
Predictive Scheduling for Virtual Reality
I-Hong Hou, Narges Zarnaghi Naghsh

Department of ECE
Texas A&M University

College Station, TX 77840, USA
Email: {ihou, nzarnaghi}@tamu.edu

Sibendu Paul, Y. Charlie Hu
School of ECE

Purdue University
West Lafayette, IN 47907, USA

Email: {paul90, ychu}@purdue.edu

Atilla Eryilmaz
Department of ECE

Ohio State University
Columbus, OH, 43210, USA
Email: eryilmaz.2@osu.edu

Abstract—A significant challenge for future virtual reality
(VR) applications is to deliver high quality-of-experience,
both in terms of video quality and responsiveness, over wire-
less networks with limited bandwidth. This paper proposes
to address this challenge by leveraging the predictability
of user movements in the virtual world. We consider a
wireless system where an access point (AP) serves multiple
VR users. We show that the VR application process consists
of two distinctive phases, whereby during the first (proactive
scheduling) phase the controller has uncertain predictions
of the demand that will arrive at the second (deadline
scheduling) phase. We then develop a predictive scheduling
policy for the AP that jointly optimizes the scheduling
decisions in both phases.

In addition to our theoretical study, we demonstrate the
usefulness of our policy by building a prototype system. We
show that our policy can be implemented under Furion, a
Unity-based VR gaming software, with minor modifications.
Experimental results clearly show visible difference between
our policy and the default one. We also conduct extensive
simulation studies, which show that our policy not only out-
performs others, but also maintains excellent performance
even when the prediction of future user movements is not
accurate.

I. INTRODUCTION

Virtual Reality (VR) is an emerging technology that has
demonstrated great potential for commercial success. In
addition to consumer adoption for video and gaming, it
is also expected that VR will attract growing enterprise
adoption in the areas of marketing, product demonstra-
tion, and training [1]. While it is widely projected that the
VR market will keep growing [1]–[3], it is expected that
there will be a shift toward VR devices that can provide
high quality of experience without wired tethering.

Providing high-quality and wire-free VR experiences
poses significant technology challenges. Current commer-
cial wire-free VR devices mostly rely on self-contained
VR headsets that handle all computation tasks, such as
image rendering, with on-board processors. These so-
called “standalone” VR devices, including Oculus Rift and
Sony PlayStation VR, are limited by the processing power
of on-board processors, and hence cannot deliver high-
quality VR. On the other hand, recent studies [4]–[6] have
proposed using a server, such as a PC or a game console,
to process computation tasks and to stream high-quality
images to VR headsets through wireless communications.

However, such proposals require very high wireless band-
width to achieve highly responsive VR experience with
low motion-to-photon latency.

Noticing that users’ mobility patterns in the virtual
world are usually predictable, this paper aims to design
a predictive scheduling policy that proactively delivers
rendered images to VR users even before users move in
the virtual world. To design such a policy, we first provide
an analytical model that jointly captures the features of
playback process in VR applications, video encoding tech-
niques, user mobility patterns in the virtual world, and
wireless capacity. We observe that there are two distinct
phases between two image playbacks: a proactive schedul-
ing phase before the users’ movements are recorded,
and a deadline scheduling phase after the movements are
recorded. The goal of the predictive scheduling policy is
then to find the jointly optimal scheduling decisions in
both phases so as to maximize the perceived quality of
experience (QoE) of VR users.

We formulate the problem of maximizing QoE of VR
users as an optimization problem. We develop an offline
iterative algorithm that optimally solves the problem.
However, this offline algorithm requires the server to
have the precise knowledge of user mobility patterns. To
address the challenge of potentially noisy estimation of
user mobility, we also propose a simple online scheduling
policy using the insights derived from the offline algo-
rithm.

We also conduct comprehensive ns-2 simulations to
evaluate the performance of our online scheduling policy.
Simulation results show that our policy clearly outper-
forms several other baseline policies. They also show that
our policy is able to maintain excellent QoE even when
there are considerable errors in the estimation of user
mobility patterns, and that our policy converges very fast.

Finally, in order to demonstrate that our policy is
readily implementable on existing VR systems, we build a
prototype system under Furion [6], a Unity-based system.
While several software constraints in Unity are not fully
compatible with our analytical model, we show that
our online policy can still be implemented with minor
modifications. Experimental results with one user and one
server communicating over an off-the-shelf wireless access
point show that our policy is able to deliver a much better



2

experience than the default policy in Furion when the
wireless bandwidth is limited.

The rest of the paper is organized as follows: Section
II describes an analytical model for studying predictive
scheduling algorithms and formulates the optimization
problem of maximizing QoE for VR users. Section III
proposes an iterative offline algorithm that optimally
solves the optimization problem. Section IV develops an
online scheduling policy. Section V presents our simula-
tion results. Section VI discusses implementing our online
scheduling policy on existing VR systems and demon-
strates experimental results. Section VII summarizes some
relevant existing studies. Finally, Section VIII concludes
the paper.

II. SYSTEM MODEL

We consider a wireless system where an access point
(AP) streams real-time interactive VR data to a number
of wireless users. Each user has a headset that plays
VR 360-degree panoramic images that are periodically
updated based on the user’s location. For example, at
60 frame-per-second (fps), the headset plays one 360-
degree panoramic image every 16 ms. We say that the
time between two image playbacks is an interval, and
an interval consists of M time slots, where the AP can
transmit one packet in each time slot.

Users move in the virtual world following arbitrary
mobility patterns. Each location in the virtual world
corresponds to a different 360-degree panoramic image.
After the first N1 time slots in each interval, each headset
records its user’s latest movement, and sends the user’s
current location to the AP. After another N2 := M − N1

time slots, the headset displays the image corresponding
to this current location. Fig. 1 shows the timeline of the
system. We note that the value of N2 loosely corresponds
to motion-to-photon latency. Hence, when M is fixed,
smaller N2 leads to more responsive VR experience.

We now discuss the scheduling policy of the AP. As
shown in Fig. 1, in the first N1 time slots, the AP does
not know the current locations of users for sure. However,
it knows each user’s location in previous intervals, and
can use this information to estimate each user’s current
location. The AP can then transmit packets to users proac-
tively based on its estimation. Hence, we call the first
N1 time slots in each interval as the proactive scheduling
phase. On the other hand, in the last N2 time slots, the AP
knows the exact current locations of users, and can make
scheduling decisions accordingly, with the constraints that
only images delivered before the end of the interval can
be properly displayed. We hence call the last N2 time slots
in an interval as the deadline scheduling phase.

Due to the uncertainties in user mobility and the limited
number of time slots in each interval, it is possible that the
AP is unable to deliver all 360-degree panoramic images
to users on time. We employ multi-layered video coding
[7] to ensure smooth video playback even when some

Play 1st image Play 2nd imageRecord location

𝑁" 𝑁# ≔ 𝑀 −𝑁"

One interval = 𝑀 time slots

Proactive 
scheduling phase

Deadline 
scheduling phase

Fig. 1. The timeline of one interval.

information is not delivered on time. By using multi-
layered video coding, each 360-degree panoramic image
is encoded into a base layer and several enhancement
layers. A user is able to play a 360-degree panoramic
image as long as it receives the base layer. The quality
of experience (QoE) of the playback depends on the
number of enhanced layers that a user receives. Obviously,
the more are the number of received enhanced layers,
the better the perceived QoE. Each layer is composed
of a number of packets, and the value of a packet is
determined by the impact of QoE on its corresponding
layer. For example, a packet of the base layer has a higher
value than that of an enhancement layer.

We assume that each user’s mobility pattern can be de-
scribed as a positive-recurrent irreducible Markov process
over a finite state space S. The state of the system in each
interval is defined to be the collection of the state of each
user, and we use fs to denote the steady-state probability
that the system state is s.

When the state of the system in the previous interval
is s, then the AP can estimate the probability that a user
moves to a particular location, for each user. We say that a
packet is wanted if it corresponds to the current location of
one of the users. We use ps,i to denote the probability that
the packet i will be wanted in the current interval when
the system state in the previous interval is s. Different
packets have different impacts on QoE, and we use vi to
denote the value of the packet i.

As described above, the proactive scheduling phase is
the first N1 time slots where the AP knows the state in the
previous intervals, but not the state in the current interval.
Let xs,i be the indicator function that the AP transmits the
packet i in the proactive scheduling phase. Obviously, we
have

∑
i xs,i ≤ N1, for all s, and 0 ≤ xs,i ≤ 1 , for all s

and i.
On the other hand, during the deadline scheduling

phase, the AP knows the current location of the users, and
the packets that users want. Let ys,i be the probability of
transmitting the packet i in the deadline scheduling phase
when the system state in the previous interval is s. The AP
can only transmit the packet i in the deadline scheduling
phase if the packet has not been transmitted already, i.e.,
xs,i = 0, and is wanted by users, which happens with
probability ps,i. Therefore, ys,i ≤ ps,i(1 − xs,i). Also, as
there are only N2 time slots in the deadline scheduling



3

phase, we have
∑
s fs

∑
i ys,i ≤ N2. We note that this

inequality implicitly assumes that we only require the av-
erage number of transmissions in the deadline scheduling
phase to be no more than N2. In Section IV, we will
derive an online policy which ensures that the number
of transmissions in every interval to be no more than N2.

The QoE of a user depends on the packets that the
user wants and have been delivered to him/her. If the
packet i is transmitted in the proactive scheduling phase,
i.e. xs,i = 1, then it is wanted with probability ps,i. There-
fore, its expected contribution to QoE in the proactive
scheduling phase is xs,ips,ivi. On the other hand, if the
packet i is transmitted in the deadline scheduling phase,
which happens with probability ys,i, then it is of course
wanted by the users. Hence, its expected contribution to
QoE in the deadline scheduling phase is ys,ivi. The total
expected QoE contributed by packet i under state s is then
vi(xs,ips,i + ys,i).

Our goal is to maximize the total QoE, subject to all
the aforementioned constraints, which can be written as
the following linear programming problem:

max
∑
s

fs
∑
i

vi

(
xs,ips,i + ys,i

)
(1)

subject to
∑
s

fs
∑
i

ys,i ≤ N2, (2)

ys,i ≤ ps,i(1− xs,i), ∀s, i, (3)∑
i

xs,i ≤ N1, ∀s, (4)

0 ≤ xs,i ≤ 1, ∀s, i, (5)

ys,i ≥ 0, ∀s, i. (6)

Solving this linear programming problem requires the
precise knowledge of fs and ps,i. It can also be compu-
tationally infeasible. In the following sections, we first
develop a low-complexity solution based on dual decom-
position. We then show that this solution gives rise to a
simple online scheduling algorithm that does not require
the precise knowledge of fs and ps,i.

III. ITERATIVE OFFLINE SOLUTION

In this section, we develop an iterative offline solution
by the dual decomposition method for solving the linear
programming problem (1) – (6) and prove that this
solution is optimal.

A. Dual Decomposition Method

We assign a Lagrange multiplier λ to the constraint (2).
Let X and Y be vectors consisting all xs,i and all ys,i,
respectively. Then the Lagrangian L(X,Y, λ) is as follows:

L(X,Y, λ)

:=
∑
s

fs
∑
i

vi

(
xs,ips,i + ys,i

)
− λ
(∑

s

fs
∑
i

ys,i −N2

)
=
∑
s

fs

[∑
i

vixs,ips,i +
∑
i

(
vi − λ

)
ys,i

]
+ λN2. (7)

The dual objective function is as follows:

D(λ) :=max
X,Y

L(X,Y, λ),

subject to (3)− (6),
(8)

and the dual problem of (1) – (6) is:

min
λ≥0

D(λ). (9)

It is easy to check that (1) – (6) satisfy the Slater’s
condition, and hence, minλ≥0D(λ) equals the maximum
of the total QoE as mentioned in (1) – (6).

We note that the structure of (7) and (8) naturally
provides a state-by-state decomposition. Specifically, it is
easy to see that finding D(λ) is equivalent to solving the
following optimization problem for each state s:

max
∑
i

vixs,ips,i +
∑
i

(
vi − λ

)
ys,i (10)

subject to ys,i ≤ ps,i(1− xs,i), ∀i, (11)∑
i

xs,i ≤ N1, (12)

0 ≤ xs,i ≤ 1, ∀i, (13)

ys,i ≥ 0, ∀i. (14)

Now suppose xs,i is given and fixed for each s and
i. Then, it is obvious that (10) is increasing with ys,i if
λ ≤ vi, and is decreasing with ys,i if λ > vi. From (11)
and (14), we have 0 ≤ ys,i ≤ ps,i(1 − xs,i). Hence, the
optimal choice of ys,i, denoted by y∗s,i(λ) is

y∗s,i(λ) =

{
ps,i(1− xs,i), if vi ≥ λ,
0, if vi < λ.

(15)

Substituting the above equation to (10) – (14) yields:

max
∑
i

vixs,ips,i +
∑
i

(
vi − λ

)
ys,i

=
∑
i

vixs,ips,i +
∑
i:vi≥λ

(
vi − λ

)
ps,i

(
1− xs,i

)
=
∑
i

αs,ixs,i +
∑
i:vi≥λ

ps,i

(
vi − λ

)
,

s.t. (12)− (13),

(16)



4

where we define αs,i as

αs,i :=

{
vips,i, if vi < λ,

λps,i, if vi ≥ λ.
(17)

Let x∗s,i(λ) be the optimal solution for (16). Obviously,
the optimal solution is obtained by setting x∗s,i(λ) = 1
for the N1 packets with the largest αs,i , and x∗s,i(λ) = 0
for all of the other packets. Ties are broken by favoring
packets with larger ps,i. This together with y∗s,i(λ) defined
in (15) is the optimal solution to (8) when λ is given.

B. Finding the optimal value of λ

Next, we study the problem of finding the optimal λ∗ to
minimize D(λ). We follow a similar procedure proposed
in [8], [9]. First, we find a subgradient for D(λ).

Lemma 1: Let X∗(λ) = [x∗s,i(λ)] and Y∗(λ) = [y∗s,i(λ)] be
the vectors that maximize L(X,Y, λ), for a given λ. Then,
D′(λ) := N2 −

∑
s fs

∑
i y
∗
s,i(λ) is a subgradient of D(λ).

Proof: Let λ′ be an arbitrary value. We have:

D(λ′) = max
xs,i,ys,i

L(X,Y, λ′)

≥ L(X∗(λ),Y∗(λ), λ′)
= L(X∗(λ),Y∗(λ), λ) + (λ′ − λ)D′(λ)
= D(λ) + (λ′ − λ)D′(λ). (18)

Thus, D′(λ) is a subgradient of D(λ).
The following theorem is then a direct result following

Theorem 8.9.2 in [10]:
Theorem 1: Suppose ht is a sequence of non-negative

step sizes such that
∑∞
t=0 ht = ∞, and limt→∞ ht = 0.

Updating λ(t) as follows:

λ(t+ 1) =

{
λ(t)− ht

[
D′(λ(t))

]}+

, (19)

ensures that,

lim
t→∞

D(λ(t)) = min
λ≥0

D(λ). (20)

�
Hence, by updating λ iteratively according to (19), we

solve the dual problem. Alg. 1 summarizes the complete
algorithm of the iterative offline solution.

IV. ONLINE SCHEDULING AND LEARNING POLICY

While Section III provides an iterative algorithm that
optimally solves (1) – (6), the iterative algorithm cannot
be directly turned into an implementable scheduling pol-
icy. First, the algorithm requires the precise knowledge of
user mobility patterns, which is needed to calculate fs and
ps,i. Second, recall that the constraint

∑
s fs

∑
i ys,i ≤ N2

in (2) only requires that the average number of trans-
missions in the deadline scheduling phase to be no more
than N2. In practice, we need to ensure that the number
of transmissions in every interval to be no more than N2.

Algorithm 1 Offline Algorithm
1: Initialize λ = 0
2: for t = 1, 2, . . . do
3: for each state s do
4: for each packet i do
5: xs,i ← 0
6: if vi ≥ λ then
7: αs,i ← ps,iλ
8: else
9: αs,i ← ps,ivi

10: end if
11: end for
12: Sort all packets so that αs,i1 ≥ αs,i2 ≥ . . .
13: for j = 1→ N1 do
14: xs,ij ← 1
15: end for
16: for each packet i do
17: if vi ≥ λ then
18: ys,i ← ps,i(1− xs,i)
19: else
20: ys,i ← 0
21: end if
22: end for
23: end for
24: λ←

[
λ− ht[N2 −

∑
s fs

∑
i ys,i]

]+
25: end for

In this section, we present a simple scheduling policy
that addresses the aforementioned shortcomings. The
policy consists of three parts: the policy in the proactive
scheduling phase, the policy in the deadline scheduling
phase, and the update rule of the Lagrange multiplier λ(t),
which is initialized by setting λ(1) = 0.

The policy in the proactive scheduling phase is virtually
the same as that in Section III. Let s(t) be the system state
in interval t, which contains the states of all individual
users. During the proactive scheduling phase in interval t,
the AP does not know s(t) yet, but already knows s(t−1).
Given s(t−1), the AP calculates αi(t) as αi(t) = vips(t−1),i
if vi < λ(t), and αi(t) = λ(t)ps(t−1),i if vi ≥ λ(t). The AP
then transmits the N1 packets with the largest values of
αi(t). As a result, a packet i is transmitted in the proactive
phase if and only if x∗s(t−1),i(λ(t)) = 1.

Next, we discuss the policy in the deadline schedul-
ing phase. After learning s(t) in interval t, the AP sets
wi(t) = 1 if the packet i is wanted by users and has not
been transmitted during the proactive scheduling phase,
and sets wi(t) = 0, otherwise. The AP then sorts all
packets by viwi(t) and transmits the N2 packets with
the largest viwi(t). Effectively, the AP transmits the N2

packets with the largest values among those that are
wanted by users and have not been transmitted yet. Given
s(t) and the policy for the proactive scheduling phase, this
is indeed the optimal policy for the deadline scheduling



5

phase that guarantees that the number of transmissions
in the deadline scheduling phase is no more than N2 in
every interval.

Finally, we discuss the update of λ(t). While Thm. 1 has
established an iterative procedure for finding the optimal
λ for the dual problem, we note that calculating D′(λ) =
N2 −

∑
s fs

∑
i y
∗
s,i(λ) requires the precise knowledge

about fs, which is difficult to obtain in practice. Instead,
we propose employing the stochastic gradient descent
method for the update of λ(t). After learning s(t) in
interval t, the AP sets zi(t) = 1 if wi(t) = 1 and vi ≥ λ(t),
and zi(t) = 0, otherwise. At the end of the interval t, the

AP updates λ(t) by λ(t+1) =
[
λ(t)−ht

(
N2−

∑
i zi(t)

)]+
.

We now show that this procedure finds the optimal λ
for the dual problem. Suppose s(t−1) = s, then wi(t) = 1
if and only if packet i is not transmitted in the proactive
scheduling phase, i.e., x∗s,i(λ(t)) = 0, and is wanted by
the users, which happens with probability ps,i. Hence, we
have

E[zi(t)|s(t− 1) = s]

=

{
ps,i(1− x∗s,i(λ(t))), if vi ≥ λ(t),
0, if vi < λ(t),

=y∗s,i(λ(t)). (21)

In steady state, we have Prob(s(t − 1) = s) = fs. There-
fore, we have E[N2−

∑
i zi(t)] = N2−

∑
s fs

∑
i y
∗
s,i(λ(t)).

The following theorem is then a direct result from Theo-
rem 46 in [11] (section 2.4).

Theorem 2: Suppose ht be a sequence of non-negative
step sizes such that

∑∞
t=0 ht = ∞,

∑∞
t=0 h

2
t ≤ ∞. If we

update λ(t) by λ(t + 1) =
[
λ(t) − ht

(
N2 −

∑
i zi(t)

)]+
,

then λ(t) converges to the optimal solution for the dual
problem in probability. �

Alg. 2 summarizes our online policy for predictive
scheduling, where we simplify some of the notations to
streamline the algorithm.

V. SIMULATION RESULTS

A. Simulation Settings

We have implemented our policy, as well as three other
policies, in ns-2. We first discuss the settings of our
simulation environment.

Network environment: Our setting for wireless trans-
missions follow the IEEE 802.11/ac standard. The system
consists of one AP and several users. With 64-QAM and
80 MHz bandwidth, the AP can transmit at 1300 Mbps.
Assuming that the maximum packet size is 2300 Bytes, ns-
2 simulations show that the total time needed to transmit
a packet, including all overheads such as the transmission
of the ACK, is a bit smaller than 40 µs. After taking into
account the amount of time needed for clients to transmit
their locations to the AP, ns-2 simulations show that there
are 399 slots in an interval of 16 ms, which corresponds
to the scenario when the video playback rate is 60 fps.

Algorithm 2 Predictive Scheduling for VR
1: Initialize λ = 0
2: for each interval t do
3: // The proactive scheduling phase begins
4: for each packet i do
5: if vi ≥ λ then
6: αi ← ps(t−1),iλ
7: else
8: αi ← ps(t−1),ivi
9: end if

10: end for
11: Sort all packets so that α1 ≥ α2 ≥ ...
12: Transmit packets 1 ∼ N1

13: // The deadline scheduling phase begins
14: Obtain the locations of the users
15: wi ← 0,∀i; zi ← 0,∀i
16: for each wanted packet i that was not sent do
17: wi ← 1
18: if vi ≥ λ then
19: zi ← 1
20: end if
21: end for
22: Sort all packets so that v1w1 ≥ v2w2 ≥ ...
23: Transmit packets 1 ∼ N2

24: // Update the Lagrange multiplier λ

25: λ←
[
λ− ht[N2 −

∑
i zi]
]+

26: end for

Video encoding: We assume that multi-layer video
coding is used and the panoramic frame of each location
in VR environment is encoded into one base layer and
four enhancement layers. We use publicly available video
traces [12] to determine the parameters of each packet.
In particular, the value of each layer is defined as the
increment of frame quality over the previous layer. The
value of a packet of a particular layer is then defined
as the ratio of the value of the layer and the number of
packets in that layer. Table I summarizes these parame-
ters, where the first two columns are directly obtained
from [12], while the remaining columns are calculated
based on the description above.

Layer Size (B) Quality (dB) # of packets value/packet
Base 1615.96 27.924 1 27.924
Enh. 1 2048.22 32.012 1 4.088
Enh. 2 6761.27 37.408 3 1.798
Enh. 3 26060.27 42.446 12 0.419
Enh. 4 60609.8 47.708 27 0.194

TABLE I
PARAMETERS FOR DIFFERENT LAYERS

VR environment and user mobility: We model the
VR environment as a two-dimensional space. Each user
moves among the grid points in the space independently.
In each interval, a user can only move to one of the
four adjacent grid points. We consider a mobility model



6

390
400
410
420
430
440
450
460

30 50 70

To
ta
l	Q

oE

Moving	forward	probability	(%)

Predictive	Scheduling
MaxP
MaxV
MaxPV

(a) 10 clients

560

580

600

620

640

660

30 50 70

To
ta
l	Q

oE

Moving	forward	probability	(%)

Predictive	Scheduling
MaxP
MaxV
MaxPV

(b) 15 clients

700
720
740
760
780
800
820
840
860

30 50 70

To
ta
l	Q

oE

Moving	forward	probability	(%)

Predictive	Scheduling
MaxP
MaxV
MaxPV

(c) 20 clients

Fig. 2. QoE comparison with N1 = 360

360

380

400

420

440

460

30 50 70

To
ta
l	Q

oE

Moving	forward	probability	(%)

Predictive	Scheduling
MaxP
MaxV
MaxPV

(a) 10 clients

500

550

600

650

700

30 50 70

To
ta
l	Q

oE

Moving	forward	probability	(%)

Predictive	Scheduling
MaxP
MaxV
MaxPV

(b) 15 clients

650

700

750

800

850

30 50 70

To
ta
l	Q

oE

Moving	forward	probability	(%)

Predictive	Scheduling
MaxP
MaxV
MaxPV

(c) 20 clients

Fig. 3. QoE comparison with N1 = 380

where a user’s movement in an interval only depends
on its current location and its movement in the previous
interval. The user can either move forward, which means
its movement in the interval is in the same direction
as that in the previous interval, turn left, turn right, or
move backward. We assume that the probabilities of the
above four movements are q, 2(1−q)

5 , 2(1−q)
5 , and , 1−q

5 ,
respectively, where q ∈ [0, 1] is a simulation parameter.

Evaluated policies: In addition to our own policy, we
have also implemented three other policies: The first is
the MaxPV policy, which transmits the N1 packets with the
highest expected contribution to QoE, i.e., ps,ivi, during
the proactive scheduling phase. The second is the MaxP
policy, which transmits the N1 packets with the highest
ps,i, and breaks ties by vi, during the proactive scheduling
phase. The last is the MaxV policy, which transmits the N1

packets with the highest vi, and breaks ties by ps,i, during
the proactive scheduling phase. All three policies use the
same policy as ours during the deadline scheduling policy,
since it is obviously optimal.

B. Performance Evaluation

We now present our simulation results. All results
presented in this section are the average of 100 simulation
runs.

Fig. 2 and 3 demonstrate the performance comparison
between the four evaluated policies under different set-
tings, where the value of N1 can be either 360 or 380, the
number of clients ranges from 10 to 20, and the value of
q, i.e., the probability that a client moves forward in an
interval, ranges from 30% to 80%. The motion-to-photon
latency can be as small as 1.6 ms when N1 = 360, and

as small as 0.8 ms when N1 = 380. It can be shown that
our policy achieves the best performance in all settings.
Intuitively, as the MaxV policy makes scheduling decisions
based mainly on vi, and not on ps,i, it performs better
when the probabilities of the four movements are more
uniform, or, equivalently, when the probability of moving
forward is smaller. On the other hand, as the MaxP policy
strongly favors the movement with the highest likelihood,
it performs better when the probability of moving forward
is closer to 100%. One can indeed see such behaviors
in the simulation results. One can also observe that our
policy has similar performance as MaxV when q is small,
and has similar performance as MaxP when q is large.

Next, we evaluate the impact of imperfect knowledge
about ps,i to the performance of different scheduling poli-
cies. In this simulation, when the probability of moving
forward of client i is q, the server actually thinks the
probability of moving forward is q + ei, where ei is a
uniform random variable in [−0.1,+0.1]. N1 is 360, the
number of clients ranges from 10 to 20, and q ranges from
30% to 80%. Simulation results are shown in Fig. 4. One
can see that our policy still achieves the best performance
under all settings. A more interesting observation comes
from comparing Fig. 4 and Fig. 2, which has the same
setting but assumes that the AP has the precise knowledge
about q. It can be shown that the performance of our
policy is virtually identical in these two figures. This
suggests that our policy is very robust against some errors
in estimating clients’ mobility models. The reason that our
policy is robust to such errors lies in the update of λ,
i.e., line 25 in Alg. 2. In our policy, λ is updated based
on zi(t), which only depends on the actual realization of



7

390
400
410
420
430
440
450
460

30 50 70

To
ta
l	Q

oE

Moving	forward	probability	(%)

Predictive	Scheduling
MaxP
MaxV
MaxPV

(a) 10 clients

500

550

600

650

700

30 50 70

To
ta
l	Q

oE

Moving	forward	probability	(%)

Predictive	Scheduling
MaxP
MaxV
MaxPV

(b) 15 clients

670

720

770

820

870

30 50 70

To
ta
l	Q

oE

Moving	forward	probability	(%)

Predictive	Scheduling
MaxP
MaxV
MaxPV

(c) 20 clients

Fig. 4. Simulation results with imperfect knowledge

client movements and does not involve ps,i at all. As such,
an error in ps,i only has limited impact to our policy.

Finally, we evaluate the convergence speed of our pol-
icy. Fig. 5 plots the average instantaneous QoE versus the
number of intervals passed, with error bars indicating one
standard deviation. One can see that the instantaneous
QoE after merely five intervals, or, less than 0.1 second,
is very close to that at steady state. This suggests that our
policy converges very fast.

VI. PROTOTYPE IMPLEMENTATION

We have implemented a prototype of a VR system with
predictive scheduling under Furion [6], a Unity-based
system that uses prefetching to enable untethered VR
gaming on a smartphone with limited processing power.
The default policy of Furion requires very high bandwidth
to support high-quality VR gaming. Our implementation
demonstrates that our proposed predictive scheduling
policy allows for high-quality VR gaming even when the
wireless bandwidth is limited. In this section, we first
briefly describe the software architecture of Furion as
well as its limitations. We then discuss adapting our
proposed policy for Furion and demonstrate a side-by-side
comparison between our policy and the default policy of
Furion.

To achieve the required QoE (i.e., high responsiveness
and high visual quality) for an untethered VR system,
Furion divides the VR rendering workload into foreground
interactions (FI) and background environment (BE). Fu-
rion employs a cooperative rendering module, where
lightweight FI is rendered on mobile GPU and heavy-
weight BE is pre-rendered and pre-encoded on the server.
In offline preprocessing, Unity rendering engine on server
first pre-renders panoramic frames for the all-possible
reachable area in BE (e.g., app-specific parameter). Then
all these panoramic frames are pre-encoded into individ-
ual I frames using x264 [13] library (with constant rate
factor 28 and fastdecode tuning enabled). During game
play, depending on the player movement, Furion client
running on a commodity phone, asks the Furion server for
the next neighbouring frames and prefetches the I-frames
for those neighbouring gridpoints using a persistent TCP
connection. Meanwhile, Furion client parallely decodes
the pre-fetched compressed BE frames using GStreamer

Media SDK [14] (with GPU acceleration enabled) and
puts the decoded frames on a 360o spherical movie texture
around the rendered FI.

An important constraint of Furion is that its video
decoder, GStreamer Media SDK [14], does not support
multi-layered video coding. Instead, we assume that the
panoramic frame for each location is encoded into three
different resolutions: 512X256, 1024X512, 2048X1024
pixels (512p, 1024p, and 2K, respectively). The average
file size is listed in Table II. As shown in the table, we
set the QoE of the three resolutions to be 512, 1024,
and 2048, respectively. One can see that, while a high
resolution frame has a high QoE, the ratio between QoE
and file size is small. We also introduce a null resolution
with size 0 and QoE 0. The QoE of a client in each interval
is then the QoE of the highest resolution frame that the
client has received.

Resolution File-size (KB) QoE QoE-per-KByte
512p 15.07 512 33.97
1024p 50.18 1024 20.4
2K 185.86 2048 11.02

TABLE II
PARAMETERS FOR DIFFERENT RESOLUTIONS

Another challenge is that, as an application, Furion has
no control over the underlying wireless protocol. Instead,
we assume that the underlying wireless protocol transmits
data in a first-in-first-out fashion, which is the default
mechanism of virtually all existing wireless devices. We
also assume that the Furion server can estimate network
capacity based on long-term statistics. Specifically, we
assume that the AP can transmit N1 KBytes (instead of
packets) in the proactive scheduling phase, and N2 KBytes
in the deadline scheduling phase. In each phase, the
Furion server will select several frames and forward them
to the underlying wireless protocol for transmission, with
the constraint that the total size of the selected frames is
no larger than N1, and N2, in the proactive scheduling
phase, and the deadline scheduling phase, respectively.

We now discuss how to adapt our predictive scheduling
policy for Furion. Let θi be the size of a frame i with
a specific resolution, and let vi be the QoE of frame i.
Therefore, the QoE-per-KByte of frame i is vi

θi
. In the same

spirit of (17), we define αs,i by



8

390

400

410

420

430

440

450

460

470

0 20 40 60 80

To
ta
l	Q

oE

Time	(#	of	intervals	passed)

40%	Forward 60%	Forward 80%	Forward

(a) 10 clients

570
580
590
600
610
620
630
640
650
660
670

0 20 40 60 80

To
ta
l	Q

oE

Time	(#	of	intervals	passed)

40%	Forward 60%	Forward 80%	Forward

(b) 15 clients

720

740

760

780

800

820

840

860

0 20 40 60 80

To
ta
l	Q

oE

Time	(#	of	intervals	passed)

40%	Forward 60%	Forward 80%	Forward

(c) 20 clients

Fig. 5. Instantaneous QoE over time

(a) Predictive Scheduling Policy (b) Default Furion Policy

Fig. 6. Screenshots of the prototype

αs,i =

{
λθips,i, if vi

θi
≥ λ,

vips,i, if vi
θi
< λ.

(22)

In the proactive scheduling phase, the Furion server
simply chooses a resolution for each adjacent location
such that the sum of αs,i over chosen frames is max-
imized, under the constraint the the sum of θi over
chosen frames is no larger than N1. This is a simple
knapsack problem that can be solved efficiently. On the
other hand, in the deadline scheduling phase, the Furion
server transmits frames that offer the most improvement
of QoE over the frames that have already been delivered,
under the constraint that it can at most transmit N2

KBytes. This is yet another simple knapsack problem.
We have implemented this algorithm on a single player

Furion system. This system consists of one Furion server
with wired connection to a TP-LINK TL-WR1043ND WiFi
router and one Furion client that communicates with
the WiFi router over wireless. We configure the network
so that the Furion server can transmit 200 KBytes in
the proactive scheduling phase, and 60 KBytes in the
deadline scheduling phase. As for the player’s mobility
pattern, we assume that the player has a 70% chance of
moving forward, and 10% chance of moving in each of
the remaining three directions.

Fig. 6 shows side-by-side the screenshots of our algo-
rithm and that of the default Furion policy. It is clear
that our algorithm displays a higher resolution frame. The

default Furion policy does not take the mobility pattern
of the player into account. As a result, it needs to evenly
allocate the bandwidth among the four adjacent locations,
and transmits the 1024p frame for each of them. On
the other hand, knowing that the player has the highest
probability of moving forward, our algorithm devotes all
bandwidth in the proactive scheduling phase to transmit
the 2K frame for the forward location. Even when the
player makes a sudden turn, our algorithm is still able
to transmit the medium-resolution frame in the deadline
scheduling phase.

VII. RELATED WORK

Enabling untethered high-quality interactive VR on
today’s resource-constrained commodity devices has at-
tracted strong interest both from academia and industry.
MoVR [4], [5] proposes to cut the cord (i.e. tethered
HDMI cable) by using high bandwidth mmWave technolo-
gies (e.g. 802.11ad/WiGig). Flashback [15] pre-renders
the whole virtual environment and stores them on the
local cache of the mobile device in order to reduce
the rendering workload on commodity devices. However,
Flashback doesn’t support interactive VR applications and
also requires overwhelming storage on mobile devices.
Liu et al. [16] adopt a thin-client framework employing
VSync driven parallel rendering and streaming to achieve
high-quality VR on mobile devices. This system might
suffer from the frame misses due to adjustment error
of the rendering time on the server according to the
VSync information feedback from the client. In order to



9

reduce the high network transmission size, a few other
existing approaches [17]–[19] employ transmitting only
the pixel information inside the player’s Field-of-View
(FoV) through different tiling schemes. Different Tiling
schemes based on HEVC is proven to be not the best
fit in the latency perspective due to increased encoding
and decoding time [20]. Several recent works [21]–[23]
attack this problem with the new layered video coding
methods with encoding the visible area with higher bit-
rate and others in lower bit rate. However, these ap-
proaches require player’s FoV prediction which is more
stringent than player’s movement prediction due to an
infinite number of possibilities of player’s FoV and also
can’t guarantee good performance for all players in VR
world.

Using prediction to pre-fetch contents has attracted
growing research interests. Tadrous et al. [24], [25] use
statistical prediction to pre-fetch contents during the off-
peak hours with the goal of reducing bandwidth consump-
tion during peak hours. Shoukry et al. [26] develop a soft-
ware architecture on smartphones that opportunistically
pre-fetch contents when the smartphones are connected
to WiFi to reduce bandwidth consumption over cellular
networks. The prediction window of these studies is on
the scale of hours, and hence these studies are not suitable
for interactive VR, which operates in a very fast timescale.
There are also some studies that aim to leverage predic-
tion to improve the performance of real-time applications.
Chen and Huang [27] study using prediction to increase
the timely-throughput of real-time traffic. Yin et al. [28]
develop predictive scheduling policies to minimize age-of-
information (AoI). Liu et al. [29] analyze the delay perfor-
mance of threshold-based predictive scheduling policies.
As these studies do not explicitly consider the impact
of multi-layered video coding, they cannot be directly
applied to interactive VR applications, where different
packets of the same flow can have significantly different
impacts on QoE.

VIII. CONCLUSION

We have studied the problem of improving QoE for
interactive VR applications through predictive scheduling.
By studying an analytical model that jointly captures the
characteristics of various VR components, we have devel-
oped an optimal predictive scheduling policy. Simulation
results show that our policy significantly outperforms oth-
ers. It is also resilient to prediction errors and converges
very fast. Furthermore, we build a prototype system to
test our policy. Experimental results show that our policy
is able to deliver much better video quality.

IX. ACKNOWLEDGEMENT

This material is based upon work supported in part
by NSF and Intel under contract numbers CNS-1719384,
CNS-1719369, CNS-1719371, in part by NSF under con-
tract number CNS-1824337, in part by the U.S. Army

Research Laboratory and the U.S. Army Research Office
under contract/grant number W911NF-18-1-0331, and in
part by Office of Naval Research under contracts N00014-
18-1-2048 and N00014-19-1-2621.

REFERENCES

[1] CCS Insight, “Market forecast virtual and augmented reality
devices worldwide, 2018-2022.” https://www.ccsinsight.com/
research-areas/virtual-and-augmented-reality/market-forecast/.
Accessed: 2019-07-09.

[2] Markets and Markets, “Virtual reality market by offering,
technology, device type, and geography - global forecast to 2024.”
https://www.researchandmarkets.com/research/x5c5zr/44 7
bn virtual?w=12. Accessed: 2019-07-09.

[3] SuperData, “State of the consumer xr market: Leveraging
real opportunities in 2019.” https://www.superdataresearch.com/
state-of-consumer-xr-2019/. Accessed: 2019-07-09.

[4] O. Abari, D. Bharadia, A. Duffield, and D. Katabi, “Enabling
high-quality untethered virtual reality,” in 14th Symposium on
Networked Systems Design and Implementation (USENIX NSDI),
pp. 531–544, 2017.

[5] O. Abari, D. Bharadia, A. Duffield, and D. Katabi, “Cutting the cord
in virtual reality,” in Proceedings of the 15th ACM Workshop on Hot
Topics in Networks, pp. 162–168, ACM, 2016.

[6] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, N. Dai, and H.-S. Lee, “Furion: En-
gineering high-quality immersive virtual reality on today’s mobile
devices,” IEEE Transactions on Mobile Computing, 2019.

[7] W.-j. Han, S.-C. Cha, and H.-J. Ha, “Method and apparatus for
multi-layered video encoding and decoding,” June 8 2006. US
Patent App. 11/290,515.

[8] X. Lin and N. B. Shroff, “Joint rate control and scheduling in
multihop wireless networks,” IEEE Conference on Decision and
Control, 2004.

[9] N. Z. Shor, “Minimization methods for non-differentiable func-
tions,” Berlin: Springer-Verlag, 1985.

[10] M. S. Bazaraa, H. D. Sherali, and C. Shetty, “Nonlinear program-
ming: theory and algorithms,” Wiley-Interscience, 2006.

[11] N. Z. Shor, “Nondifferentiable optimization and polynomial prob-
lems,” Nonconvex Optimization and its Application, 1998.

[12] P. Seeling and M. Reisslein, “Video transport evaluation with
h. 264 video traces,” IEEE Communications Surveys & Tutorials,
vol. 14, no. 4, pp. 1142–1165, 2011.

[13] “x264 library.” http://www.videolan.org/developers/x264.html.
[14] “Gstreamer media sdk.” https://github.com/intel/

gstreamer-media-SDK.
[15] K. Boos, D. Chu, and E. Cuervo, “Flashback: Immersive virtual

reality on mobile devices via rendering memoization,” in Proceed-
ings of the 14th Annual International Conference on Mobile Systems,
Applications, and Services, pp. 291–304, ACM, 2016.

[16] L. Liu, R. Zhong, W. Zhang, Y. Liu, J. Zhang, L. Zhang, and
M. Gruteser, “Cutting the cord: Designing a high-quality unteth-
ered vr system with low latency remote rendering,” in Proceedings
of the 16th Annual International Conference on Mobile Systems,
Applications, and Services, pp. 68–80, ACM, 2018.

[17] Y. Bao, H. Wu, T. Zhang, A. A. Ramli, and X. Liu, “Shooting
a moving target: Motion-prediction-based transmission for 360-
degree videos,” in 2016 IEEE International Conference on Big Data
(Big Data), pp. 1161–1170, IEEE, 2016.

[18] M. Hosseini and V. Swaminathan, “Adaptive 360 vr video stream-
ing: Divide and conquer,” in 2016 IEEE International Symposium
on Multimedia (ISM), pp. 107–110, IEEE, 2016.

[19] P. Rondao Alface, M. Aerts, D. Tytgat, S. Lievens, C. Stevens,
N. Verzijp, and J.-F. Macq, “16k cinematic vr streaming,” in Pro-
ceedings of the 25th ACM international conference on Multimedia,
pp. 1105–1112, ACM, 2017.

[20] S. Shi, V. Gupta, and R. Jana, “Freedom: Fast recovery enhanced
vr delivery over mobile networks,” in Proceedings of the 17th
Annual International Conference on Mobile Systems, Applications,
and Services, pp. 130–141, ACM, 2019.

[21] G. Baig, J. He, M. A. Qureshi, L. Qiu, G. Chen, P. Chen, and Y. Hu,
“Jigsaw: Robust live 4k video streaming,” in Proceedings of ACM
MobiCom, 2019.



10

[22] J. He, M. A. Qureshi, L. Qiu, J. Li, F. Li, and L. Han, “Rubiks:
Practical 360-degree streaming for smartphones,” in Proceedings
of the 16th Annual International Conference on Mobile Systems,
Applications, and Services, pp. 482–494, ACM, 2018.

[23] A. T. Nasrabadi, A. Mahzari, J. D. Beshay, and R. Prakash, “Adap-
tive 360-degree video streaming using scalable video coding,” in
Proceedings of the 25th ACM international conference on Multime-
dia, pp. 1689–1697, ACM, 2017.

[24] J. Tadrous, A. Eryilmaz, and H. El Gamal, “Proactive content
download and user demand shaping for data networks,” IEEE/ACM
Transactions on Networking, vol. 23, no. 6, pp. 1917–1930, 2014.

[25] J. Tadrous and A. Eryilmaz, “On optimal proactive caching for mo-
bile networks with demand uncertainties,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2715–2727, 2015.

[26] O. Shoukry, M. A. ElMohsen, J. Tadrous, H. El Gamal, T. ElBatt,

N. Wanas, Y. Elnakieb, and M. Khairy, “Proactive scheduling for
content pre-fetching in mobile networks,” in IEEE International
Conference on Communications (ICC), pp. 2848–2854, 2014.

[27] K. Chen and L. Huang, “Timely-throughput optimal scheduling
with prediction,” IEEE/ACM Transactions on Networking, vol. 26,
no. 6, pp. 2457–2470, 2018.

[28] B. Yin, S. Zhang, Y. Cheng, L. X. Cai, Z. Jiang, S. Zhou, and
Z. Niu, “Only those requested count: Proactive scheduling policies
for minimizing effective age-of-information,” in IEEE INFOCOM,
pp. 109–117, IEEE, 2019.

[29] R. Liu, E. Yeh, and A. Eryilmaz, “Proactive caching for low access-
delay services under uncertain predictions,” Proceedings of the ACM
on Measurement and Analysis of Computing Systems, vol. 3, no. 1,
p. 2, 2019.


