
Fresh Caching for Dynamic Content
Bahman Abolhassani1, John Tadrous2, Atilla Eryilmaz1, Edmund Yeh3

1,2,3 Department of Electrical and Computer Engineering
1 The Ohio State University, Columbus, 43210

1 Email: abolhassani.2@osu.edu, eryilmaz.2@osu.edu
2 Gonzaga University, Spokane, WA 99202

2 Email: tadrous@gonzaga.edu
3 Northeastern University, Boston, MA 02115

3 Email: eyeh@ece.neu.edu

Abstract—We introduce a framework and provably-efficient
schemes for ‘fresh’ caching at the (front-end) local cache of
content that is subject to ‘dynamic’ updates at the (back-end)
database. We start by formulating the hard-cache-constrained
problem for this setting, which quickly becomes intractable due
to the limited cache. To bypass this challenge, we first propose
a flexible time-based-eviction model to derive the average
system cost function that measures the system’s cost due to
the service of aging content in addition to the regular cache
miss cost. Next, we solve the cache-unconstrained case, which
reveals how the refresh dynamics and popularity of content
affect the optimal caching. Then, we extend our approach
to a soft-cache-constrained version, where we can guarantee
that the cache use is limited with arbitrarily high probability.
The corresponding solution reveals the interesting insight that
‘whether to cache an item or not in the local cache?’ depends
primarily on its popularity level, whereas ‘how long the cached
item should be held in the cache before eviction?’ depends
primarily on its refresh rate. Moreover, we investigate the
cost-cache saving tradeoffs and prove that substantial cache
gains can be obtained while also asymptotically achieving the
minimum cost as the database size grows.

Index Terms—Content Distribution Networks, Caching, Age
of Information, Dynamic Content

I. INTRODUCTION

The recent advances in the development of capable smart
wireless devices and mobile internet services have resulted
in rapidly escalating levels of data traffic over cellular
networks. This surging data demand is depleting the limited
spectrum resources for wireless transmission, especially over
the wireless connection between the base stations and the
end-users. Consequently, wireless resources are becoming
scarce due to the tremendous development of throughput-
hungry applications including video streaming and online
gaming [1]. Thus, more sophisticated resource management
strategies are needed to meet the growing demand [2].

One possible solution for tackling this problem is to cache
popular contents at the users’ site to reduce the total response
time to data requests. Content Distribution Networks (CDNs)
utilize a large mesh of caches to deliver content from
locations closer to the end users [3], [4]. Existing caching

This work was funded primarily by the ONR Grant N00014-19-
1-2621, and in part by the NSF grants: CNS-NeTS-1514260, CNS-
NeTS-1717045, CMMI-SMOR-1562065, CNS-ICN-WEN-1719371, CNS-
SpecEES-1824337, CNS-NeTS-2007231, and the DTRA grant: HDTRA1-
18-1-0050.

strategies rely on the assumption of static (or quasi-static)
nature of the stored content [5], [6]. In many real-world
scenarios, such as news updates in social networks and
system state updates in cyber-physical networks, the data
content is subject to updates at various rates, which render
the older versions of the content less useful [7]. Hence, there
is a growing need to develop new caching strategies that
account for the refresh characteristics and ageing costs of
content for efficient dynamic-content distribution.

Broadly speaking, there are two classes of caching policies
for studying the system performance: timer-based, i.e., Time-
To-Live (TTL) [8], [9] and non-timer-based caching policies.
In the latter case, the strongly coupled nature of the eviction
policies render exact analysis difficult. In contrast, a TTL
cache policy associates each content with a timer upon
placement in the cache. The content is then evicted once the
timer expires, independent of other cached contents. Due in
part to analytical tractability [8], [10], TTL caches have been
widely employed since the early days of the internet with the
Domain Name System (DNS) being an important applica-
tion [11]. Recently, TTL caching strategies have received
renewed attention, mainly because they enable a general
analytical approach which is used to model replacement-
based caching policies such as Least Recently Used (LRU)
[12].

Using the TTL cache refresh framework for dynamic
content, [13] proposes two metrics to measure the cached
content freshness: age of synchronization (AoS) and age
of information (AoI). Most existing research regarding the
freshness of the local cache focus on the AoI metric which
was first examined in the 1990s in studies on real-time
databases [14], [15].

The problem of refreshing cache contents from an AoI
perspective was first formulated in [16], where a remote
server generates multiple files and transmits them to a local
cache. The authors assume that each file has its own request
popularity, a factor that affects how often the server should
update the file contained in cache. The objective is to
minimize the average AoI [17]. In [18], the authors formulate
the AoI problem for a system with random transmission
and service processes. They show that the age decreases
with increasing service rate. Nevertheless, this comes at the

cost of increased waste in the resources spent on obsolete
packets [19]. Najm et al. [20] analyze the average age and
average peak of AoI under the gamma distributed service
time. Sun et al. [21] study how to optimally manage the
freshness of information using AoI metric and under a
general age penalty function to show that a zero-wait policy
does not always minimize the age. Kam et al. [22] propose
a dynamic model in which the rate of requests depends on
the popularity and the freshness of information to minimize
the number of missed packet requests.

While AoI is a meaningful metric for measuring the
freshness of content in some systems, there are many real-
world scenarios where a content does not lose its value
simply because time has passed since it was put into the
cache. These types of dynamic contents include news and
social network updates where the users prefer to have the
most fresh version but so long as there is no new update,
that content is considered to be the most fresh version. In
this work, we use a new freshness metric called Age-of-
Version (AoV) which counts the integer difference between
the versions at the database and the local cache. We also
introduce a new cost function for dynamic content caching
which captures both the cost due to the miss event and the
cost due to content freshness [23] which grows with the
AoV metric. Moreover, our model extends the traditional
caching paradigm to allow for varying generation dynamics
of content, and calls for new designs that incorporate these
dynamics into its decisions.

In particular, we propose a freshness-driven caching
model for dynamic content, which accounts for the update
rate of data content and provides an analysis of the average
operational cost for both the constrained and unconstrained
cache sizes. We aim to reveal the effect of popularity and re-
fresh rate on the optimal caching policies. Our contributions,
along with the organization of the paper, are as follows.

• In Section II, we present a tractable caching model for
serving dynamic content to end users from a back-end
source and formulate the general problem.
• In Section III, we attack the generally intractable problem

for the special and insightful case when there is no cache
constraint, i.e., all items can be stored in the cache. We
characterize the optimal caching decision and explicitly
identify the optimal holding time of each item in terms
of its popularity and its refresh rate, which reveals the
balance between the fetching cost of a fresh update and
the ageing cost of serving an old version.
• In Section IV, we return to the general cost minimization

problem under high-probability, and an associated average
cache size constraints to propose an asymptotically opti-
mal caching solution. The solution reveals the interesting
fact that, for fresh caching of dynamic content, one should
select the items to cache based on their popularities, while
determining the holding times of the cached items based
on their refresh rates.
• In Section V, we contrast the operational cost and aver-

age cache occupancy of the constrained cache with their

…

𝑝1𝑝2𝑝3 𝑝4

P
Popularity Distribution

Front-End
Local Cache

hit

Refresh rates

𝒂𝒈𝒆 x𝒄𝒂

…

End Users

𝒄𝒇

𝜷

Aging costFetching cost

...𝛌𝟏

Source
N items

miss

Back-End Database

Fig. 1: Setting of Fresh Caching for Dynamic Content

counterparts in the unconstrained problem to demonstrate
the potential of the proposed caching strategy and reveal
the trade-off between the rate of convergence and cache
size saving. The results show that the asymptotically
optimal solution presented in Section IV can yield sig-
nificant cache savings by discarding static items that are
not sufficiently popular, and using the limited cache
space efficiently for sufficiently popular dynamic and
static items. Finally, we conclude the work in Section VI.

II. SYSTEM MODEL

We consider the generic hierarchical setting depicted in
Fig. 1, whereby: the (limited) local cache serves a user
population that makes requests of content according to a
popularity distribution; while the back-end database receives
updates to update the content with different rates. Next, we
will provide the details of this generic model, followed by
the goal of our work.
Demand Dynamics: We assume that a set N of N unit-
size data items (with dynamically changing content) is being
served to a user population by the hierarchical caching sys-
tem in Fig. 1. In particular, requests arrive to the local cache
according to a Poisson process1 with rate β ≥ 0, which
captures the request intensity of the user population. An
incoming request targets data item n ∈ N with probability
pn. Accordingly, the probability distribution p = (pn)Nn=1

captures the popularity profile of the data items.
Generation Dynamics: At the database, each data item may
receive updates to replace its previous content. We assume
that data item n receives updates according to a Poisson
process with rate λn ≥ 0. Note that λn = 0 encapsulates
the traditional case of static content that never receives an
update. We denote the vector λ = (λn)Nn=1 as the collection
of update rates for the database.
Age Dynamics: Since the data items are subject to updates
at the database, the same items in the local cache may be
older versions of the content. To measure the freshness of
local content, we define the age ∆n(t) ∈ {0, 1, . . .} at
time t of a cached content for item n as the number of
updates that the locally available item n has received in the
database since it has been most recently cached. We name
this freshness metric as the Age-of-Version (AoV), since it
counts the integer difference between the versions at the
database and the local cache.

1Accordingly, we assume that the system evolves in continuous time.

…
…

𝜏𝑛,𝑖𝑅𝑛,𝑖

𝑡𝑛,𝑖 𝑡𝑛,𝑖
′

∆𝑛(𝑡)

𝑡

miss hit

𝑡𝑛,𝑖−1
′ 𝑅𝑛,𝑖+1

𝑨𝒏,𝒊

Fig. 2: Age-of-version ∆n(t) evolution for data item n.

Fig. 2 illustrates an example evolution of ∆n(t) for data
item n under an arbitrary holding and eviction policy. At the
instant tn,i, the local cache refreshes its content of data item
n for the ith time. This item remains in the local cache for a
duration of τn,i ∈ R+ units of time. In this sample path, the
item is evicted from the local cache at time instance t′n,i =
tn,i + τn,i. During the phase t ∈ [tn,i, t

′
n,i), the AoV ∆n(t)

of item n grows according to a Poisson process with rate λn,
as governed by the aforementioned generation dynamics. At
the eviction instant t′n,i, the ∆n(t) drops to zero by default
since the next request for the item that arrives after a random
duration (denoted as Rn,i+1 in the figure) will be serving a
fresh update from the database.

Within the subsequent evictions t′n,i and t′n,i+1 of the item
n, we refer to: the phase (t′n,i, t

′
n,i + Rn,i+1] as the miss

phase, since the incoming request is not in the local cache
and must be fetched from the database at a higher cost; and
the phase (t′n,i + Rn,i+1, t

′
n,i+1] as the hit phase, since the

incoming request is served from the local cache, but possibly
with a positive AoV value ∆n(t).

Fetching and Ageing Costs: Now that we have the dy-
namics defined, we can introduce the key operational and
performance costs associated with our caching system. On
the operational side, we denote the cost of fetching an item
from the database to the local cache by cf > 0. On the
performance side, we assume that serving an item n from
the local cache with age ∆n(t) incurs a freshness/age cost
of ca × ∆n(t) for some ca ≥ 0, which grows linearly2

with the AoV metric. This ageing cost measures the growing
discontent of the user for receiving an older version of the
content she/he demands.
Problem Statement: Our broad objective in this work is
to develop efficient caching and eviction strategies for the
above setting that optimally balance the tradeoff between
the cost of frequently updating local content and the cost
of providing aged content to the users. In particular, we are
interested in provably cost-minimizing caching-and-eviction
strategies that account for both the demand and the genera-
tion dynamics in order to optimally utilize a possibly limited
cache space B ∈ [0,∞] at the local cache. We can express

2While this linearity assumption is meaningful as a first-order approxi-
mation to ageing cost and facilitates simpler expressions in the analysis, it
can also be generalized to convex forms to extend this basic framework.

this goal generically as

min
π∈Π

Cπ

s.t.

N∑
n=1

Xπ
n (t) ≤ B, ∀t ≥ 0,

(1)

where Cπ represents the mean of the combined fetching
and ageing cost of the system, and Xπ

n (t) ∈ {0, 1} is the
indicator that item i is in the local cache under the operation
of a feasible policy π. In its full generality, the feasible
policy space Π can contain any policy that decides on its
fetching and eviction decisions at time t with the knowledge
of the cache content until time t and the generation/demand
dynamics3 (λ, β,p), but not the ages {∆n(t)}n (since that
information depends on the updates occurring at the back-
end database).
Outline of our Approach and Results: The generic prob-
lem in (1) falls under the scope of Partially Observable
Markov Decision Processes (POMDP), and quickly becomes
intractable [24]. Even formulating the problem explicitly,
let alone solving it, becomes practically impossible. There-
fore, a more productive approach is needed to attack this
problem in order to develop algorithms and principles with
performance guarantees. In this work, we propose such
an approach whereby we: (i) first study the unconstrained
version of the problem where B =∞ in Section III, which
reveals how the caching and eviction decisions must depend
on the generation and demand dynamics; and then (ii) extend
our approach to a constrained version in Section IV, where
we can guarantee that the B < ∞ cache limit can be
satisfied with arbitrarily high probability as the database
size N increases. This approach is not only productive in
designing of policies with asymptotically optimal and cache-
space efficient, but also reveals new and explicit metrics
(cf. Theorems 1 and 2) for easily measuring the importance
of content in terms of its popularity and refresh rates.
Throughout the paper, we use cache to refer to the cache
size available in the local server.

III. OPTIMAL CACHING FOR DYNAMIC CONTENT
WITHOUT CACHE CONSTRAINTS

In this section, we attack the generally intractable problem
in (1) for the special and insightful case when there is no
cache constraint, i.e., B = ∞. The characterization of the
optimal caching decision in this section under this uncon-
strained setting will not only yield interesting insights about
the impact of the generation dynamics, but will also form
the basis of our approach to handling the cache-constrained
case with high probability guarantees in Section IV.

We start by noting that the relaxation of the constraint
decouples the problem into finding the optimal fetching and
eviction decisions for each data item n independently. This
is obvious once we note that the contribution of each item to
the average cost is independent of the others. This motivates

3In practice, these parameters can be learned over time. Here, we assume
their knowledge so that we can focus on their impact on the performance.

us in this setting to focus on a space of policies T with
random holding times, defined next.

Definition 1 (Policy Space T): T denotes the space of
policies with random holding times, where a policy τ ∈
T is defined by N (non-negative-valued) random variables
(τn)Nn=1, representing the holding times of the items after
their last fetching. In particular, the policy τ = (τn)Nn=1

operates as follows for each item n ∈ N : (i) if item n
is not in the local cache when it is requested at time t, a
fresh version of it is fetched from the database (at cost cf)
and served to the user; (ii) at the time of fetching item n
into the local cache, a random holding time is generated
(independently from previous realization of holding times)
with respect to the distribution of τn, and item n is held
in the queue for the duration of the generated τn value, at
which time it is evicted from the local cache; (iii) if item
n is in the local cache when it is requested at time t, it is
served (with age-of-version cost of ca ∆n(t)) to the user.

The space T takes advantage of the decoupling of the
caching decisions between items as well as possesses the
flexibility to adapt to different generation and demand dy-
namics of data items. The next lemma explicitly charac-
terizes the average cost and average cache size of such a
policy τ ∈ T in terms of the first and second moments of
the holding time distributions of the policy τ .

Lemma 1: Let C(τ) and B(τ), respectively, denote the
average cost and the average cache occupancy when the
policy τ ∈ T is implemented for the caching system without
cache constraints at the local cache. Then,

C(τ) = β

N∑
n=1

pn

1
2caλnpnβ E

[
τ2
n

]
+ cf

1 + βpn E [τn]
, (2)

B(τ) =

N∑
n=1

βpnE[τn]

1 + βpnE[τn]
, (3)

where (λ, β,p) are the system model parameters (cf. Sec-
tion II) and (τn)n are the random variables describing the
policy τ (c.f. Definition 1).
Proof. The average system cost utilizing the local cache to
serve the requests comprises two main terms. Average fetch-
ing cost associated with requests that are not in the cache
after a miss event. And, average freshness cost associated
with requests that are served from the cache after a hit event,
in which case an ageing/freshness cost is incurred due to
the fact that the cached content may not be the most fresh
version. Then the average cost C(τ) under the policy τ ∈ T
can be expressed as:

C(τ) = β

N∑
n=1

pn
(
(1− hn(τ))cf + hn(τ)∆n(τ)ca

)
, (4)

where ∆n(τ) is the time average age of the data item n
served from the local cache when the policy τ ∈ T is
implemented. Based on Renewal Reward Theorem, we have:

∆n(τ) = lim
T→∞

1

T

∫ T

0

∆n(t)dt =
E[An,i]

E[τn,i]
=

1

2
λn

E[τ2
n,i]

E[τn,i]
,

where An,i is the area shown in Fig. 2 and the last equality
comes from the fact that:

E[An,i | τn,i] = E[

∫ τn,i

0

Nn(t)dt | τn,i]

=

∫ τn,i

0

E[Nn(t) | τn,i]dt =

∫ τn,i

0

λntdt = λn
τ2
n,i

2
,

and Nn(t) is a Poisson process with parameter λn which is
independent of τn,i. Then noting that E[An,i] = E[E[An,i |
τn,i]] = λn

2 E[τ2
n,i] gives us the result. We omit the indices i

for convenience.
Next, let us denote the steady-state hit probability under

the caching policy τ as hn(τn) = P (X̄n(τ) = 1), where
X̄n is the limiting distribution of Xn(t) that is the indicator
of whether item n is in the local cache at time t or not (cf.
(1)). Using the illustration of Fig. 2, it is easy to confirm
that the hit probability for content n can be expressed as:

hn(τ) =
E[τn]

E[τn] + E[Rn]
, (5)

where Rn is the interarrival time between requests of item
n. Since requests for item n arrive at the cache according
to a Poisson process with rate βpn, we have E[Rn] = 1

βpn
.

Then, substituting in (5), we get the cost expression of (2).
Using the hit probability given in (5) and noting that

E[X̄n(τ)] = hn(τ), the average cache occupancy which
is E[

∑N
n=1 X̄n(τ)] =

∑N
n=1 E[X̄n(τ)] gives (3).

The explicit characterization of the cost under Lemma 1
allows us to pose the problem of finding the cost minimizing
policy in this setting as:

C∗(λ, β,p) = min
τ∈T

C(τ), (6)

where the minimization is performed over all distributions
for the holding times (τn)n with non-negative ranges, and
the tuple (λ, β,p) indicates that the solution is a function of
these system parameters. For brevity, we will occasionally
omit these parameters and refer to the optimal cost as C∗,
and later on we will also use C∗(N) when we study the
scaling of the performance as the database size N grows.
The following theorem fully solves (6).

Theorem 1: Policy τ ∗ ∈ T that solves (6) is given by:

τ∗n =

 1
βpn

(√
1 + 2

βpncf
caλn

− 1

)
, n ∈ D,

∞, n ∈ S,
(7)

where D = {n ∈ N | λn > 0} , and S =
{n ∈ N | λn = 0} = N\D are, respectively, the set
of dynamic and static data items. Then, the corresponding
optimal average cost is given by:

C∗(λ, β,p) =
∑
n∈D

caλn

(√
1 + 2

βpn
λn

cf
ca
− 1

)
. (8)

Also, the average cache occupancy under τ ∗ is given by:

B(τ ∗) = |S|+
∑
n∈D

βpnτ
∗
n

1 + βpnτ∗n
. (9)

Proof. First we show that the average system cost given
in (2) is minimized when the variable τn is a constant, ∀n.
For a random variable τn with expectation E[τn], in order

to minimize the cost, the second moment E[τ2
n] should be

minimum. Since var[τn] = E[τ2
n] − (E[τn])2 ≥ 0, so the

minimum possible is E[τ2
n] = (E[τn])2 which is a constant

random variable. In calculating (2) we assumed that steady
state distribution exists for the given random variable τn.
Now we verify it for the constant random variable τn.

Lemma 2: For a constant random variable τn, Bernoulli
process (Xn(t), t ≥ 0) has a steady state distribution and its
average is given by (5).
Proof. According to Fig. 2, for data item n, define a new
random variable Zn = Rn + τn where τn is constant. We
have E[Zn] = τn + 1

βpn
. Based on the instances of random

variable Zn, define Sqn =
∑q
i=1 Zn,i =

∑q
i=1(Rn,i + τn)

to be the time of the qth renewal when the data item n
enters the cache for the qth time. Let W (t) be the number
of times that data item n has evicted from the cache up to
time t. Blackwell’s renewal theorem states that for any fixed
τn > 0:

lim
t→∞

[E[W (t+ τn)]− E[W (t)]] =
τn

E[Zn]
=

βpnτn
1 + βpnτn

,

which shows the existence of the steady state distribution.
Therefore the random process (Xn(t), t) has a steady state
distribution with its average given by the above equation.

The cost minimization problem for the unconstrained
cache can thus be expressed as:

C∗(λ, β,p) = min
τn≥0

β

N∑
n=1

pn

1
2caλnpnβτ

2
n + cf

1 + βpnτn
.

The objective function has the form of quadratic over linear
ratio, which is convex. Using KKT conditions gives the
optimal solution for τ ∗ in (7). Substituting τ ∗ in (2) gives
the optimal cost of (8).

To prove the optimal average cache occupancy (9), sub-
stituting the optimal solution (7) in the definition of aver-
age cache occupancy given in Lemma 1 and noting that
τ∗n = ∞,∀n ∈ S, we obtain

∑
n∈S

βpnτ
∗
n

1+βpnτ∗n
= |S| which

completes the proof.
Theorem 1, under the unconstrained cache setting, pro-

vides some useful insights about the nature of the optimal
caching strategy for dynamic content: (i) we see that the
cost minimizing policy τ ∗ selects a fixed holding time for
each item n rather than any other random choice; (ii) more
interestingly, (7) explicitly characterizes the optimal holding
time of each dynamic item n in terms of its popularity pn
and its refresh rate λn in order to strike the optimal balance
between the fetching cost of a fresh update and the ageing
cost of serving an old version; (iii) less interestingly, we
also see that any static item is cached forever under this
unconstrained setting since it is never necessary to update
it once it is fetched; and (iv) it explicitly characterizes
the average cache occupancy of τ∗ in terms of system
parameters.

In the next section, we will build upon this foundation to
return to a soft-constrained version of the problem (1).

IV. ASYMPTOTICALLY-OPTIMAL CACHING FOR
DYNAMIC CONTENT WITH CACHE CONSTRAINTS

Returning the general cost minimization problem given
in (1), the instantaneous cache size constraint with B <∞
entails a dependence between the optimizing items holding
time. With such a dependence the optimization (1) suffers
from the curse of dimensionality and has no tractable solu-
tion. In this section, we bypass this challenge by replacing
the deterministic-constraint

∑N
n=1X

π
n (t) ≤ B, at all times

t, to a probabilistic-constraint where cache size limit has
to be met with (arbitrarily) high probability over time. In
particular let us introduce the following probabilistic version
of (6):

min
τ∈T

C(τ) (10)

s.t. P

(
N∑
n=1

X̄n(τ) ≤ B

)
≥ 1− δ,

for any arbitrarily small δ > 0, where X̄n(τ) is the steady-
state fraction of time that item n is held in the cache
under policy τ . Such probabilistic approaches to solving
deterministic problems are used increasingly frequently and
fruitfully in learning and optimization domains. Solving
this high-probability variation of the hard problem, in turn,
provides a means to operate the original system efficiently
with arbitrarily high probability.

Despite its softer statistical form, solving (10) is still
complicated by the need to design with guarantees in the tail
distribution of its cache use. To tackle this challenge, we, in
turn, pose the following average-cache-constrained problem
with a flexible choice of cache size bound B̃ ∈ [0,∞) :

min
τ∈T

C(τ) (11)

s.t. B(τ) ≤ B̃,

where B(τ) is the average cache occupancy under the policy
τ that is explicitly characterized in (3). We note that this
problem is non-convex since the constraint set {τ : B(τ) ≤
B̃} is non-convex. Nevertheless, the approach in the rest of
the section is to first solve the non-convex problem (11) for
any given B̃, and then choose a particular B̃ as a function
of the given B < ∞ and δ > 0 in order to guarantee the
probabilistic constraint in (10). Accordingly, we first provide
the solution of (11) in the next theorem.

Theorem 2: Policy τ̃ ∗ = (τ̃∗n)n ∈ T that solves (11) is
given by deterministic τ̃∗n ≥ 0, ∀n, and α̃∗ ≥ 0 satisfying:

τ̃∗n =

1
βpn

[√
1 + 2

βpncf−α̃∗
caλn

− 1

]+

, ∀n ∈ D

∞, ∀n ∈ S, α̃∗ < βpncf
∈ [0,∞], ∀n ∈ S, α̃∗ = βpncf
0, ∀n ∈ S, α̃∗ > βpncf

 ,

(12)
where [z]+ = max(0, z), and

α̃∗
(
B(τ̃ ∗)− B̃

)
= 0, B(τ̃ ∗) ≤ B̃, (13)

where D and S are, respectively, the set of dynamic and
static data items defined in Theorem 1.

Proof. In the proof of Theorem 1, we showed that in
order to minimize the cost, the random variable τn should
be a constant. Also, Lemma 2 shows that for such a constant
random variable τn, the Bernoulli process (Xn(t))t has
a steady-state distribution whose average is given by (5).
Therefore the assumptions to calculate the average cost and
average cache occupancy given in (2) and (3) hold and the
optimization problem (11) can be rewritten as:

min
τn≥0

β

N∑
n=1

pn

1
2caλnpnβτ

2
n + cf

1 + βpnτn

s.t.

N∑
n=1

βpnτn
1 + βpnτn

≤ B̃.

This is not a convex optimization problem. However, we
take the following approach to solve it. Define the feasible
set FB as:

FB =

{
(τ1, · · · , τN) |τn ≥ 0, g(τ) =

N∑
n=1

βpnτn
βpnτn + 1

≤ B̃

}
which is a non-convex set. Then the cost optimization
problem (11) can be expressed as:

min
τ∈FB

C(τ). (14)

For any optimization problem minτ∈F C(τ) as it is given
in [25], if all the following hold:
1) Slater condition,
2) non degeneracy assumption for ∀τ ∈ F ,
3) ∃τ ′ ∈ F : ∀τ ∈ F ,∃tn ↓ 0 with τ ′ + tn (τ − τ ′) ∈ F ,
4) LC(τ) =

{
τ ′ ∈ RN : C (τ ′) < C(τ)

}
is a convex set,

then if τ is a non trivial KKT point, it is a global minimizer.
Lemma 3: Optimization problem (14) satisfies all the

above four necessary conditions.
Proof. (Lemma 3) Please refer to Appendix A.

Therefore, the non-trivial KKT solution to the problem
(14) would be a global minimizer. Such a solution can be
expressed as:

τ̃∗n =
1

βpn

√√√√1 +

βpncf +
µ̃∗n
βpn
− α̃∗

caλn
2 − µ̃∗n

βpn

− 1

 ≥ 0,

where α̃∗ ≥ 0 and µ̃∗n ≥ 0 are the optimal Lagrange
multipliers which satisfy all the following KKT conditions:

µ̃∗nτ̃
∗
n = 0,

N∑
n=1

βpnτ̃
∗
n

1 + βpnτ̃∗n
≤ B̃,

α̃∗

(
N∑
n=1

βpnτ̃
∗
n

βpnτ̃∗n + 1
− B̃

)
= 0.

Accordingly, for dynamic data items, n ∈ D, with λn > 0,
we have:

τ̃∗n = max

(
0,

1

βpn
[

√
1 + 2

βpncf − α̃∗
caλn

− 1]

)
,

while for static data items, n ∈ S, with λ = 0, we have:

τ̃∗n =

 ∞ α̃∗ < βpncf ,
∈ [0,∞] α̃∗ = βpncf ,

0 α̃∗ > βpncf ,

with α̃∗ ≥ 0 chosen such that α̃∗
(∑N

n=1
βpnτ̃

∗
n

βpnτ̃∗n+1 − B̃
)

= 0 and
∑N
n=1

βpnτ̃
∗
n

βpnτ̃∗n+1 ≤ B̃. This completes the proof.

The form of the optimal solution in (12) reveals the
interesting insights that, for dynamic content n ∈ D: whether
to cache an item depends on whether it is sufficiently popular
(in particular, whether pn ≶ α̃∗

βcf
); and how long a cached

item will remain in the cache before eviction depends on
its refresh rate λn as characterized in (12). It can also
be seen that, for the same system parameters (λ, β,p), as
the average cache limit B̃ decreases, then the optimal α̃∗

that solves (12)-(13) will increase. Then, for both static
and dynamic content, the popularity threshold α̃∗/(βcf) for
caching or not caching the content increases to make sure
only sufficiently popular items are cached.

Now that we solved the average-cache-constrained prob-
lem (11), we are ready to connect it to the probabilistic
problem (10) with the following proposition.

Proposition 1: For any finite B > 0 and arbitrarily small
δ > 0, there exits B̃(δ) = Be−v with

v = min
{
v′ ∈ N| exp

(
−B

(
(v′ − 1) + e−v

′
))
≤ δ
}
,

such that the solution τ̃ ∗(δ) of (11) for B̃ = B̃(δ) satisfies

P

(
N∑
n=1

X̄n(τ̃ ∗(δ)) ≤ B

)
≥ 1− δ.

Proof. (Proposition 1) Notice that X̄n(τ),∀n ∈ N are
independent Bernoulli random variables. We define a new
random variable YN (τ) =

∑N
n=1 X̄n(τ), which is the sum

of N independent Bernoulli random variables and is known
to have a Poisson Binomial distribution. Also using the linear
property of expectation and given that E[X̄n(τ)] = hn(τ),
we have:

E[YN (τ)] =

N∑
n=1

E[X̄n(τ)] =

N∑
n=1

βpnE[τn]

1 + βpnE[τn]
.

For the random variable YN with Poisson Binomial distri-
bution, using the Chernoff bound we have:
P (YN ≥ B) ≤ exp(−B logB+B+B log(E[YN])−E[YN]).

Then to guarantee P (YN ≤ B) ≥ 1− δ, we have:
−B logB +B +B log(E[YN])− E[YN] ≤ log(δ).

In this equation, setting δ to the form δ =
exp(− ((v − 1)ev + 1)E[YN]),∀v ≥ 1, will give us
the range of possible E[YN] as E[YN] ≤ Be−m to
ensure that P (YN ≤ B) ≥ 1 − δ holds. Hence the choice
B̃(δ) = Be−v .

Proposition 1 provides an explicit means of using the
tractable problem (11) to find efficient feasible solutions to
the problem (10). To glean an insight on the structure of
B̃(δ), suppose that m = 1 and δ = e−B/e, which is very
small for sufficiently large B. Then, we have B̃(δ) = Be−1.

In the next section, we will study the cost and cache
occupancy performance merits of the proposed approximate
optimization of (10) for large databases, which is commonly
the case in content distribution networks. In particular, we
will introduce the variable 0 ≤ m(N) ≤ N as the number
of most popular items that will remain in the cache after
being fetched for the optimized holding times from (12).
The remaining N −m(N) items will never be cached, i.e.,
will only be fetched and served upon a user request and not

cached. Then we will examine the cost-cache trade-off for
this proposed strategy to show its desirable characteristics.

V. COST AND CACHE SPACE PERFORMANCE ANALYSIS

To establish the performance merits or the proposed
approximate solution (τ̃ ∗, α̃∗) given in (12) and (13), we
contrast the operational cost and average cache occupancy
of the approximate problem (11) with its counterpart of the
unconstrained problem (6) in the asymptotic regime as the
number of data items, N , grows.

We expose the dependence of the relevant quantities on
N to highlight its impact on the analysis as follows. We
denote the optimal cost and average cache occupancy of
(6), respectively, by C∗(N) and B∗(N), whereas the cost
and average cache occupancy of the proposed approximate
problem (11) are denoted by C̃α̃(N) and B̃α̃(N), where
the superscript α̃ indicates the dependence of these values
to the α̃ parameter that is optimized in (12) and (13) for
a given cache bound. Here, α̃ ≥ 0 is a flexible parameter
that allows us to explore the tradeoff between the cost and
the cache occupancy. Note that C∗(N) = C∗(λ, β,p) in (8)
and B∗(N) = B(τ ∗) in (9). In addition,

C̃α̃(N) = β
∑
n∈N

pn

1
2caλnpnβ(τ̃ α̃n)2 + cf

1 + βpnτ̃ α̃n
,

where (τ̃ α̃, α̃) satisfies (12) and (13) for a given α̃ ≥ 0 with
the appropriate choice of B̃α̃ as the corresponding cache
limit in (10).

As the number of data items N grows, both the set of
static items, S, and/or the set of dynamic items, D, grow in
size accordingly, yet at different rates with N . Nevertheless,
by the definition of D in Theorem 1, we can guarantee a
minimum content update rate λmin > 0 for all the items
n ∈ D for any number of data items N . That is, λmin =
infn∈D λn > 0, ∀n ∈ N .

Further, for any given α̃ ≥ 0, we define the set of popular
items in the approximate problem (11), P α̃, as

P α̃ =

{
n ∈ N | pn >

α̃

βcf

}
, (15)

to contain all the items that should be held in the cache after
being fetched from the back-end database since (12) implies:

τ̃ α̃n

{
> 0, n ∈ P α̃,
= 0, n ∈ N − P α̃. (16)

It is worth noting that, if α̃ = 0, then P α̃ = N and all data
items are considered popular which collapses to the case of
the unconstrained cached size optimization (6). The last step
before stating the asymptotic gains of the proposed policy is
to divide the set of static items into two disjoint subsets. A
subset Sα̃ of static items that are popular, i.e., Sα̃ = S∩P α̃,
and a subset Sα̃ = S − Sα̃ of static unpopular items.

The following theorem jointly establishes the asymptotic
optimality of the proposed approximate policy together with
characterizing the cost-cache size trade off.

Theorem 3: For a given α̃ ≥ 0, consider the policy τ̃ α̃

that solves (10) for a corresponding average cache bound B̃α̃

and average cost C̃α̃. Let m(N) = |P α̃| denote the number

of sufficiently popular items that will be cached under τ̃ α̃

policy.
(i) (Asymptotic Optimality) If

m(N) = min(ω(
√
N), ω(|Sα̃|)),

then:
lim
N→∞

C̃α̃(N)− C∗(N) = 0.

(ii) (Cost-cache Size Trade off) If m(N) = N b, 0 < b < 1

and |Sα̃| = Na2 , 0 ≤ a2 < 1, with b > min(1
2 , a2), the rate

of convergence is at least:

C̃α̃(N)− C∗(N) ≤ O
(
N−min(b−a2,2b−1)

)
,

the average cache saving is lower bounded by:

B∗(N)− B̃α̃(N) ≥ |Sα̃| = Na2 ,

and the average cache occupancy B̃α(N) is bounded by:

B̃α̃(N) ≤ |Sα̃|+ βcf
caλmin

,

Proof. Without loss of generality, assume that p1 ≥ p2 ≥
· · · ≥ pN > 0. Since m(N) = |P α̃| and according to the
definition of the set of popular items P α̃ given in (15), we
will have α̃ ≤ βcfpm(N) for any given α̃ where pm(N) is
the probability of the m(N)th most popular item. Using the
expressions for τ∗n and τ̃ α̃n given in (7) and (12) respectively,
for dynamic data items we can show that:

τ∗n − τ̃ α̃n ≤
cf
caλn

pm(N)

pn

1

1 + βpnτ̃ α̃n
, ∀n ∈ D.

Since τ∗n ≥ τ̃ α̃n ,∀n ∈ N , applying Taylor series to average
cost of the data item n will give us the following inequality:

C̃n(τ̃ α̃n)− C∗n ≤ −∇C̃n(τ̃ α̃n)(τ∗n − τ̃ α̃n), ∀n ∈ D. (17)

The Lagrangian function L(τ̃ α̃n, α̃, µ̃) of (10) takes the form:
N∑
n=1

C̃n(τ̃ α̃n) + α̃(

N∑
n=1

βpnτ̃
α̃
n

βpnτ̃ α̃n + 1
− B̃(τ̃ α̃n)) +

N∑
n=m(N)

µ̃nτ̃
α̃
n ,

where α̃ ≥ 0 and µ̃n ≥ 0,∀n ∈ {1, 2, ..., N} are Lagrange
multipliers. Note that since τ̃ α̃n > 0,∀n ≤ m(N), we have
that µ̃n = 0,∀n ≤ m(N). Using the fact that τ̃ α̃n is a non-
trivial KKT point for a given α̃ ≤ βcfpm(N) and setting the
derivative of Lagrangian function to zero, we have:

−∇C̃n(τ̃ α̃n) ≤
β2pnpm(N)cf

(1 + βpnτ̃ α̃n))2
, ∀n ∈ P α̃

−∇C̃n(τ̃ α̃n) ≤β2pnpm(N)cf

+ β2cfpn(pm(N) − pn),∀n ∈ N − P α̃

Apply (17) to each popular dynamic data item n ∈ D∩P α̃:

C̃n(τ̃ α̃n)−C∗n ≤
β2c2f
ca

p2
m(N)

λn

1

(1 + βpnτ̃ α̃n)3
≤
β2c2fp

2
m(N)

caλn
,

and apply it to each unpopular dynamic item n ∈ D − P α̃:

C̃n(τ̃ α̃n)− C∗n ≤
β2c2f
ca

p2
m(N) + pn(pm(N) − pn)

λn

≤
β2c2f
ca

1

λn

5

4
p2
m(N),

where the second inequality comes from the fact that
pn(pm(N) − pn) ≤ 1

4p
2
m(N).

For popular static items n ∈ Sα̃, we have τ∗n = τ̃ α̃n =∞
according to (7) and (12) respectively. Therefore, we have
C̃n(τ̃ α̃n) = C∗n = 0,∀n ∈ S∩P α̃. For unpopular static items
n ∈ Sα̃, τ∗n =∞ according to (7) and according to (16) we
have τ̃ α̃n = 0. This gives C∗n = 0 and C̃n(τ̃ α̃n) = βpncf
based on the average cost function given in (2). Therefore,

C̃n(τ̃ α̃n)− C∗n = βpncf , ∀n ∈ Sα̃.

Thus, the total average system cost is upper-bounded as:
N∑
n=1

[C̃n(τ̃ α̃n)− C∗n] =
∑

n∈D∩Pα̃
[C̃n(τ̃ α̃n)− C∗n]

+
∑

n∈D−Pα̃
[C̃n(τ̃ α̃n)− C∗n] +

∑
n∈Sα̃

[C̃n(τ̃ α̃n)− C∗n]

+
∑
n∈Sα̃

[C̃n(τ̃ α̃n)− C∗n]

≤
β2c2f
ca

5

4
p2
m(N)

∑
n∈D

1

λn
+ βcf

∑
n∈S−Pα̃

pn

Since |D| = N − |S|, then
∑
n∈D

1
λn
≤ N−|S|

λmin
. Also, for

unpopular static items we have pn ≤ pm(N),∀n ∈ S
α̃

.
Therefore we have that

∑
n∈Sα̃ pn ≤ pm(N)|S

α̃|. Finally,
since we assumed that items are ordered based on their
popularity and pm(N) is the probability of m(N)th most
popular item, so pm(N) ≤ 1

m(N) . This gives us:

N∑
n=1

C̃n(τ̃ α̃n)− C∗n ≤
5

4

β2c2f
caλmin

N − |S|
m2(N)

+ βcf
|Sα̃|
m(N)

.

In order to make sure that the upper bound vanishes as N in-
creases, we need4 to have m(N) = min(ω(

√
N), ω(|Sα̃|)).

This proves (i). To prove (ii), note that m(N) =

min(ω(
√
N), ω(|Sα̃|)) is equivalent to b > min(1

2 , a2).
Then the convergence rate of the upper bound becomes:

N∑
n=1

C̃n(τ̃ α̃n)− C∗n = C̃α̃(N)− C∗(N)

= O
(
N−min(b−a2,2b−1)

)
which demonstrates the smallest rate of convergence on
the average cost. On the other hand, since m(N) is the
number of most popular items that we choose to cache while
discarding all the other unpopular ones, we can show that:

B̃α̃(N) =

m(N)∑
n=1

βpnτ̃
α̃
n

1 + βpnτ̃ α̃n
= |Sα̃|+

∑
n∈Pα̃−S

βpnτ̃
α̃
n

1 + βpnτ̃ α̃n
,

where B̃α̃(N) is the average cache occupancy under the
proposed strategy. On the other hand, for the unconstrained
cache system, we have:

B∗(N) =

N∑
n=1

βpnτ
∗
n

1 + βpnτ∗n
= |Sα̃|+ |Sα̃|+

∑
n∈D

βpnτ
∗
n

1 + βpnτ∗n
.

4f(n) = ω(g(n)) means that for any real constant c > 0, ∃n0 ≥ 1 :
f(n) > cg(n) ≥ 0, ∀n ≥ n0.

Since P α̃ − S ⊆ D and τ∗n ≥ τ̃ α̃n ≥ 0,∀n ∈ N , we have
that: ∑

n∈Pα̃−S

βpnτ̃
α̃
n

1 + βpnτ̃ α̃n
≤
∑
n∈D

βpnτ
∗
n

1 + βpnτ∗n
,

which gives us the lower bound on the average cache saving
as B∗(N)− B̃α(N) ≥ |Sα|.

Recall the average cache occupancy defined in (3) and
note that according to (16) for unpopular items we have
τ̃ α̃n = 0,∀n /∈ P α̃. Also, according to Theorem 2, for static
popular items we have τ̃ α̃n =∞,∀n ∈ Sα̃. This gives:

B̃α̃(N) =

m(N)∑
n=1

βpnτ̃
α̃
n

1 + βpnτ̃ α̃n
= |Sα̃|+

∑
n∈Pα̃−S

βpnτ̃
α̃
n

1 + βpnτ̃ α̃n
,

where |P α̃ − S| = m(N) − |Sα̃| ≥ 0. Using the solution
given in (12), we have:∑

n∈Pα̃−S

βpnτ̃
α̃
n

1 + βpnτ̃ α̃n
= m(N)− |Sα̃|

−
∑

n∈Pα̃−S

1√
1 + 2

βcf
caλn

(pn − pm(N))
.

(18)

Now, using the fact that:

min
{x≥0,

∑N
i=1 xi=c}

N∑
i=1

1√
1 + axi

=
N

1 + ac
N

,

we can show that the second term in the right side of (18)
is lower-bounded by:

≥ m(N)− |Sα̃|√
1 + 2

βcf
ca
· 1
Nb−Na1

∑
n∈Pα̃−S

pn−pm(N)

λn

≥ m(N)− |Sα̃| − βcf
caλmin

,

where the second inequality comes from the fact that
1√
1+x

≥ 1 − 1
2x and

∑
n∈Pα̃−S

pn−pm(N)

λn
≤ 1

λmin
. Sub-

stituting the results gives the upper bound on the average
cache occupancy completing part (ii) of the proof.

Theorem 3 reveals the potential of our proposed caching
strategy which chooses items for caching based on their pop-
ularity and then incorporates the update rate of contents to
decide how long each item should remain in the cache before
eviction. Our proposed caching strategy completely discards
the unpopular items, static or dynamic. More specifically, not
caching the unpopular static items yields a very large gain
on the cache saving side at a marginal loss on the average
system cost side.

Theorem 3 shows that while the proposed strategy is
asymptotically optimal for large data base sizes, it can also
result in massive cache savings. This reveals that a cache size
that grows with the rate of popular static items can achieve
the same performance of having unconstrained cache size
with the data base size being very large. As such, increasing
the cache size beyond the threshold which is given as an
upper bound in Theorem 3 will not reduce the average
system cost for large data base sizes.

In the special scenario where the static items are unpop-
ular for the given popularity measure α̃, i.e., S ∩ P α̃ = φ,
Theorem 3 reveals that a bounded cache size of βcf

caλmin

can be asymptotically optimal and achieve the same average
cost of a system with unconstrained cache size, even if the
database size grows to infinity. Specifically, our proposed
strategy is asymptotically optimal while massively reducing
the cache occupancy to a constant cache size which does
not grow with N .

Notice that the average cache occupancy for the uncon-
strained cache is not necessarily bounded by the order of
popular static items. Not only does our proposed caching
scheme achieve the same average cost of the system with
unconstrained cache asymptotically but it also maintains
a cache size which does not grow linearly with N . In
other words, intelligently choosing the items to cache is a
critical factor to optimize the average system cost in dynamic
caching. If the popularity of static items is low, then caching
only dynamic items considerably reduces the system’s cost
and attains remarkable cache space savings.

According to Theorem 3, m(N) determines the trade
off between how much cache storage is saved and how
fast the cost converges to the optimal. Larger m(N) will
result in a faster convergence but a smaller cache saving
gain. To make this trade-off more clear through an example,
consider a set of items with Zipf(1) popularity distribution
and assume λ = 1

100 is equal for all the dynamic items.
Consider m(N) = N b, 0 < b ≤ 1 to be the number of most
popular items that will be considered for caching and also
assume |Sα̃| = N0.5 is the number of static items which are
not in the popular set. According to Theorem 3, the sufficient
condition for asymptotic optimality is b > 1

2 . For such a
choice of m(N) we, investigate the trade-off. We adopt the
percentage cost reduction of our proposed caching strategy
for the constrained cache to the optimal solution derived for
the unconstrained cache as our performance metric. Such a
metric is defined as:

Cost Reduction(%) = 100× C̃α̃(N)− C∗(N)

C∗(N)
.

This percentage is depicted in Fig. 3 as a function of cache
saving for different values of N . According to the figure, and
as expected from Theorem 3, for any choice of m(N) = N b

with b > 1
2 as N increases from 1000 to 10000, the proposed

cost for the constrained cache converges to the optimal
cost for an unconstrained cache size. The x-axis shows the
amount of cache saving for the proposed strategy compared
to the optimal average cache size for the unconstrained
case. The figure illustrates that, as N increases, the cache
saving also increases, while the cost of the proposed policy
converges to the optimal cost. This behavior demonstrates
the potential of our proposed asymptotic strategy in massive
cache savings. In addition, as m(N) increases, the rate
of convergence increases at the expense of having smaller
savings in the cache size, as predicted by our theoretical
result. In other words, smaller m(N) result in bigger cache
saving but with a slower convergence rate in cost. This is
exactly the trade-off that theorem 3 revealed for the proposed
asymptotic strategy.

Fig. 3: Rate of convergence and cache saving trade-off

VI. CONCLUSION

In this work, we have proposed and investigated an
increasingly important caching scenario for serving dynam-
ically changing content. We introduced the age-of-version
metric to capture the served content’s freshness and track the
number of stale versions per content. We have addressed the
problem of developing optimal caching strategies for mini-
mizing the system’s cost which is shaped by a combination
of the service cost of fetching fresh content directly from a
back-end database and the aging cost of cached, potentially
older, content from a front-end cache. In the scenario of
constrained cache size, our analysis have revealed the inter-
esting fact that the optimal caching strategy allocates cache
space to items based solely on their popularity, while the
content update rate is what determines the content holding
time in the cache. Moreover, we have explored the trade-off
between the cost minimization and cache savings gain of
our design. In particular, not only the cost of our proposed
strategy converge asymptotically to the optimal strategy as
the number of data items grows, but can also reduce the
cache occupancy substantially, as fully characterized by our
analysis and illustrated with numerical results.

APPENDIX

A. Proof of Lemma 3:

To check that Slater condition holds for any 0 < B < N ,
assume τn = 1

2βpn
B

N−B > 0,∀n ∈ N which gives g(τ) <

B. So choose τ = 1
2β

B
N−B (1

p1
, ..., 1

pN
) ∈ FB which is a

feasible point and all the inequalities are inactive.
To check the non-degeneracy assumption, we need to

show that every where that a constraint is active, it’s gradient
is nonzero. Since constraints τn ≥ 0,∀n ∈ N have
always nonzero gradient, so we only need to check this
for g(τ) =

∑N
n=1

βpnτn
βpnτn+1 − B. We have ∇g(τ) 6= 0.

To check the third condition, consider τ ′ = (0, ..., 0) ∈ FB
and choose tn = c

n such that cτ ∈ FB for a given τ . Then
for this choice of τ ′ and tn we can show that condition 3
holds for all τ ∈ FB . To check the last condition, notice
that LC(τ) =

{
τ ′ ∈ RN : C (τ ′) < C(τ)

}
is sub level set

of the convex function C(τ) and therefore is also itself a
convex set.

REFERENCES

[1] B. Abolhassani, J. Tadrous, and A. Eryilmaz, “Wireless multicasting
for content distribution: Stability and delay gain analysis,” in IEEE
INFOCOM 2019-IEEE Conference on Computer Communications.
IEEE, 2019, pp. 1–9.

[2] ——, “Delay gain analysis of wireless multicasting for content
distribution,” IEEE/ACM Transactions on Networking, 2020.

[3] J. Zhang, “A literature survey of cooperative caching in content
distribution networks,” arXiv preprint arXiv:1210.0071, 2012.

[4] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in 2010 Proceedings IEEE INFOCOM.
IEEE, 2010, pp. 1–9.

[5] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2856–
2867, 2014.

[6] W. Jiang, G. Feng, and S. Qin, “Optimal cooperative content caching
and delivery policy for heterogeneous cellular networks,” IEEE Trans-
actions on Mobile Computing, vol. 16, no. 5, pp. 1382–1393, 2016.

[7] B. Abolhassani, J. Tadrous, and A. Eryilmaz, “Achieving freshness in
single/multi-user caching of dynamic content over the wireless edge,”
in IEEE International Symposium on Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks (WiOpt), 2020.

[8] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley, “Performance eval-
uation of hierarchical ttl-based cache networks,” Computer Networks,
vol. 65, pp. 212–231, 2014.

[9] R. Fagin, “Asymptotic miss ratios over independent references,”
Journal of Computer and System Sciences, vol. 14, no. 2, pp. 222–250,
1977.

[10] D. S. Berger, P. Gland, S. Singla, and F. Ciucu, “Exact analysis of ttl
cache networks,” Performance Evaluation, vol. 79, pp. 2–23, 2014.

[11] J. Jung, A. W. Berger, and H. Balakrishnan, “Modeling ttl-based in-
ternet caches,” in IEEE INFOCOM 2003. Twenty-second Annual Joint
Conference of the IEEE Computer and Communications Societies
(IEEE Cat. No. 03CH37428), vol. 1. IEEE, 2003, pp. 417–426.

[12] M. Dehghan, L. Massoulie, D. Towsley, D. S. Menasche, and Y. C.
Tay, “A utility optimization approach to network cache design,”
IEEE/ACM Transactions on Networking, vol. 27, no. 3, pp. 1013–
1027, 2019.

[13] J. Zhong, R. D. Yates, and E. Soljanin, “Two freshness metrics
for local cache refresh,” in 2018 IEEE International Symposium on
Information Theory (ISIT). IEEE, 2018, pp. 1924–1928.

[14] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often
should one update?” in 2012 Proceedings IEEE INFOCOM. IEEE,
2012, pp. 2731–2735.

[15] M. Costa, M. Codreanu, and A. Ephremides, “On the age of in-
formation in status update systems with packet management,” IEEE
Transactions on Information Theory, vol. 62, no. 4, pp. 1897–1910,
2016.

[16] R. D. Yates, P. Ciblat, A. Yener, and M. Wigger, “Age-optimal
constrained cache updating,” in 2017 IEEE International Symposium
on Information Theory (ISIT). IEEE, 2017, pp. 141–145.

[17] L. Huang and E. Modiano, “Optimizing age-of-information in a multi-
class queueing system,” in 2015 IEEE International Symposium on
Information Theory (ISIT). IEEE, 2015, pp. 1681–1685.

[18] C. Kam, S. Kompella, and A. Ephremides, “Age of information
under random updates,” in 2013 IEEE International Symposium on
Information Theory. IEEE, 2013, pp. 66–70.

[19] J. Zhong, E. Soljanin, and R. D. Yates, “Status updates through
multicast networks,” in 2017 55th Annual Allerton Conference on
Communication, Control, and Computing (Allerton). IEEE, 2017,
pp. 463–469.

[20] E. Najm and R. Nasser, “Age of information: The gamma awakening,”
in 2016 IEEE International Symposium on Information Theory (ISIT).
Ieee, 2016, pp. 2574–2578.

[21] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B.
Shroff, “Update or wait: How to keep your data fresh,” IEEE Trans-
actions on Information Theory, vol. 63, no. 11, pp. 7492–7508, 2017.

[22] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and
A. Ephremides, “Information freshness and popularity in mobile
caching,” in 2017 IEEE International Symposium on Information
Theory (ISIT). IEEE, 2017, pp. 136–140.

[23] D. Wessels, Web caching. ” O’Reilly Media, Inc.”, 2001.
[24] A. R. Cassandra, “Exact and approximate algorithms for partially

observable markov decision processes,” 1998.

[25] Q. Ho, “Necessary and sufficient kkt optimality conditions in non-
convex optimization,” Optimization Letters, vol. 11, no. 1, pp. 41–46,
2017.

