t)
t UA

limt!1
I (t)
t U

 �p

�
,w .p.1 (41)

= p,w .p.1 (42)

with equality in (41) if and only if the strategy satis�es Property 2. Following (42), we have:

lim
t!1

Õ
i 2Z+:Ri=1,iI (t)Ui (t)

t
= p lim

t!1

ÕI (t)
i=1 Ui (t)

t

,w .p.1 (43)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

Proactive Caching for Low Access-Delay Services under Uncertain Predictions 2:23

Then based on Equation (38) , (40), (41) and (43), we have:

lim
t!1

µTPP (t)
t

p
(40)
= lim

t!1

⇣ÕI (t)
i=1 Ui (t) +

Õ1
i=I (t)+1Ui (t)

⌘
p

t

= lim
t!1

ÕI (t)
i=1 Ui (t)

t
p + lim

t!1

Õ1
i=I (t)+1Ui (t)

t
p (44)

(43),(41),(Def .1)
�

limt!1
Õ

i 2Z+:Ri=1,iI (t)Ui (t)
t

,w .p.1 (45)

(39)
= lim

t!1
µTPS (t)

t
,w .p.1 (46)

with equality in (45) if and only if the strategy satis�es both Property 1 and Property 2. So if we
put Equation (38) over t and take t ! 1, we have:

lim
t!1

TPP (t)
t
= lim

t!1
TPS (t)

t
+ lim

t!1
TRI (t)

t

 lim
t!1

TPP (t)
t

p + lim
t!1

TRI (t)
t
,w .p.1 (47)

(1 � p) lim
t!1

TPP (t)
t

 lim
t!1

TRI (t)
t
,w .p.1 (48)

where (47) is from (46).
By replacing corresponding terms in Equation (48) with Equation (34) and (10), we have:

�PP  �RI

1 � p
,w .p.1 (49)

and we know from fundamental queueing theory that:

�RI = 1 � �ps

µ
(50)

Then we have the result:

�PP  µ � �ps

µ (1 � p) ,w .p.1 (51)

And it follows that:

�PR = 1 � �PP � �ps � µp

µ (1 � p) ,w .p.1 (52)

with equality in (51) and (52) if and only if the strategy satis�es both Property 1 and Property 2.

C PROOF OF COROLLARY 1
The average amount of proactive work done for each potential request i 2 {i 2 Z+ : i  I (t)} by
time t can be calculated by dividing the total amount of proactive work done for these requests by

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

2:24 Ran Liu, Edmund Yeh, and Atilla Eryilmaz

the total number I (t), so

U = lim
t!1

ÕI (t)
i=1 Ui

I (t)

= lim
t!1

ÕI (t)
i=1 Ui (t)
I (t)

= lim
t!1

Õ1
i=1Ui (t)
I (t) � lim

t!1

Õ1
i=I (t)+1Ui (t)

I (t) (53)


limt!1

Õ1
i=1Ui (t)

t

limt!1
I (t)
t

,w .p.1 (54)

=
µ�PP

�
,w .p.1 (55)

 µ � �ps

� (1 � p) ,w .p.1 (56)

with equality in (54) and (56) and only if the strategy satis�es both Property 1 and Property 2. We
get (55) from (54) by the de�nition of �PP and by the Strong Law of Large Numbers. The second
term in (53) is 0 w.p.1 if and only if �P satis�es Property 1. Similarly, we have:

S = lim
t!1

Õ
i 2Z+:Ri=1,iI (t) Si

A (t)

=
limt!1

Õ
i2Z+ :Ri =1,iI (t) Si

t

limt!1
A(t)
t

(57)

=
µ�PR

�p
,w .p.1 (58)

� �s � µ

� (1 � p) ,w .p.1 (59)

with equality in (59) if and only if the strategy satis�es both Property 1 and Property 2. (58) is by
the Strong Law of Large Numbers.

D PROOF OF PROPOSITION 2
Evolution of the Markov Chain: Consider the system starting from state Xn = xn , xn 2 Z+ at
�n . By De�nition 3, it means that 1) V

�
�
+
n
�
= 0, 2) U� (� +n)

�
�
+
n
�
= 0, and 3) �

�
�
+
n
�
= P

�
�
+
n
�
+ xn .

From Condition 3), we know that the system starts proactively serving request �
�
�
+
n
�
= P

�
�
+
n
�
+xn

right after �n . If the request P
�
�
+
n
�
+ xn receives � bits of proactive service before its arrival epoch

tP (� +n)+xn , or an equivalent condition:

UP (� +n)+xn
�
tP (� +n)+xn

�
= � (60)

is satis�ed, it can be easily veri�ed by De�nition 3 that a transition happens right after request
P

�
�
+
n
�
+ xn receives � bits of proactive service. Therefore if (60) is satis�ed, we have:

�n+1 < tP (� +n)+xn (61)

By the de�nition of threshold-based strategies, an important fact is that:

Ui (�n) = �, i f i = P
�
�
+
n
�
+ 1, P

�
�
+
n
�
+ 2, . . . , P

�
�
+
n
�
+ xn � 1 (62)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

Proactive Caching for Low Access-Delay Services under Uncertain Predictions 2:25

given Xn = xn . Therefore another equivalent condition to (60) is:
P(� +n)+xn�1’
i=P (� +n)+1

(s � �)Ri �V
�
tP (� +n)+xn

�
+ �  µ

�
tP (� +n)+xn � �n

�
(63)

ÕP(� +n)+xn�1
i=P (� +n)+1

(s � �)Ri represents the total amount of reactivework of all actual arrivals in
�
�n , tP (� +n)+xn

�
.

V
�
tP (� +n)+xn

�
represents the amount of un�nished reactive work at the arrival epoch of request

P
�
�
+
n
�
+ xn . Notice that P

�
�
+
n
�
+ xn is the request being proactively worked on starting from �n .

So the term
ÕP(� +n)+xn�1

i=P (� +n)+1
(s � �)Ri � V

�
tP (� +n)+xn

�
represents the total amount of reactive work

done in
�
�n , tP (� +n)+xn

�
. The RHS means the total amount of work that can be done in

�
�n , tP (� +n)+xn

�
.

If Condition (63) is satis�ed, it means that � bits of proactive work can be done for request
�
�
�
+
n
�
= P

�
�
+
n
�
+ xn before tP (� +n)+xn .

Case 1: If (63) is satis�ed, (61) is true. In this case, we have An < xn and the following the
transition happens:

Xn+1 = �
�
�
+
n+1

�
� P

�
�
+
n+1

�
=

�
�
�
�
+
n
�
+ 1

�
�

�
P

�
�
+
n
�
+An

�
= xn + 1 �An (64)

Case 2: If (63) is not satis�ed, we know that no transition happens in
�
�n , tP (� +n)+Xn

�
. Because

there have been xn arrivals by t+P (� +n)+xn , we have An � xn . We are going to show that Xn+1 = 1 in
this case in the following.

Suppose we have Xn+1 � 2, then we have �
�
�
+
n+1

�
= P

�
�
+
n+1

�
+Xn+1 > P

�
�
+
n+1

�
+ 1 by De�nition

3. Then based on the de�nition of threshold-based strategies in Algorithm 1, there must an epoch
�
0 2

�
tP (� +n)+Xn ,�n+1

�
such that 1) V (� 0+) = 0, 2) U� (� 0+) (� 0+) = 0, and 3)� (� 0+) = P

�
�
+
n+1

�
+ 1.

Because we know �
0 < �n+1, we have � (� 0+) = P

�
�
+
n+1

�
+ 1 > P (� 0+) + 1. By De�nition 3, a

transition should happen at � 0 which is earlier than �n+1. So a contradiction is achieved. Then if
An � xn :

Xn+1 = 1 (65)

By summarizing Cases 1 and 2, we have

Xn+1 = max {Xn + 1 �An , 1} ,8n = 0, 1, . . . (66)

Proof of Markovian Property: Now we consider (63). Condition (63) is determined by Xn ,�
Ri : i > P

�
�
+
n
�
, i 2 Z+

,
�
ti : i > P

�
�
+
n
�
, i 2 Z+

and V

�
tP (� +n)+xn

�
. If the realization (i.e., Ri ’s),

arrival epoch (i.e., ti ’s) and the amount of reactive work to be done of each actual arrival (i.e.,
s � �) are determined, the term V

�
tP (� +n)+xn

�
is also deterministic.

�
Ri : i > P

�
�
+
n
�
, i 2 Z+

are IID

Binomial random variables which are memoryless.
�
ti : i > P

�
�
+
n
�
, i 2 Z+

are determined by the

Poisson process {P (t) ; t > 0}, which are also memoryless. Therefore Xn+1 only depends on Xn and
what happens after �n , and the chain is Markovian by de�nition.

E PROOF OF PROPOSITION 3
Recall the de�nition of p�k , Pr {An = k |Xn = xn ,xn > k} ,k = 0, 1, 2, We can follow the argu-
ments done in Appendix D and see that (61) is satis�ed givenXn > k . Therefore, the eventAn = k is
only dependent on

�
ti : i = P

�
�
+
n
�
+ 1, P

�
�
+
n
�
+ 2, . . . , P

�
�
+
n
�
+ k

and

�
Ri : i = P

�
�
+
n
�
+ 1, P

�
�
+
n
�
+ 2,

. . . , P
�
�
+
n
�
+ k

given Xn > k , based on (62). So an important conclusion is that p�k is independent

of Xn given Xn > k .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

2:26 Ran Liu, Edmund Yeh, and Atilla Eryilmaz

In order to calculate the transition probabilities
n
p
�
k ,k = 0, 1, 2, . . .

o
, we consider the probabilities

p
�
k = Pr {An = k |Xn = 1} ,k = 0, 1, 2, p�k can then be interpreted as the probability that there
are k arrivals before the next transition happens given Xn = 1. Then

Õ1
k=0 p

�
k (1 � k) can be

explained as the expected drift of the next transition in the Markov chain, starting from the state
Xn = 1. In the following, we are going to compute the probabilities of

n
p
�
k ,k = 0, 1, 2 . . .

o
, with

respect to di�erent values of �.
Distributions of Tn and An: We �rst analyze the distribution of Tn |Xn = 1 and An |Xn = 1.

Inspired by the methods used in the analysis of the distribution of busy periods in M/G/1 queues in
Section 8-4 of [20], we use a similar method.

De�ne function T (�1,�, �,p) as the length of a time interval starting from the arrival epoch of
the �rst job in an empty system, to the epoch when the system becomes empty for the �rst time
again. The arrivals follow a Poisson process with an overall arrival rate of �, where each arrival is
realized with probability p, IID. The service time of the �rst job is �1, and the service time of the
next arrivals is � if realized.
Notice that queueing disciplines will not a�ect the length of this time interval, as long as the

system is work-conserving. Speci�cally, if we select�1 =
�
µ and� = s��

µ , we haveT
⇣
�
µ ,

s��
µ , �,p

⌘
=

(Tn |Xn = 1). If we select �1 =
s��
µ and � = s��

µ , T
⇣
s��
µ ,

s��
µ , �,p

⌘
is the length of a busy period

in our proposed system, which is the time interval from the arrival of the �rst actual request when
V (t) = 0, to the epoch that V (t) = 0 again for the �rst time after the �rst actual arrival.

Denote the number of potential arrivals when V (t) = 0 during T (�1,�, �,p) as NP ⇠ P (��1),
where P (·) is the Poisson distribution. Notice that Np is di�erent from the number of arrivals in
T (�1,�, �,p) because some arrivals happen when the server is working reactively, i.e.V (t) > 0.
Denote the number of actual arrivals among these Np arrivals as NA ⇠ B (NP ,p), where B (·, ·) is
the Binomial distribution. When an actual request among NA arrives, a busy period starts. The
length of each busy period follows the distribution T (�,�, �,p), IID.

First we derive T (�,�, �,p). Following similar arguments in Section 8-4 of [20], we have:

E [T (�,�, �,p) |NP ,NA] = � + NAE [T (�,�, �,p)] + (NP � NA) 0 (67)

because the busy periods are statistically similar. Then we have:

E [T (�,�, �,p) |NP] = � + pNPE [T (�,�, �,p)] (68)
E [T (�,�, �,p)] = � + p��E [T (�,�, �,p)] (69)

So we have:

E [T (�,�, �,p)] = �

1 � p��
(70)

Similarly, we can derive E [T (�1,�, �,p)]. We know the �rst job is with size �1, and each busy
period follows T (�,�, �,p), we have:

E [T (�1,�, �,p)] = �1 + �p�1E [T (�,�, �,p)] (71)

= �1 + �p�1
�

1 � p��
(72)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

Proactive Caching for Low Access-Delay Services under Uncertain Predictions 2:27

By replacing corresponding terms, we have

E [Tn |Xn = 1] = E


T

✓
�

µ
,
s � �

µ
, �,p

◆�

=
�

µ
+ �p

�

µ

s��
µ

1 � p�
s��
µ

(73)

=
�

µ � p� (s � �) (74)

=
1

µ��ps
� + p�

(75)

Similarly, we can de�neA (�1,�, �,p) as the number of arrivals in the next transition givenXn = 1.
With similar arguments, we have:

E [A (�,�, �,p)] = ��

1 � ��p
(76)

E [A (�1,�, �,p)] = �p�1
��

1 � ��p
+ ��1 (77)

E [An |Xn = 1] = E


A

✓
�

µ
,
s � �

µ
, �,p

◆�
=

�

µ��ps
� + p�

(78)

An interesting fact is that if we choose � according toU ⇤, as de�ned in (14), we have

E [An |Xn = 1]
8>>><
>>>:

< 1, i f � < U
⇤

= 1, i f � = U ⇤

> 1, i f � > U
⇤

(79)

Notice that Pr {An = k |Xn = 1} = p�k ,8k = 0, 1, . . ., and

E [An |Xn = 1] =
1’
k=0

p
�
k k (80)

So we have

1’
k=0

p
�
k k

8>>><
>>>:

< 1, i f � < U
⇤

= 1, i f � = U ⇤

> 1, i f � > U
⇤

(81)

And our conclusion follows directly:

1’
k=0

p
�
k (1 � k)

8>>><
>>>:

> 0, i f � < U
⇤

= 0, i f � = U ⇤

< 0, i f � > U
⇤

(82)

F PROOF OF PROPOSITION 4
In order to prove E [Tn |Xn = xn] < 1, 8xn 2 Z+, we �rst prove that:

E [Tn |Xn = 1] � E [Tn |Xn = k] ,8k > 1 (83)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

2:28 Ran Liu, Edmund Yeh, and Atilla Eryilmaz

Fig. 14. Comparison of System 1 and System 2 in
the Proof of Proposition 4

Fig. 15. Comparison of the Proactive System and
the Virtual System in the Proof of Proposition 4

then prove that:

E [Tn |Xn = 1] < 1 (84)

to �nish the proof.
Proof of (83):
First we prove the following:

E [Tn |Xn = 1] � E [Tn |Xn = k] ,8k > 1 (85)

Consider two systems under ��
P which start from �n with P1 (�n) = P2 (�n), but in di�erent states

: X 1
n = 1 in the �rst system and X 2

n = k,k > 1 in the second system. Based on (62), no proactive
service has been done for any future requests by time �n in the �rst system, and the �rst k � 1
future requests have received � bits of proactive service by time �n in the second system. Recall
that � (t) denotes the request the server would proactively work on if the V (t) = 0 at t . Here we
use �1 (t) for the �rst system and �2 (t) for the second system.
Because we assume P1 (�n) = P2 (�n), X 1

n = 1 and X
2
n = k,k > 1, we have �2

�
�
+
n
�
> �1

�
�
+
n
�
by

De�nition 3. Then if we consider the same arrival processes after �n in both systems under the
same strategy ��

P , we have

�2 (t) � �1 (t) ,8t � �n (86)

Then we have � 1n+1 � �
2
n+1 by De�nition 3, which means a transition always happens in the second

system no later than the �rst system. Therefore we have:

Tn |Xn = 1 � Tn |Xn = k,k � 2 (87)

It is true for every sample path, so we have:

E [Tn |Xn = 1] � E [Tn |Xn = k] ,8k > 1 (88)

An example of the comparison can be found in Figure 14.
Proof of (84): Next, we prove that E [Tn |Xn = 1] < 1. Again, we use the method of comparisons

to prove it.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

Proactive Caching for Low Access-Delay Services under Uncertain Predictions 2:29

We compare the proactive system with a virtual system. Both systems start from state Xn = 1
(X̃n = 1 in the virtual system) at �n . In the virtual system, the server stops proactively serving any
requests from �n . Our goal is to �nd the earliest epoch � ⇤ > �n which satis�es:

Ṽ
�
�
⇤+� = 0, P̃

�
�
⇤+� = Ĩ

�
�
⇤+� > I

�
�
+
n
�

(89)

We consider � ⇤ as the next transition time in the virtual system. Correspondingly, we de�ne
T̃n = �

⇤ � �n . Notice that P̃ (� ⇤+) = Ĩ (� ⇤+) > I
�
�
+
n
�
is a stronger condition to Condition 3) in

De�nition 3. Based on the de�nitions, we are going to prove⇣
T̃n |X̃n = 1

⌘
� (Tn |Xn = 1) (90)

in the two systems under the same sample path.
Now we consider the same sample path in both the proactive system under ��

P and the virtual
system starting from Xn = 1 and X̃n = 1 from �n . An example of the comparison is shown in Figure
15. Since no proactive work will be done in the virtual system before � ⇤, all the actual arrivals need
to receive s bits reactively in the virtual system, which is no fewer than the proactive system for
each request. Therefore similar to the previous arguments we did for Equation (86), we always
have:

�̃ (t)  � (t) ,8t > �n (91)

If we compare the conditions in (89) with the conditions in De�tion 3, we can see that (89) is
a stronger condition because if P (� ⇤+) = I (� ⇤+), we must have �̃ (� ⇤+) � I (� ⇤+) + 1 > P (� ⇤+).
Therefore the transition in the proactive system will happen no later than the virtual system.
Therefore the transition time

⇣
T̃n |X̃n = 1

⌘
� (Tn |Xn = 1) along every sample path.

Construction of � ⇤: Here we aim to �nd the epoch �
⇤ in the virtual system which satis�es

conditions in Equation (89). Based on the conditions: 1)Ṽ (� ⇤+) = 0, 2)P̃ (� ⇤+) = Ĩ (� ⇤+) > I
�
�
+
n
�
, we

construct a scenario when these two conditions are satis�ed.
Our target is to �nd a busy period starts with one actual arrival and no other potential arrivals

happen before it ends. The epoch � ⇤ can be found when such a busy period ends because: 1) the
server becomes idle so Ṽ (� ⇤+) = 0, 2) the latest arrival is an actual arrival so P̃ (� ⇤+) = Ĩ (� ⇤+).
Because there should be at least one actual arrival after �n , we have Ĩ (� ⇤+) > I

�
�
+
n
�
so the condition

is satis�ed.
Recall that we assume �sp < µ, so the virtual system is stable. The expected idle period length in

the virtual system is then

E [IV] =
1
�p

(92)

where IV is de�ned as the length of an idle period in the virtual system. Based on E[BV]
E[BV]+E[IV] = � =

�ps
µ , where BV is the length of a busy period in the virtual system, we can also calculate the expected

length of a busy period in the virtual system E [BV]. So we know that E [IV] < 1,E [BV] < 1.
The next step is to �nd such a busy period. Every time a busy period starts with an actual arrival,

the probability that there are no potential arrivals during the service time of the actual arrival s
µ is

e
�� s

µ , IID. Therefore, the expected number of busy periods that such a busy period happens for
the �rst time is E [NB] = 1

e��
s
µ
= e

� s
µ , where NB is the number of busy periods when the �rst busy

period satisfying the condition is observed. So the expected time that such a busy period happens

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

2:30 Ran Liu, Edmund Yeh, and Atilla Eryilmaz

is then bounded as:

E
⇥
T̃n |X̃n = 1

⇤
 E [NB] (E [IV] + E [BV]) < 1 (93)

De�ne the bound EV , E [NB] (E [IV] + E [BV]), which is a determined �nite number given system
parameters �,p, s, µ. Therefore we have our bound on E [Tn |Xn]:

E [Tn |Xn]  E [Tn |Xn = 1]  E
⇥
T̃n |X̃n = 1

⇤
= EV < 1, 8Xn 2 Z+ (94)

So we proved E [Tn |Xn = k] < 1,8k 2 Z+ by combining (83) and (84).
Similarly we can prove E [An |Xn = k] < 1,8k 2 Z+.

G PROOF OF LEMMA 1
First assume that by time t , there have been N (t) , max {n |�n  t} transitions in the Markov
chain under ��

P . Then we have the following inequalities of N (t):

N (t)  P (t) + µt

�
(95)

lim
t!1

t

N (t)  EV ,w .p.1 (96)

where EV , E [NB] (E [IV] + E [BV]) is the bound in (93). Equation (95) is by the fact that a transition
happens either when the server �nishes proactively serving a request with � bits, or some potential
arrival happens before it receives � bits of proactive service. The term limt!1

t
N (t) is the limiting

empirical average Tn . Equation (96) is from Proposition 4. Take (95) over t and take limit of t ! 1,
we get:

lim
t!1

N (t)
t

 lim
t!1

✓
P (t)
t
+

µ

�

◆
= � +

µ

�
,w .p.1 (97)

Combining it with (96), we have:

� +
µ

�
� lim

t!1
N (t)
t

� 1
EV

(98)

On the other hand, recall that if � (t) > P (t), we have (62). Based on De�nition 3, Xn+1 � Xn 
1,8n = 0, 1, Then we have:

� (t) � P (t)  max
�
XN (t),XN (t)+1

 XN (t) + 1 (99)

� (t) � P (t) � min
�
XN (t),XN (t)+1

� XN (t)+1 � 1 (100)

8t 2
�
�N (t),�N (t)+1

�
Therefore we have 8t 2 (�n ,�n+1) :

1’
i=P (t)+1

Ui (t)  max {� (� (t) � P (t)) , 0} (101)

 �
�
XN (t) + 1

�
(102)

1’
i=P (t)+1

Ui (t) � max {� (� (t) � P (t) � 1) , 0} (103)

� �
�
XN (t)+1 � 2

�
(104)

,8t 2 (�n ,�n+1)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

Proactive Caching for Low Access-Delay Services under Uncertain Predictions 2:31

(101) is achieved by considering the amount of proactive service done for request � (t) as �. (102) is
from (99). (103) is achieved by considering the amount of proactive service done for request � (t) as
0, and (104) is from (100). Therefore for all t , we have:Õ1

i=P (t)+1Ui (t)
t


�

�
XN (t) + 1

�
t

(105)Õ1
i=P (t)+1Ui (t)

t
�

�
�
XN (t)+1 � 2

�
t

(106)

If we take the limit of t ! 1 we have

lim
t!1

Õ1
i=P (t)+1Ui (t)

t
 lim

t!1

�
�
XN (t) + 1

�
t

= lim
t!1

�
�
XN (t) + 1

�
N (t)

N (t)
t

 lim
n!1

Xn

n
�

✓
� +

µ

�

◆
(107)

lim
t!1

Õ1
i=P (t)+1Ui (t)

t
� lim

t!1

�
�
XN (t)+1 � 2

�
t

= lim
t!1

�
�
XN (t)+1 � 2

�
N (t)

N (t)
t

� lim
n!1

Xn

n

�

EV
(108)

So if we know limn!1
Xn
n = 0,w .p.1, we have limt!1

Õ1
i=P (t)+1Ui (t)

t = 0,w .p.1 from (107). And if

limt!1

Õ1
i=P (t)+1Ui (t)

t = 0,w .p.1, we have limn!1
Xn
n = 0,w .p.1 from (108). So by De�nition 1, the

threshold-based strategy ��
P satis�es Property 1 if and only if the corresponding Markov chain

satis�es limn!1
Xn
n = 0,w .p.1.

H PROOF OF THEOREM 3
Case 1: If � < U

⇤, we know that the chain is transient from Theorem 2. Therefore, 9N > 0 such
that:

Xn > 1,8n > N

with probability 1. From the N th transition, we look at the drifts, i.e. �m , Xm+1 � Xm ,8m 2 Z+.
Then for all n > N :

Xn = XN +

n�1’
i=N

(Xi+1 � Xi)

= XN +

n�1’
i=N

�i

= XN +

1’
k=0

’
i 2Z+:�i=1�k,N i<n

�i (109)

= XN +

1’
k=0

(1 � k) | {i 2 Z
+ : �i = 1 � k,N  i < n} |

n � N
(n � N) (110)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

2:32 Ran Liu, Edmund Yeh, and Atilla Eryilmaz

(109) is achieved by grouping transitions based on the size of drifts. Notice that | {i 2Z+:�i=1�k,N i<n } |
n�N

is the fraction of drifts with value 1�k , where there are k arrivals before the next transition. Because
the chain never revisits state 1 after N , the probability that there are k arrivals is p�k . So as n ! 1,
we have:

lim
n!1

| {i 2 Z+ : �i = 1 � k,N  i < n} |
n � N

= p
�
k ,w .p.1 (111)

based on Strong Law of Large Numbers. If we take both sides over n and take the limit of n ! 1,
we have:

lim
n!1

Xn

n
= lim

n!1

XN

n
+

1’
k=0

(1 � k) | {i 2 Z
+ : �i = 1 � k,N  i < n} |

n � N

(n � N)
n

!

=

1’
k=0

(1 � k) lim
n!1

✓
| {i 2 Z+ : �i = 1 � k,N  i < n} |

n � N

(n � N)
n

◆

=

1’
k=0

(1 � k)p�k

> 0 (112)

based on Proposition 3. So when � < U
⇤, the threshold-based strategy does not satisfy Property 1

based on Lemma 1.
Case 2: If � � U

⇤, we consider a virtual strategy. In this strategy, the server can do proactive
work at the rate of

µ� ,
�

µ��ps
� +�p

1 � �
µ �

�
µ��ps
U ⇤ +�p

1 � �
µ =

1
1 � �

µ > µ, � 2 (0, 1) (113)

In this case, de�ne �� (t) as the request that the system would proactively work on at time t under
the virtual strategy. Because the system is always working at a strictly higher rate µ� > µ with the
virtual strategy, we have �� (t) � � (t) ,8t if the two system are under the same sample path. Then
by De�nition 3, we have:

X
�
n � Xn ,8n 2 Z+ (114)

where X �
n is de�ned as the states under the virtual strategy.

Following the same steps of Proposition 3, we can derive the new set of transition probabilitiesn
p
��
k

o
, and prove that the Markov chain under the virtual strategy is transient. Speci�cally:

lim
n!1

X
�
n
n
=

1’
k=0

p
��
k (1 � k) = �,8� 2 (0, 1) (115)

So 8� 2 (0, 1), we have

lim
n!1

Xn

n
 lim

n!1
X
�
n
n
= � (116)

And if we take � ! 0:

lim
n!1

Xn

n
 lim

�!0
lim
n!1

X
�
n
n
= 0 (117)

Therefore based on Lemma 1, the threshold-based strategy satis�es Property 1 when � � U
⇤.

Then by summarizing Cases 1 and 2, the threshold-based strategy ��
P satis�es Property 1 if and

only if � � U
⇤.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

Proactive Caching for Low Access-Delay Services under Uncertain Predictions 2:33

I PROOF OF THEOREM 4
In order to prove Theorem 4, we �rst consider the following Lemma 2. The idea of Lemma 2 is
to look at the proactive work done within one transition. Under strategy ��

P , denote the total
amount of proactive work done in (�n ,�n+1) for all potential requests as �n , and denote the amount
of proactive work done in (�n ,�n+1) for actual requests as � An . We investigate the expectation of �n
and � An conditioned on Xn and Xn+1 in Lemma 2.

L���� 2.

E
⇥
�
A
n |Xn = k,Xn+1 = l

⇤
= E [�n |Xn = k,Xn+1 = l]p, i f l > 1 (118)

E
⇥
�
A
n |Xn = k,Xn+1 = l

⇤
 E [�n |Xn = k,Xn+1 = l]p, i f l = 1 (119)

E
⇥
�
A
n |Xn = k,Xn+1 = l

⇤
< E [�n |Xn = k,Xn+1 = l]p, i f k = 1, l = 1 (120)

P����. Proof of (118): Given the starting state Xn = k at �n , we focus on the request P (�n) + k
which is the request that starts to receive proactive service from �n .

IfXn+1 > 1, it means that the server is able to proactively serve request P (�n)+k before it arrives,
i.e. tP (�n)+k > �n+1. So we have the following:

(�n |Xn = k,Xn+1 = l) =� (121)
⇣
�
A
n |Xn = k,Xn+1 = l

⌘
=

(
�, i f RP (�n)+i = 1
0, i f RP (�n)+i = 0
,8k � 1,8l > 1 (122)

Because we know that Pr
�
RP (�n)+k = 1

= p independently, so we have:

E
⇥
�
A
n |Xn = k,Xn+1 = l

⇤
= E [�n |Xn = k,Xn+1 = l]p = �p, 8k � 1,8l > 1 (123)

So (118) is proved.
Proof of (119): If Xn+1 = 1, which means that the request P (�n) + k arrives before it receives �

bits of proactive service, i.e. tP (�n)+k < �n+1, we know that
(1) All the proactive work done in

�
�n , tP (�n)+k

�
is for request P (�n) + k ;

(2) All the proactive work done in
�
tP (�n)+k ,�n+1

�
are for requests that are not going to be realized.

Both of these facts are by the de�nition of threshold-based strategy. Because the server will keep
proactively serving request P (�n)+k until it receives � bits proactively or until it arrives, statement
(1) is true. For statement (2), if any request that has not arrived starts to be proactively served,
a transition should happen at the moment it starts receiving proactive service by De�nition 3.
Therefore before the transition happens, i.e. �n+1, there should be no proactive work for future
potential arrivals. Take what happens in Figure 4 in (�3,�4) as an example. The server starts
proactively serving request 4 at �3. In (�3, t4), all the proactive work are done for request 4. All
the proactive work in (t4,�4) are done for the requests which have arrived before starts to be
"proactively" served.
Based on the discussions above, we have the following analysis. Consider the system starting

from �n with state Xn = k 2 Z+. De�ne a tuple of random vectors �n,k , �
�n,k ,�n,k

�
, where

�n,k , �
tP (�n)+1, tP (�n)+2 , . . . , tP (�n)+k

�
denotes a random vector of the next k arrival epochs ti ’s

after �n , and �n,k , �
RP (�n)+1 ,RP (�n)+2, . . . ,RP (�n)+k�1

�
denotes a random vector of the next k � 1

Ri ’s after �n . A realization �n,k = �n,k determines a set of sample paths after �n , where the �rst
k arrival epochs and the realization of the �rst k � 1 arrivals are determined. Given Xn = k and
�n,k = �n,k , what happens in the system during

�
�n , tP (�n)+k

�
is deterministic. We also know

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

2:34 Ran Liu, Edmund Yeh, and Atilla Eryilmaz

whether �n+1 > tP (�n)+k or not, which determines if Xn+1 = 1 or Xn+1 > 1, as discussed in the proof
of Proposition 2.

De�ne Qn,k,1 as:

Qn,k,1 ,
�
�n,k : Xn+1 = 1,Xn = k

(124)

which represents the set of sample paths under which the system transits from state k to 1 starting
from �n .

Then 8�n,k 2 Qn,k,1,8k 2 Z+,n = 0, 1, . . . we have:�
�n |�n,k = �n,k ,Xn = k

�
�

�
UP (�n)+k

�
tP (�n)+k

�
|�n,k = �n,k ,Xn = k

�
(125)

⇣
�
A
n |�n,k = �n,k ,Xn = k

⌘
=

(�
UP (�n)+k

�
tP (�n)+k

�
|�n,k = �n,k ,Xn = k

�
, i f RP (�n)+k = 1

0, i f RP (�n)+k = 0
(126)

Therefore 8�n,k 2 Qn,k,1,8k 2 Z+,n = 0, 1, . . .:

ER [� An |�n,k = �n,k ,Xn = k] =
�
UP (�n)+k

�
tP (�n)+k

�
|�n,k = �n,k ,Xn = k

�
p

 ER [�n |�n,k = �n,k ,Xn = k]p (127)

where ER [·] means expectation with respect to RP (�n)+k . And by de�nition of Qn,k,1, we have:

E
⇥
�
A
n |Xn = k,Xn+1 = 1]

= E
⇥
�
A
n |Xn = k,�n,k 2 Qn,k,1

⇤
=

π
Qn,k,1

Pr
�
�n,k = �n,k |�n,k 2 Qn,k,1

· ER [� An |�n,k = �n,k ,Xn = k]d�n,k


π
Qn,k,1

Pr
�
�n,k = �n,k |�n,k 2 Qn,k,1

· ER [�n |�n,k = �n,k ,Xn = k]pd�n,k

= E [�n |Xn = k,Xn+1 = 1]p (128)

where (128) is by replacing corresponding terms according to (127). So we have:

E
⇥
�
A
n |Xn = k,Xn+1 = 1

⇤
 E [�n |Xn = k,Xn+1 = 1]p,8k 2 Z+ (129)

so (119) is proved.
Proof of (120): The system starts from state Xn = 1. It means at time �n , no proactive work is

done for any of the potential requests which have not arrived yet. Similar to the method we used to
prove (119), we focus on the set Qn,1,1 in this case. Recall that �n,1 2 Qn,1,1 if and only if Xn+1 = 1
given Xn = 1 and �n,1 = �n,1. Notice that �n,1 = (� (n, 1) ,� (n, 1)) where � (n, 1) =

�
tP (�n)+1

�
and

� (n, 1) is an empty vector, which means the arrival epoch of request P (�n) + 1 determines whether
Xn+1 = 1 or not. To be speci�c, Xn+1 = 1 if and only if tP (�n)+1 <

�
µ + �n . So:

Qn,1,1 =
�
�n,1 : Xn+1 = 1,Xn = 1

=

⇢
�n,1 : tP (�n)+1 <

�

µ
+ �n

�
(130)

We consider another set of sample paths Qn,1,1 which is de�ned as:

Qn,1,1 ,
⇢
�n,1 : tP (�n)+1 < �n +

�

2µ
, tP (�n)+2 � tP (�n)+1 �

�

2µ

�
(131)

By comparing (131) and (130), it is true that Qn,1,1 (Qn,1,1.
We discuss the value of �n under condition �n,1 = �n,1 2 Qn,1,1. If RP (�n)+1 = 1, the system

will proactively work on request P (�n) + 1 until tP (�n)+1. Consequently, request P (�n) + 1 receives

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

Proactive Caching for Low Access-Delay Services under Uncertain Predictions 2:35

fewer than �
2 bits of proactive service due to the de�nition of Qn,1,1. If RP (�n)+1 = 0, the system

will proactively work on request P (�n) + 1, until it receives � bits from proactive service or until
tP (�n)+2. Therefore we have 8�n,1 2 Qn,1,1,8n = 0, 1, . . .:

�
�n |�n,1 = �n,1,Xn = 1

�

�
(�
UP (�n)+1

�
tP (�n)+1

�
|�n,1 = �n,1,Xn = 1

�
, i f RP (�n)+1 = 1�

UP (�n)+1
�
tP (�n)+1

�
|�n,1 = �n,1,Xn = 1

�
+

�
2 , i f RP (�n)+1 = 0

(132)

⇣
�
A
n |�n,1 = �n,1,Xn = 1

�

=

(�
UP (�n)+1

�
tP (�n)+1

�
|�n,1 = �n,1,Xn = 1

�
, i f RP (�n)+1 = 1

0, i f RP (�n)+1 = 0
(133)

And 8�n,1 2 Qn,1,1,8n = 0, 1, . . .:

ER [�n |�n,1 = �n,1,Xn = 1] �
�
UP (�n)+1

�
tP (�n)+1

�
|�n,1 = �n,1,Xn = 1

�
+
� (1 � p)

2
(134)

ER [� An |�n,1 = �n,1,Xn = 1] =
�
UP (�n)+1

�
tP (�n)+1

�
|�n,1 = �n,1,Xn = 1

�
p (135)

So

ER [� An |�n,1 = �n,1,Xn = 1]  ER [�n |�n,1 = �n,1,Xn = 1]p � �p (1 � p)
2

,8�n,1 2 Qn,1,1,8n = 0, 1, . . . (136)

Then we have:

E

h
�
A
n |�n,1 2 Qn,1,1,Xn = 1

i

=

π
Qn,1,1

Pr

n
�n,1 = �n,1 |�n,1 2 Qn,1,1

o
· ER [� An |�n,1 = �n,1 2 Qn,1,1,Xn = k]d�n,1


π
Qn,1,1

Pr

n
�n,1 = �n,1 |�n,1 2 Qn,1,1

o
·
✓
ER [�n |�n,1 = �n,1 2 Qn,1,1,Xn = k]p � �p (1 � p)

2

◆
d�n,1

(137)

=

π
Qn,1,1

Pr

n
�n,1 = �n,1 |�n,1 2 Qn,1,1

o
·
⇣
ER [�n |�n,1 = �n,1 2 Qn,1,1,Xn = k]p

⌘
d�n,1

�
π
Qn,1,1

Pr

n
�n,1 = �n,1 |�n,1 2 Qn,1,1

o
·
✓
�p (1 � p)

2

◆
d�n,1

= E

h
�n |�n,1 2 Qn,1,1,Xn = 1

i
p � �p (1 � p)

2
(138)

So for the set Qn,1,1:

E

h
�
A
n |�n,1 2 Qn,1,1,Xn = 1

i
= E

h
�n |�n,1 2 Qn,1,1,Xn = 1

i
p � �p (1 � p)

2
(139)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

2:36 Ran Liu, Edmund Yeh, and Atilla Eryilmaz

By the Law of Total Expectation, consider the set Qn,1,1 and we know that:

E
⇥
�n |�n,1 2 Qn,1,1,Xn = 1

⇤
= Pr

n
�n,1 2 Qn,1,1 |�n,1 2 Qn,1,1

o
E

h
�n |�n,1 2 Qn,1,1,Xn = 1

i

+ Pr
n
�n,1 2

⇣
Qn,1,1 \Qn,1,1

⌘
|�n,1 2 Qn,1,1

o
E

h
�n |�n,1 2

⇣
Qn,1,1 \Qn,1,1

⌘
,Xn = 1

i
(140)

E
⇥
�
A
n |�n,1 2 Qn,1,1,Xn = 1

⇤
= Pr

n
�n,1 2 Qn,1,1 |�n,1 2 Qn,1,1

o
E

h
�
A
n |�n,1 2 Qn,1,1,Xn = 1

i

+ Pr
n
�n,1 2

⇣
Qn,1,1 \Qn,1,1

⌘
|�n,1 2 Qn,1,1

o
E

h
�
A
n |�n,1 2

⇣
Qn,1,1 \Qn,1,1

⌘
,Xn = 1

i
(141)

where Qn,1,1 \Qn,1,1 is the set di�erence of Qn,1,1 and Qn,1,1. The conditional probability
Pr

n
�n,1 2 Qn,1,1 |�n,1 2 Qn,1,1

o
can be calculated as follow:

Pr

n
�n,1 2 Qn,1,1 |�n,1 2 Qn,1,1

o

=
Pr

n
�n,1 2 Qn,1,1,�n,1 2 Qn,1,1

o
Pr

�
�n,1 2 Qn,1,1

 (142)

=
Pr

n
�n,1 2 Qn,1,1

o
Pr

�
�n,1 2 Qn,1,1

 (143)

where the probabilities Pr
n
�n,1 2 Qn,1,1

o
and Pr

�
�n,1 2 Qn,1,1

can be derived as follow:

Pr
�
�n,1 2 Qn,1,1

= Pr

⇢
tP (�n)+1 � �n <

�

µ

�
(144)

= 1 � e
�� �

µ (145)

Pr

n
�n,1 2 Qn,1,1

o

= Pr

⇢
tP (�n)+1 � �n <

�

2µ
& tP (�n)+2 � tP (�n)+1 >

�

2µ

�
(146)

= Pr

⇢
tP (�n)+1 � �n <

�

2µ

�
· Pr

⇢
tP (�n)+2 � tP (�n)+1 >

�

2µ

�
(147)

=
⇣
1 � e

�� �
2µ

⌘ ⇣
e
�� �

2µ
⌘
= e

�� �
2µ � e

�� �
µ (148)

So one can see that Pr
n
�n,1 2 Qn,1,1 |�n,1 2 Qn,1,1

o
> 0, and Pr

n
�n,1 2

⇣
Qn,1,1 \Qn,1,1

⌘
|�n,1 2 Qn,1,1

o
> 0. Equation (127) can be applied to 8�n,1 2

⇣
Qn,1,1 \Qn,1,1

⌘
(Qn,1,1, so we should have

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

Proactive Caching for Low Access-Delay Services under Uncertain Predictions 2:37

8�n,1 2
⇣
Qn,1,1 \Qn,1,1

⌘
:

ER [� An |�n,1 = �n,1,Xn = 1] =
�
UP (�n)+1

�
tP (�n)+1

�
|�n,1 = �n,1,Xn = 1

�
 ER [�n |�n,1 = �n,1,Xn = 1]p (149)

8�n,1 2
⇣
Qn,1,1 \Qn,1,1

⌘
,8n = 0, 1, . . .

and consequently:

E

h
�
A
n |�n,1 2

⇣
Qn,1,1 \Qn,1,1

⌘
,Xn = 1

i
 E

h
�n |�n,1 2

⇣
Qn,1,1 \Qn,1,1

⌘
,Xn = 1

i
p (150)

By combining this equation with (139), we are able to compare Equation (140) and (141). We have:

E
⇥
�
A
n |�n,1 2 Qn,1,1,Xn = 1

⇤
= Pr

n
�n,1 2 Qn,1,1 |�n,1 2 Qn,1,1

o
E

h
�
A
n |�n,1 2 Qn,1,1,Xn = 1

i

+ Pr
n
�n,1 2

⇣
Qn,1,1 \Qn,1,1

⌘
|�n,1 2 Qn,1,1

o
E

h
�
A
n |�n,1 2

⇣
Qn,1,1 \Qn,1,1

⌘
,Xn = 1

i
(151)

 Pr

n
�n,1 2 Qn,1,1 |�n,1 2 Qn,1,1

o
E

h
�n |�n,1 2 Qn,1,1,Xn = 1

i
p

+ Pr
n
�n,1 2

⇣
Qn,1,1 \Qn,1,1

⌘
|�n,1 2 Qn,1,1

o ✓
E

h
�n |�n,1 2

⇣
Qn,1,1 \Qn,1,1

⌘
,Xn = 1

i
p � �p (1 � p)

2

◆
(152)

= Pr

n
�n,1 2 Qn,1,1 |�n,1 2 Qn,1,1

o
E

h
�n |�n,1 2 Qn,1,1,Xn = 1

i
p

+ Pr
n
�n,1 2

⇣
Qn,1,1 \Qn,1,1

⌘
|�n,1 2 Qn,1,1

o
E

h
�n |�n,1 2

⇣
Qn,1,1 \Qn,1,1

⌘
,Xn = 1

i
p

� Pr

n
�n,1 2

⇣
Qn,1,1 \Qn,1,1

⌘
|�n,1 2 Qn,1,1

o
�p (1 � p)

2
< Pr

n
�n,1 2 Qn,1,1 |�n,1 2 Qn,1,1

o
E

h
�n |�n,1 2 Qn,1,1,Xn = 1

i
p

+ Pr
n
�n,1 2

⇣
Qn,1,1 \Qn,1,1

⌘
|�n,1 2 Qn,1,1

o
E

h
�n |�n,1 2

⇣
Qn,1,1 \Qn,1,1

⌘
,Xn = 1

i
p (153)

= E
⇥
�n |�n,1 = �n,1 2 Qn,1,1,Xn = 1

⇤
p (154)

Equation(151) is from (141). Equation (152) is from (139). Equation (153) is by removing term
�Pr

n
�n,1 2

⇣
Qn,1,1 \Qn,1,1

⌘
|�n,1 2 Qn,1,1

o
�p(1�p)

2 which is strictly negative. Then (154) is from
(140). So we �nally have:

E
⇥
�
A
n |�n,1 2 Qn,1,1,Xn = 1

⇤
< E

⇥
�n |�n,1 2 Qn,1,1,Xn = 1

⇤
p (155)

where (120) directly follows.
We have proved (118), (119) and (120) by now, so Lemma 2 is proved. ⇤

Lemma 2 can be interpreted as follow. In (�n ,�n+1), if �n bits of proactive service can all be
potentially realized, we should have E

⇥
�
A
n
⇤
= E [�n]p based on our assumptions on the request

processes. This is the case when a transition Xn+1 > 1 happens, when every bit of �n is done
before the corresponding request arrives. However if a transition Xn+1 = 1 happens, the amount
of proactive work done in (�n ,�n+1) that can potentially be realized is no more than �n , leading to
the inequality E

⇥
�
A
n
⇤
 E [�n]p in this scenario. An example is shown in (�3,�4) of Figure 4. The

amount of proactive work done in (� 0,�4) is for request 5 which has arrived but not realized. This

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

2:38 Ran Liu, Edmund Yeh, and Atilla Eryilmaz

part of proactive work will never be realized, so it is not included in � An which causes the inequality.
Speci�cally if transitions Xn = 1,Xn+1 = 1 happen, we proved that strict inequality is achieved.
Intuitively if the transition to the state 1 happens comparably often as all transitions, it will be

most likely thatU > UA, based on Lemma 2. Then we proceed to prove Theorem 4.
Proof of Theorem 4: First we rewriteU in the form of transitions. Recall that

N (t) , max
�
n |�

�
�
+
n
�
 I (t)

is the index of the transition where the latest actual request received

proactive service. From Proposition 4, we know that the expected time before next transition is
�nite. So as t ! 1, we know N (t) ! 1 as well. And limt!1

t
N (t) = E [Tn] ,w .p.1 where E [Tn] is

a �nite constant given system parameters. Recall that we de�ne �n as the amount of proactive work
done in (�n ,�n+1), and � An as the amount of proactive work done for actual requests in (�n ,�n+1).

Consider the term
ÕI (t)

i=1 Ui . If we rewrite this term from the point of view of transitions, we have:

I (t)’
i=1

Ui =

N (t)’
n=0

�n � o (t) (156)

where the term o (t) represents the amount of proactive work done in
�
�N (t),�N (t)+1

�
for requests

which arrive later than I (t). We know o (t) < �N (t) by de�nition. We know that E[�n]
µ  E [Tn] <

1,w .p.1, so we have:

lim
t!1

o (t)
t
= 0,w .p.1 (157)

Then we have:

U = lim
t!1

ÕI (t)
i=1 Ui

I (t) (158)

= lim
t!1

ÕN (t)
n=0 �n � o (t)

I (t) (159)

= lim
t!1

 ÕN (t)
n=0 (Xn+1 = 1) �n

N (t) +

ÕN (t)
n=0 (Xn+1 > 1) �n

N (t)

!
N (t)
I (t) (160)

= lim
t!1

 ÕN (t)
n=0 (Xn = 1,Xn+1 = 1) �n

N (t) +

ÕN (t)
n=0 (Xn > 1,Xn+1 = 1) �n

N (t)

+

ÕN (t)
n=0 (Xn+1 > 1) �n

N (t)

!
N (t)
I (t) (161)

where (160) and (161) are by grouping the terms based on transitions. The term limt!1
ÕN (t)
n=0 (Xn+1=1)

N (t)
represents the limiting fraction of state 1, and the other terms in similar form can be interpreted
correspondingly.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

Proactive Caching for Low Access-Delay Services under Uncertain Predictions 2:39

Similarly we have:

UA = lim
t!1

Õ
i 2Z+:Ri=1,iI (t)Ui

A (t)

= lim
t!1

 ÕN (t)
n=0 (Xn+1 = 1) � An

N (t) +

ÕN (t)
n=0 (Xn+1 > 1) � An

N (t)

!
N (t)
A (t) (162)

= lim
t!1

 ÕN (t)
n=0 (Xn = 1,Xn+1 = 1) � An

N (t) +

ÕN (t)
n=0 (Xn > 1,Xn+1 = 1) � An

N (t)

+

ÕN (t)
n=0 (Xn+1 > 1) � An

N (t)

!
N (t)
A (t) (163)

Case 1: If � < U
⇤, we know the Markov chain is transient. So we have

lim
t!1

ÕN (t)
n=0 (Xn = 1)

N (t) = 0,w .p.1 (164)

lim
t!1

ÕN (t)
n=0 (Xn > 1)

N (t) = 1,w .p.1 (165)

Therefore based on Lemma 2 and Strong Law of Large Numbers, we have:

lim
t!1

ÕN (t)
n=0 (Xn+1 = 1) �n

N (t) = lim
t!1

ÕN (t)
n=0 (Xn+1 = 1) �nÕN (t)
n=0 (Xn+1 = 1)

ÕN (t)
n=0 (Xn+1 = 1)

N (t) (166)

= 0,w .p.1 (167)

lim
t!1

ÕN (t)
n=0 (Xn+1 = 1) � An

N (t) = lim
t!1

ÕN (t)
n=0 (Xn+1 = 1) � AnÕN (t)
n=0 (Xn+1 = 1)

ÕN (t)
n=0 (Xn+1 = 1)

N (t) (168)

= 0,w .p.1 (169)

lim
t!1

ÕN (t)
n=0 (Xn+1 > 1) �n

N (t) = lim
t!1

ÕN (t)
n=0 (Xn+1 > 1) �nÕN (t)
n=0 (Xn+1 > 1)

ÕN (t)
n=0 (Xn+1 > 1)

N (t)
= E [�n |Xn+1 > 1] · 1 (170)
= �,w .p.1 (171)

lim
t!1

ÕN (t)
n=0 (Xn+1 > 1) � An

N (t) = lim
t!1

ÕN (t)
n=0 (Xn+1 > 1) � AnÕN (t)
n=0 (Xn+1 > 1)

ÕN (t)
n=0 (Xn+1 > 1)

N (t)

= E
⇥
�
A
n |Xn+1 > 1

⇤
· 1 (172)

= �p,w .p.1 (173)

And limt!1
A(t)
N (t) should be the average number of actual arrivals between two consecutive tran-

sitions, which converges to �pE [Tn] by the Law of Large Numbers. So from (160) and (162) we

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

2:40 Ran Liu, Edmund Yeh, and Atilla Eryilmaz

have:

U = lim
t!1

 ÕN (t)
n=0 (Xn+1 = 1) �n

N (t) +

ÕN (t)
n=0 (Xn+1 > 1) �n

N (t)

!
N (t)
I (t)

=
�

�E [Tn]
,w .p.1 (174)

UA = lim
t!1

 ÕN (t)
n=0 (Xn+1 = 1) � An

N (t) +

ÕN (t)
n=0 (Xn+1 > 1) � An

N (t)

!
N (t)
A (t) (175)

= �p
1

p�E [Tn]
=

�

�E [Tn]
,w .p.1 (176)

Therefore we haveU = UA,w .p.1 when � < U
⇤.

Case 2: If � = U ⇤, the Markov chain is null recurrent. So we have

lim
t!1

ÕN (t)
n=0 (Xn+1 = 1)

N (t) = 0,w .p.1 (177)

lim
t!1

ÕN (t)
n=0 (Xn+1 > 1)

N (t) = 1,w .p.1 (178)

Then the deductions are similar to previous case, so we directly show the conclusions:

U =
�

�E [Tn]
,w .p.1 (179)

UA =
�

�E [Tn]
,w .p.1 (180)

Therefore we haveU = UA,w .p.1 when � = U ⇤.
Case 3: If � > U

⇤, the Markov chain is positive recurrent. So the Markov chain has a limiting
distribution, or steady state probability {�k ,k = 1, 2, . . .}, where �k , Pr {limn!1Xn = k} ,8k 2
Z+. Then we have:

lim
t!1

ÕN (t)
n=0 (Xn = 1,Xn+1 = 1) �n

N (t)

= lim
t!1

 ÕN (t)
n=0 (Xn = 1,Xn+1 = 1) �nÕN (t)
n=0 (Xn = 1,Xn+1 = 1)

ÕN (t)
n=0 (Xn = 1,Xn+1 = 1)ÕN (t)

n=0 (Xn = 1)

ÕN (t)
n=0 (Xn = 1)

N (t)

!
(181)

= E [�n |Xn = 1,Xn+1 = 1] Pr {Xn+1 = 1|Xn = 1} �1,w .p.1 (182)

= �1

1’
k=1

p
�
k E [�n |Xn = 1,Xn+1 = 1] ,w .p.1 (183)

In (181),
ÕN (t)
n=0 (Xn=1,Xn+1=1)�nÕN (t)
n=0 (Xn=1,Xn+1=1)

is the average of �n between two consecutive transitions where

Xn = 1,Xn+1 = 1, which converges to E [�n |Xn = 1,Xn+1 = 1].
ÕN (t)
n=0 (Xn=1,Xn+1=1)ÕN (t)

n=0 (Xn=1)
is the fraction

of next transition where Xn+1 = 1 given Xn = 1, which converges to transition probability

Pr {Xn+1 = 1|Xn = 1}.
ÕN (t)
n=0 (Xn=1)

N (t) is the fraction of state 1, which converges to �1 in positive
recurrent case. Therefore we have (182) based on the Strong Law of Large Numbers. Following

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

Proactive Caching for Low Access-Delay Services under Uncertain Predictions 2:41

similar arguments, we have the following results:

lim
t!1

ÕN (t)
n=0 (Xn = k,Xn+1 = 1) �n

N (t) = �k

 1’
i=k

p
�
i

!
E [�n |Xn = k,Xn+1 = 1] ,w .p.1,8k > 1 (184)

lim
t!1

ÕN (t)
n=0 (Xn+1 > 1) �n

N (t) = (1 � �1)�,w .p.1 (185)

lim
t!1

ÕN (t)
n=0 (Xn = 1,Xn+1 = 1) � An

N (t) = �1

1’
i=1

p
�
i E

⇥
�
A
n |Xn = 1,Xn+1 = 1

⇤
,w .p.1 (186)

lim
t!1

ÕN (t)
n=0 (Xn = k,Xn+1 = 1) � An

N (t) = �k

 1’
i=k

p
�
i

!
E

⇥
�
A
n |Xn = k,Xn+1 = 1

⇤
,w .p.1,8k > 1 (187)

lim
t!1

ÕN (t)
n=0 (Xn+1 > 1) � An

N (t) = (1 � �1)�p,w .p.1 (188)

based on Lemma 2 and the Strong Law of Large Numbers. So we have:

U = lim
t!1

 ÕN (t)
n=0 (Xn = 1,Xn+1 = 1) �n

N (t) +

ÕN (t)
n=0 (Xn = 1,Xn+1 = 1) �n

N (t)

+

ÕN (t)
n=0 (Xn+1 > 1) �n

N (t)

!
N (t)
I (t) (189)

=
�1

Õ1
k=1 p

�
k E [�n |Xn = 1,Xn+1 = 1]

�E [Tn]
+

Õ1
k=2 �k

�Õ1
i=k pi

�
E [�n |Xn = k,Xn+1 = 1]
�E [Tn]

+
(1 � �1)�
�E [Tn]

UA = lim
t!1

 ÕN (t)
n=0 (Xn = 1,Xn+1 = 1) � An

N (t) +

ÕN (t)
n=0 (Xn = 1,Xn+1 = 1) � An

N (t)

+

ÕN (t)
n=0 (Xn+1 > 1) � An

N (t)

!
N (t)
A (t) (190)

=
�1

Õ1
k=1 p

�
k E

⇥
�
A
n |Xn = 1,Xn+1 = 1

⇤
p�E [Tn]

+

Õ1
k=2 �k

�Õ1
i=k pi

�
E

⇥
�
A
n |Xn = k,Xn+1 = 1

⇤
p�E [Tn]

(191)

+
(1 � �1)�p
p�E [Tn]

<
�1

Õ1
k=1 p

�
k E [�n |Xn = 1,Xn+1 = 1]

�E [Tn]
+

Õ1
k=2 �k

�Õ1
i=k pi

�
E [�n |Xn = k,Xn+1 = 1]
�E [Tn]

+
(1 � �1)�
�E [Tn]

(192)

= U (193)

the strict inequality in (192) is from (120) of Lemma 2. Therefore we have UA < U ,w .p.1 if � > U
⇤.

By summarizing Cases 1, 2 and 3, the threshold-based strategy ��
P satis�es Property 2 if and

only if �  U
⇤.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

2:42 Ran Liu, Edmund Yeh, and Atilla Eryilmaz

J PROOF OF COROLLARY 3
The UNIFORM strategy satis�es both Property 1 and Property 2 by Theorem 2, therefore Corollary
1 can be applied. So we have :

U = U ⇤,w .p.1 (194)

Then we select such sample paths whereU = U ⇤ is satis�ed. For every sample path of this set, we
assume that 8� > 0, 9� > 0 such that:

lim
t!1

1
I (t)

I (t)’
i=1

(Ui < U
⇤ � �) = � (195)

De�ne setsH�
� (t) = {i : Ui < U

⇤ � �, i < I (t) , i 2 Z+} andH+� (t) = {i : Ui � U
⇤ � �, i < I (t) , i 2 Z+},

then we have:

U = lim
t!1

ÕI (t)
i=1 Ui

I (t)

= lim
t!1

’
i 2H�

� (t)

Ui

I (t) + lim
t!1

’
i 2H+� (t)

Ui

I (t) (196)

= lim
t!1

’
i 2H�

� (t)

|H�
� (t) |
I (t)

Ui

|H�
� (t) | + lim

t!1

’
i 2H+� (t)

|H+� (t) |
I (t)

Ui

|H+� (t) | (197)

= lim
t!1

’
i 2H�

� (t)

|H�
� (t) |
I (t)

U
⇤ � �

|H�
� (t) | + lim

t!1

’
i 2H+� (t)

|H+� (t) |
I (t)

U
⇤

|H+� (t) | (198)

= � (U ⇤ � �) + (1 � �)U ⇤ (199)
= U ⇤ � ��

< U
⇤ (200)

The reason of Equation (196) is by grouping allUi into two sets according to ifUi < U
⇤ � � or not.

By replacing all Ui byU ⇤ � � in the group of H+� (t) whereUi < U
⇤ � � and replacing allUi byU ⇤

in the group of H+� (t) where Ui < U
⇤, we get (198) from (197). We get (199) from (198) based on

our assumption in (195).
However, (200) contradicts the way we selected the sample path. Therefore, for this set of sample

paths, we have 8� > 0:

lim
t!1

1
I (t)

I (t)’
i=1

(Ui < U
⇤ � �) = 0 (201)

Therefore we have our conclusions for all the possible sample paths:

lim
t!1

1
I (t)

I (t)’
i=1

(Ui = U
⇤) = 1,w .p.1 (202)

K PROOF OF COROLLARY 4
We use the Pollaczek-Khinchine formula in the analysis of M/G/1 queue in [5] to conduct this
analysis. The average un�nished work in number of bits in the system by time t , which is de�ned

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

Proactive Caching for Low Access-Delay Services under Uncertain Predictions 2:43

as � (t), can be formulated as:

� (t) =
Õ

i 2Z+:Ri=1,iI (t)

⇣
SiWi +

1
2Si

⇣
Si
µ

⌘⌘
t

(203)

The corresponding terms are as shown in Figure 3. Si is the reactive work of actual request i , and
Wi is the waiting time of the reactive part of request i before it starts to be transmitted. De�ne
� = limt!1� (t) and take the limit of t ! 1 of (203):

� = lim
t!1

Õ
i 2Z+:Ri=1,iI (t)

⇣
SiWi +

1
2Si

⇣
Si
µ

⌘⌘
t

(204)

= lim
t!1

Õ
i 2Z+:Ri=1,iI (t) SiWi

t
+ lim

t!1

Õ
i 2Z+:Ri=1,iI (t) S

2
i

2tµ
(205)

Consider the term
Õ

i 2Z+:Ri=1,iI (t) SiWi in Equation (205), we have:

’
i 2Z+:Ri=1,iI (t)

SiWi

=
’

i 2Z+:Ri=1,Si>S⇤,iI (t)
SiWi +

’
i 2Z+:Ri=1,Si=S⇤,iI (t)

SiWi (206)

De�ne setsHS⇤ (t) = {i 2 Z+ : Ri = 1, Si = S
⇤, i  I (t)} andH+S⇤ (t) = {i 2 Z+ : Ri = 1, Si > S

⇤, i  I (t)},
then divide both sides with I (t) :

Õ
i 2Z+:Ri=1,iI (t) SiWi

I (t)

=

Õ
i 2H+S⇤ (t)

SiWi

I (t) +

Õ
i 2HS⇤ (t) SiWi

I (t) (207)

=
|H+S⇤ (t) |
I (t)

Õ
i 2H+S⇤ (t)

SiWi

|H+S⇤ (t) |
+

|HS⇤ (t) |
I (t)

Õ
i 2HS⇤ (t) SiWi

|HS⇤ (t) | (208)

Take limit of t ! 1 on both sides and we can get:

lim
t!1

Õ
i 2Z+:Ri=1,iI (t) SiWi

I (t)

= lim
t!1

|H+S⇤ (t) |
I (t)

Õ
i 2H+S⇤ (t)

SiWi

|H+S⇤ (t) |
+ lim

t!1
|HS⇤ (t) |
I (t)

Õ
i 2HS⇤ (t) SiWi

|HS⇤ (t) | (209)

= lim
t!1

1
I (t)

I (t)’
i=1

(Si > S
⇤)

Õ
i 2H+S⇤ (t)

SiWi

|H+S⇤ (t) |
+ lim

t!1
1

I (t)

I (t)’
i=1

(Si = S
⇤)

Õ
i 2HS⇤ (t) SiWi

|HS⇤ (t) | (210)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

2:44 Ran Liu, Edmund Yeh, and Atilla Eryilmaz

Because the network scenario we are considering is �ps < µ, so all theWi are bounded w.p.1. By
Corollary 3 we have:

lim
t!1

Õ
i 2Z+:Ri=1,iI (t) SiWi

I (t)

= lim
t!1

0 ·
Õ

i 2H+S⇤ (t)
SiWi

|H+S⇤ (t) |
+ lim

t!1
1 ·

Õ
i 2HS⇤ (t) SiWi

|HS⇤ (t) | ,w .p.1 (211)

= (S⇤) lim
t!1

Õ
i 2HS⇤ (t)Wi

|HS⇤ (t) | ,w .p.1 (212)

= (S⇤) lim
t!1

Õ
i 2HS⇤ (t)Wi

A (t) ,w .p.1 (213)

Because of Corollary 3, we have (211), and we have limt!1
A(t)
t = limt!1

|HS⇤ (t) |
t w.p.1 for (213).

The reason for (212) is by the de�nition of HS⇤ (t) so we can replace all Si with S
⇤. De�ne w ,

limt!1

Õ
i2Z+ :Ri =1,iI (t)Wi

A(t) and we have:

w , lim
t!1

Õ
i 2Z+:Ri=1,iI (t)Wi

A (t)

= lim
t!1

Õ
i 2HS⇤ (t)Wi

A (t) ,w .p.1 (214)

So (205) can be transformed as follow:

� = lim
t!1

Õ
i 2Z+:Ri=1,iI (t) SiWi

A (t)
A (t)
t
+ lim

t!1

Õ
i 2Z+:Ri=1,iI (t) S

2
i

A (t)
A (t)
2tµ
,w .p.1 (215)

= (S⇤)w�p +
(S⇤)2�p
2µ

,w .p.1 (216)

Because of the important property of a Poisson process, namely the Poisson-Arrivals-See-Time-
Averages (PASTA)[5], we have �

µ = w,w .p.1 as the expected waiting time, and we have:

w =
(S⇤)2�p

2µ (µ � (S⇤) �p) ,w .p.1 (217)

And for mean delay we have:

D =
(S⇤)2�p

2µ (µ � (S⇤) �p) +
S
⇤

µ
,w .p.1 (218)

The following calculations can be done by replacing S⇤ with �s�µ
�(1�p) .

L PROOF OF COROLLARY 5
Following Equation (218) and Corollary 3, the delay for UNIFORM strategy is:

DU =
S
⇤2
�p

2µ (µ � S⇤�p) +
S
⇤

µ
,w .p.1 (219)

With the EDF strategy �s
P , we need to consider Equation (205). According to the design of the

EDF strategy, the actual requests in the same busy period have the following relation. If an actual
request i is proactively served, no matter partially or fully, the corresponding waiting time satis�es

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

Proactive Caching for Low Access-Delay Services under Uncertain Predictions 2:45

Wi = 0 because all the previous potential requests have either been realized or have been fully
proactively served. So we have the following results:

Si = s)Wi � 0; Si < s)Wi = 0,8i 2 Z+ (220)

So by reorganizing Equation (205):

� = lim
t!1

Õ
i 2Z+:Ri=1,iI (t) SiWi

t
+ lim

t!1

Õ
i 2Z+:Ri=1,iI (t) S

2
i

2tµ

= lim
t!1

Õ
i 2Z+:Ri=1,Si=s,iI (t) SiWi

t

+ lim
t!1

Õ
i 2Z+:Ri=1,Si<s,iI (t) SiWi

t

+ lim
t!1

1
2µt

’
i 2Z+:Ri=1,iI (t)

Si
2 (221)

= lim
t!1

1
t

’
i 2Z+:Ri=1,Si=s,iI (t)

SiWi (222)

+ lim
t!1

1
t

’
i 2Z+:Ri=1,Si<s,iI (t)

SiWi (223)

+ lim
t!1

1
2µt

’
i 2Z+:Ri=1,iI (t)

S
2
i (224)

Equation (221) is by splitting the SiWi terms into two groups according to whether Si < s or not.
Then in (222), we use s to replace all the Si where i 2 {i : Ri = 1, Si = s, i = 1, . . . , I (t)} because of
(220). Also because of (220) we haveWi = 0,8i 2 {i : Ri = 1, Si < s, i = 1, . . . , I (t)}. So it would
not a�ect the results if we replace all Si with s in this group in (223). Combine the terms in (222)
and (223) and we have:

� = lim
t!1

s

t

©≠
´

’
i 2Z+:Ri=1,iI (t)

Wi
™Æ
¨
+ lim

t!1
1
2µt

’
i 2Z+:Ri=1,iI (t)

S
2
i (225)

= lim
t!1

s
A (t)
t

⇣Õ
i 2Z+:Ri=1,iI (t)Wi

⌘
A (t) + lim

t!1
1
2µ

A (t)
t

Õ
i 2Z+:Ri=1,iI (t) S

2
i

A (t) (226)

= �pswE +
�p

2µ
S
2
E ,w .p.1 (227)

wherewE , limt!1

Õ
i2Z+ :Ri =1,iI (t)Wi

A(t) is the limiting average of waiting time for each actual request
under the EDF strategy, and SE is the reactive work of requests under the EDF strategy.

Also due to PASTA, we have:

wE =
�pS

2
E

2µ (µ � �ps) ,w .p.1 (228)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

2:46 Ran Liu, Edmund Yeh, and Atilla Eryilmaz

Notice here, s is the original object size without any proactive work. We have SE > S
⇤ due to

Theorem 4 and Corollary 1, then S
2
E �

⇣
SE

⌘2
> S

⇤2, so we have:

DE =
�pS

2
E

2 (µ2 � µ�ps) +
SE

µ
,w .p.1

� �pS
⇤2

2 (µ2 � µ�pS⇤) +
S
⇤

µ
,w .p.1

= DU (229)
where equality holds if and only if p = 0.

Received November 2018; revised December 2018; accepted January 2019

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.

