
An ADMM-based Algorithm for Zeroth-order
Stochastic Optimization over Distributed Processing

Networks

Abstract—In this paper, we address the problem of stochastic
optimization over distributed processing networks, which is
motivated by machine learning applications performed in data
centers. In this problem, each of a total n nodes in a network
receives stochastic realizations of a private function fi(x) and
aims to reach a common value that minimizes

∑n
i=1 fi(x) via

local updates and communication with its neighbors. We focus
on zeroth-order methods where only function values of stochastic
realizations can be used. Such kind of methods, which are also
called derivative-free, are especially important in solving real-
world problems where either the (sub)gradients of loss functions
are inaccessible or inefficient to be evaluated. To this end,
we propose a method called Distributed Stochastic Alternating
Direction Method of Multipliers (DS-ADMM) which can choose
to use two kinds of gradient estimators for different assumptions.
The convergence rates of DS-ADMM are O(n

√
k log (2k)/T)

for general convex loss functions and O(nk log (2kT)/T) for
strongly convex functions, where k is the dimension of domain
and T is the time horizon of the algorithm. The rates can be
improved to O(n/

√
T) and O(n log T/T) if objective functions

have Lipschitz gradients. All these results are better than previous
distributed zeroth-order methods. Lastly, we demonstrate the
performance of DS-ADMM via experiments of two examples
called distributed online least square and distributed support
vector machine arising in estimation and classification tasks.

I. INTRODUCTION

Today many applications need to deal with big data, which
makes them difficult to be processed by a single machine.
Therefore, a common practice to break a big task into small
ones and process them separately in a network, such as the
MapReduce framework [7]. Machine learning practice, espe-
cially deep learning [11], involve both big data and intensive
optimization tasks, which further enhances the necessity of
distributed optimization methods.

Distributed optimization aims to optimize a loss function∑n
i=1 fi(x), where fi is only accessible by a unique node in a

network consisting of n nodes. The nodes communicate with
their neighbors to reach the consensus of the global optimizer.
This topic dates back to Tsitsiklis et al.’s work [30] and has
seen renewed interest and advances with techniques such as
dual averaging [8], ADMM [20] and Nesterov’s acceleration
[25]. The readers may refer to [22] for more comprehensive
details.

In this paper, we consider a stochastic version of distributed
optimization where fi(x) = Eξi∼Di [Fi(x; ξi)] that arises in
numerous machine learning applications. During the optimiza-
tion process, we only observe or use stochastic realizations of
fi(x), i.e., Fi(x; ξi(t)) at time t. This setup can be applied to

Function Type Convergence Rate
Convex O(n

√
k log(2k)/T)

Convex & SC O(nk log(2k) log(T)/T)

Convex & LG O(n/
√
T)

Convex & LG & SC O(n log T/T)

TABLE I: Convergence rates of Zeroth-order DS-ADMM under
different properties of Fi. “LG“ stands for Lipschitz Gradient
and “SC“ stands for Strongly Convex.

expected risk minimization and empirical risk minimization in
machine learning [4]. For expected risk minimization, Di is
the data generating distribution in Node i, and for empirical
risk minimization, Di is a uniform distribution over the data
points stored in Node i. In both cases, Fi is an associated loss
function parameterized by x.

Previous works mainly explore first-order methods us-
ing (sub)gradients of Fi(x; ξi) (See Section I-A). In some
cases, (sub)gradients are inaccessible or hard to be evaluated.
Such cases include simulation-based optimization [12], bandit
optimization [14] and objectives without simple gradient
expressions. For these applications, we need zeroth-order (also
called derivative-free or non-derivative) methods where we
only utilize function values of Fi(x; ξi).

In this paper, we propose an algorithm called Distributed
Stochastic Alternating Direction Method of Multipliers (DS-
ADMM) for distributed stochastic optimization using zeroth-
order information, which can choose to use two kinds of
gradient estimators for different assumptions. The advantages
of DS-ADMM are summarized as follows:
• DS-ADMM is in fact a unified method which can

seamlessly switch between a first-order method and a
zeroth-order method naturally. It is done by choosing
to use the (sub)gradients or the (sub)gradient estimators
in one step of DS-ADMM. In this paper we focus on
the zeroth-order version of DS-ADMM, which is directly
referred as DS-ADMM for simplicity if not specified.

• Convergence rates of DS-ADMM are shown in Table
I, where k is the dimension of domain and T is the
time horizon of the algorithm. These results are the
main contributions of our paper, because to the best of
our knowledge, they are the fastest rates compared with
previous methods.

• Through two applications in distributed estimation and
classification problems, DS-ADMM is shown to have
a faster rate than previous methods using zeroth-order

information.
The organization of the paper is as follows: In Section

II, we describe our problem setup and its applications in
distributed processing networks. To solve the problem, we
propose DS-ADMM and explain its procedure in Section III.
The convergence results of DS-ADMM are analyzed in Section
IV and V together. In Section VI we use two applications to
demonstrate the performance of DS-ADMM and in Section
VII we give our conclusion.

A. Related Works

For brevity, we only list the works which give the con-
vergence rates of their algorithms for distributed stochastic
optimization.

In Duchi et al.’s work [8], a distributed dual averaging
algorithm was proposed to achieve a O(n log T/

√
T) rate for

general convex functions. For time-varying directed graphs,
Nedic and Olshevsky [21] investigated a subgradient-push
method with a convergence rate of O(log T/T) for strongly
convex functions. The authors in the work [17] presented a
class of decentralized primal-dual type algorithms to achieve a
O(1/T) (respectively, O(1/

√
T)) convergence rate for general

convex (respectively, strongly convex) functions. For nonconvex
functions, the algorithm in the work [18] had a rate of O(1/T+
1/
√
nT) to obtain a first-order stationary solution. By utilizing

a time-dependent weighted mixing of history values, the work
[27] achieved a convergence rate of O(n

√
n/T) for strongly

convex functions. For delayed gradient information, the authors
in the work [28] showed a method with a convergence rate
of O(1/

√
T) for general convex functions. Another work [16]

presented a method with a O(1/T) rate for strongly convex
functions and random networks. The authors in the work [24]
introduced two methods, DSGT and GSGT, which enjoy a
linear rate converging to a neighborhood of the optimality and
a O(1/T) rate converging to the exact solution for smooth and
strongly convex functions.

So if we ignore n1, the fastest convergence rate of existing
first-order methods is O(1/

√
T) for general convex functions

and O(1/T) for strongly convex functions.
To change a first-order method to a zero-order method needs

to be carefully designed because existing gradient estimators
[2], [10] used in zeroth-order methods are biased estimators.
The work [26] developed a Kiefer-Wolfowitz type method by
using the deterministic gradient estimator [2], which achieved
a O(1/

√
T) mean square convergence rate for smooth and

strongly convex functions. Nonconvex functions were dealt with
in [13], but their convergence metric is related to magnitude
of gradients.

B. Notation

We denote ∂F (x; ξ) as the subgradient set of F at x for
sample ξ. If p is a number, ||x||p denotes the lp-norm for a
vector x and ||A||p is the matrix norm of A, induced by the lp
norm. For a matrix A, ||x||2A = xTAx. xT and AT are defined

1Because the dependence on n is only explored in some of the above works.

as the transpose of x and A, respectively. 〈·, ·〉 is the standard
inner product of two vectors. Meanwhile, Ik is a k×k identity
matrix. 0 and 1 are vectors with all entries equal to 0 and
1, respectively. A⊗B is the Kronecker product of A and B.
dom F is the domain of the function F . diag(a1, ..., an) is a
n×n diagonal matrix when entries ai ∈ R and diag(A1, ..., An)
is a nk×nk block diagonal matrix with diagonal k×k matrix
Ai. πχ{�} is the projection operator with regard to a set X ,
which is defined as

πχ{x} = arg min
y∈X
||y − x||22

II. PROBLEM SETUP AND APPLICATIONS

We consider a stochastic optimization problem formulated
as:

min
x∈X

n∑
i=1

fi(x) (1)

where fi(x) = Eξi∼Di [Fi(x; ξi)] and X ⊂ Rk is some
constraint set. We assume that the above problem is processed
by a network represented by an undirected, connected and
weighed graph G = (V,E) where V = {1, ..., n} is the set
of nodes and E is the set of edges. The communication cost
of a link is represented by the weight of the corresponding
edge. In this paper, we focus on the algorithms where Node
i only observes or uses stochastic realizations of fi(x), i.e.,
Fi(x, ξi(t)) at time t. For a first-order algorithm, (sub)gradients
of Fi(x, ξi(t)) can be used, and for a zeroth-order algorithm,
we can only use the function values of Fi(x, ξi(t)) queried
at any point x. Each node of the network can only share its
information with its neighbors in order to reach the consensus.

Distributed stochastic optimization has many applications in
practice. Here we will present two examples, and explain why
zeroth methods are needed in these two examples.

The first example stems from distributed online least squares
estimation (OLS) in sensor networks. Consider a sensor
network which aims to estimate a signal x̂. Each sensor
receives an observation ξi(t) at time t, which is modeled
as ξi(t) = HT

i x̂ + wi(t). HT
i x̂ is a linear response of the

signal in Sensor i and wi(t) is white noise sampled from
independent and identically Gaussian distributions at time t.
The sensors use the observations to cooperatively solve the least
square problem minx∈X

∑n
i=1 Eξi∼Di ||HT

i x− ξi||22 where X
is some constraint set. Now we can see that in this setup,
fi(x) = Eξi∼Di ||HT

i x−ξi||22, and we can observe its stochastic
realizations Fi(x; ξi(t)) = ||HT

i x− ξi(t)||22 sequentially. If Hi

is time-varying because of environmental factors, Hi needs to
re-evaluated every certain time. So it may be not efficient to
use first-order methods when Hi has a high dimension (we
need to know Hi to use gradients). In this case, each sensor
can obtain HT

i x by directly giving an input x produced by
itself, where the white noise can be neglected. Then values of
||HT

i x−ξi(t)||22 at any x can be obtained to use a zeroth-order
method.

The second example is distributed support vector machine
(SVM) formulation for optimal classification. Consider a bunch

of servers connected by a network dealing with a classification
task. Server i stores a partition of the total training set, whose
sth item is (γi(s), ϕi(s)). Here ϕi(s) ∈ {1, ...,m} is the class
of γi(s). Suppose data points have m > 2 classes. For linear
SVM, we choose a vector xj (j is just a superscript) for class
j and use a linear model xjγi(s) to represent γi(s)’s score of
class j. Then we classify γi(s) into the class with the highest
score. A suggested loss function [6] of x = (x1, .., xm) we
choose for data point (γi(s), ϕi(s)) is

Fi(x; γi(s), ϕi(s))

= max(0, 1 + max
j 6=ϕi(s)

xjγi(s)− xϕi(s)γi(s)) (2)

If we want to minimize the training loss, then fi(x) =
1
Si

∑Si
s=1 Fi(x; γi(s), ϕi(s)), where Si is the number of data

points in Server i. When a data point (γi(s), ϕi(s)) is uniformly
chosen from the training set in Server i, Fi(x; γi(s), ϕi(s)) is
a stochastic realization of fi(x) and can be used in stochastic
optimization methods like stochastic gradient descent [4] to
reduce computation cost. Meanwhile, (sub)gradients of Fi
are dependent on values of Fi, and become more and more
complex as m increases. Because of this, it is more convenient
to directly use function values. So zeroth-order methods are
preferred in this case when m is large.

III. ALGORITHM DESIGN: DS-ADMM
In the previous section we presented two of many possible

scenarios whereby only stochastic realizations are accessible to
or used by the distributed servers that aim to find a common
parameter that minimizes a total cost, with the need of zeroth-
order methods. In this section, we introduce and explain our
algorithm called Distributed Stochastic Alternating Direction
Method of Multipliers (DS-ADMM), which can operate both
with first-order and with zeroth-order information, as necessary.

The algorithm is shown in Algorithm 1. In the algorithm,
xi(t), yi(t), pi(t) are the values of node i at time t and ηt is
a time-varying stepsize. For the ease of discussion, we define
G′ = (V ′, E′) as the minimum spanning tree of G if Step 1
is executed, and G′ = G otherwise. In this algorithm, N(i) =
{j|(i, j) ∈ E′} ∪ {i}, and di is the number of neighbors of
node i in G′. Aij ∈ R is the (i, j)th entry of A and A ∈ Rn×n
is a communication matrix shown later in Assumption 1 of
Section IV. Meanwhile,

ht(xi) = gi(t)
T (xi − xi(t)) +

∑
j∈N(i)

(Ajipj(t)
Txi

+
c

2
||yj(t) +Aji(xi − xi(t))||22) +

1

2ηt
||xi − xi(t)||2Gi(t)

(3)

h̃t(xi) = g̃i(t)
T (xi − xi(t)) +

∑
j∈N(i)

(Ajipj(t)
Txi

+
c

2
||yj(t) +Aji(xi − xi(t))||22) +

1

2ηt
||xi − xi(t)||2Gi(t)

(4)

where Gi(t) ∈ Rk×k is a positive definite matrix speci-
fied later in Assumption 1 of Section IV, ηt is a stepsize,

Algorithm 1 Distributed Stochastic ADMM

1: (Optional) Find the minimum spanning tree G′ of the
network according to the weights and deactivate other
links not in the tree.

2: Initialize c ∈ R, xi(1) ∈ X , pi(0) = 0 ∈ Rk for each i.
3: for t = 1, ..., T do
4: yi(t) = 1

di+1

∑
j∈N(i)Aijxj(t), ∀i ∈ {1, ..., n}.

5: pi(t) = pi(t− 1) + cyi(t), ∀i ∈ {1, ..., n}.
6: if first-order information can be used then
7: xi(t + 1) = arg minxi∈X ht(xi), ∀i ∈ {1, ..., n},

where ht(xi) is shown in (3).
8: else if only zeroth-order information can be used then
9: xi(t + 1) = arg minxi∈X h̃t(xi), ∀i ∈ {1, ..., n},

where h̃t(xi) is shown in (4).
10: end if
11: end for
12: Output: x̄i(T) = 1

T

∑T
t=1 xi(t)

gi(t) ∈ ∂Fi(xi(t); ξi(t)) and g̃i(t) is an estimation of gi(t)
using function values of Fi(x; ξi(t)). The detailed estimator
will be presented in Section V.

DS-ADMM is similar to Multi-agent Distributed ADMM
(MD-ADMM) proposed in the work [20]. We first formulates
the original problem as:

min
x∈X

n∑
i=1

Eξi∼Di [fi(xi; ξi)]

s.t (A⊗ Ik)x̃ = 0

where x̃ = (xT1 , ..., x
T
n)T ∈ Rnk. (A ⊗ Ik)x̃ = 0 represents

the consensus requirement in distributed optimization. By
introducing an auxiliary variable, we can decouple the variable
in each node and use an ADMM-type method, where pi’s are
multipliers. The reader may refer to the work [20] for the
transformation detail.

Even though inspired by MD-ADMM, DS-ADMM differs
from it non-negligibly at Step 7 for the first-order and Step 9
for the zeroth-order version. In particular, our design makes
the algorithm unnecessary to know fi(x), since only stochastic
realizations are known. It results that Steps 7 and 9 become
constrained minimizations of second-order approximations
instead of unconstrained minimizations of the original functions
used in MD-ADMM, which poses difficulties for analysis. In
implementation perspective, if we let

Gi(t) = (α− cηt
∑

j∈N(i)

A2
ji)Ik (5)

where α is a parameter to make Gi(t) positive definite, then
Step 7 of DS-ADMM becomes

xi(t+ 1) = ΠX{xi(t)−
ηt
α

(gi(t) +
∑

j∈N(i)

Aji(cyj(t) + pj(t)))},

which is an operation like projected gradient descent. This
operation is much more simplified compared with Step b) of
Algorithm 1 in [20].

The above differences are not trivial for convergence rate
analysis of our algorithm. First, the optimality condition of
constrained optimization is different from the unconstrained
case [20]. Second, since MD-ADMM is used in the setting
of deterministic optimization, its convergence results cannot
be modified to the ones in our setting directly. Therefore, we
need a new proof for our algorithm.

Step 1 of DS-ADMM can help reduce the communication
cost of the algorithm. Moreover, in Section IV, we will show
that if Step 1 is executed, a more direct measure of convergence
rates can be obtained. On the other hand, this operation may
have a significant cost when the graph size is large. Therefore,
when the communication costs are negligible compared with
computation costs, Step 1 can be neglected.

IV. CONVERGENCE RATES OF DS-ADMM: A
PRELIMINARY RESULT

In this section, we give the theoretical performance guaran-
tees of First-order DS-ADMM in terms of convergence rates,
because the proofs of the first-order results are the basis of
the zeroth-order results. The expectations in the theorems and
corollaries are taken with regard to all the random variables
of the algorithm.

First we need some assumptions for our convergence results.

Assumption 1. A = D1/2L, where L is the Laplacian of G′

and D = diag(d1 + 1, ..., dn + 1) ∈ Rn×n. Meanwhile, Gi(t)
is defined by (5) such that Ik � Gi(t) � αIk for some α > 1.

Remark 1. L ∈ Rn×n is defined as Lij = −1 for j ∈
N(i)\{i}, Lii = di and zero otherwise.

The communication matrix in Assumption 1 is used for
the consensus of the network. Define Q = L ⊗ Ik ∈ Rnk. As
null(L)=span(1) for connected graphs [5], we have Qx̃ = 0⇔
x1 = ... = xn, where x̃ = (xT1 , ..., x

T
n)T ∈ Rnk. Since D is a

positive definite matrix, we have (A⊗ Ik)x̃ = 0⇔ x1 = ... =
xn. Meanwhile, due to the property of Q mentioned above,
we can use ||Qx̃||22 to measure the node disagreement over the
network.

Assumption 2. The constraint set X is convex and compact,
i.e., there exists some constant R such that ||x−x′||2 < R for
any x, x′ ∈ X

Assumption 3. Fi(·; ξi) is convex and β-Lipschitz continuous
on X for any i and ξi, i.e., |Fi(x; ξi)−Fi(x′; ξi)| ≤ β||x−x′||2
for any x, x′ ∈ X .

Assumption 4. Fi(·; ξi) is σ-strongly convex (σ > 0) on X
for any i and ξi, i.e., Fi(x; ξi) ≥ Fi(x

′; ξi) + gTi (x − x′) +
σ
2 ||x− x

′||22 for any x, x′ ∈ X where gi ∈ ∂Fi(x′; ξi).

Remark 2. Assumption 4 can be generalized to the general
convex case by allowing σ = 0. We will use this generalization
in the proofs.

Assumption 2, 3 and 4 are common assumptions in optimiza-
tion literature [3]. For Assumption 2, if the original problem is

unconstrained, we can first estimate the range of the solution
and then add this range as a constraint to the problem.

Now we can give a theorem for the convergence rates of
DS-ADMM using first-order information. We define x∗ =
arg minx∈X

∑n
i=1 fi(x) and x̄(T) = (x̄1(T)T , ..., x̄n(T)T)T

Theorem 1. Under Assumption 1, 2 and 3, First-order DS-
ADMM with ηt = 1/

√
t can achieve E[

∑n
i=1 fi(x̄i(T)) −∑n

i=1 fi(x
∗) + ||Qx̄(T)||22] = O(n/

√
T). Additionally, if

Assumption 4 is satisfied, First-order DS-ADMM with ηt =
α/(σt) can achieve E[

∑n
i=1 fi(x̄i(T)) −

∑n
i=1 fi(x

∗) +
||Qx̄(T)||22] = O(n log T/T).

Proof. See Appendix A.

The above convergence metric, even though not direct, has
been widely used in optimization literature such as [23], [29],
[31]. Interestingly, if Step 1 of DS-ADMM is included, we can
get a more direct convergence metric, which will be shown in
Corollary 1.

Corollary 1. Under Assumption 1, 2 and 3, First-order
DS-ADMM including Step 1 with ηt = 1/

√
t can achieve

E[
∑n
i=1 fi(x̄j(T)) −

∑n
i=1 fi(x

∗)] = O(n/
√
T) for any

j ∈ {1, ..., n}. Additionally, if Assumption 4 is satisfied, First-
order DS-ADMM including Step 1 with ηt = α/(σt) can
achieve E[

∑n
i=1 fi(x̄j(T)) −

∑n
i=1 fi(x

∗)] = O(n log T/T)
for any j ∈ {1, ..., n}.

Proof. See Appendix B

Compared with the best convergence rates of previous
works mentioned in Section I, First-order DS-ADMM matches
their order (respectively, up to a log T factor) in terms of T
for general convex (respectively, strongly convex) functions.
Therefore, First-order DS-ADMM itself is also a satisfying
method. On the other hand, the advantages of DS-ADMM are
highlighted in its zeroth-order version, which will be analyzed
in the following section based on the above results.

V. CONVERGENCE RATES OF DS-ADMM: RESULTS FOR
TWO GRADIENT ESTIMATORS

In this section, we focus on DS-ADMM using zeroth-order
information of stochastic realizations. We will discuss two
gradient estimators applied for different function types.

A. Estimator for Lipschitz Continuous Gradients

For the estimator discussed in this part, the loss functions
need to satisfy the following assumption.

Assumption 5. Fi(·; ξi) has L(ξi)-Lipschitz gradients on X
for any i and ξi, i.e., ||∇Fi(x; ξi)−∇Fi(x′; ξi)||2 ≤ L(ξi)||x−
x′||2 for any x, x′ ∈ X . L := maxi{

√
E[L(ξi)2]} is finite.

With this assumption, we can use the following deterministic
estimator [2] for g̃i(t) in (4), which approximates each
coordinate of the gradient and then sums them up:

k∑
l=1

Fi (xi(t) + utel; ξi(t))− Fi (xi(t)− utel; ξi(t))
2ut

el (6)

Here ut is a scalar and el is a standard basis vector with 1 at
its lth coordinate. For this estimator, we have the following
convergence rates.

Theorem 2. Under Assumption 1, 2, 3 and 5, if using the de-
terministic estimator (6), then DS-ADMM with ηt = 1/

√
t and

ut = 1/(nkt) can achieve E[
∑n
i=1 fi(x̄i(T))−

∑n
i=1 fi(x

∗)+
||Qx̄(t)||22] = O(n/

√
T). Additionally, if Assumption 4 is

satisfied, then DS-ADMM with ηt = α/(σt) and ut = 1/(nkt)
can achieve E[

∑n
i=1 fi(x̄i(T))−

∑n
i=1 fi(x

∗)+||Qx̄(T)||22] =
O(n log T/T).

Proof. See Appendix C

Similarly, if Step 1 of DS-ADMM is run, we can have a
more direct measure of convergence rates.

Corollary 2. Under Assumption 1, 2, 3 and 5, if using
the deterministic estimator (6), then DS-ADMM including
Step 1 with ηt = 1/

√
t and ut = 1/(nkt) can achieve

E[
∑n
i=1 fi(x̄j(T)) −

∑n
i=1 fi(x

∗)] = O(n/
√
T) for any

j ∈ {1, ..., n}. . Additionally, if Assumption 4 is satisfied, then
DS-ADMM including Step 1 with ηt = α/(σt) and ut =
1/(nkt) can achieve E[

∑n
i=1 fi(x̄j(T)) −

∑n
i=1 fi(x

∗)] =
O(n log T/T) for any j ∈ {1, ..., n}.

Proof. Similar to Corollary 1 and omitted here.

Compared with DS-ADMM, the method in [26] used the
deterministic gradient (6) and achieved O(1/T 1/2) mean square
convergence rate for functions with Lipschitz gradients and
strong convexity, which is worse than our method. Meanwhile,
the convergence rates in this case are in the same order with
its first-order counterpart at the cost of making k queries to
function values in each iteration.

B. Estimator for General Gradients
Now we consider the case where Assumption 5 is not

necessarily satisfied. In this case, we apply the general gradient
estimator used in [10] for (4):

g̃i(t) =
∆(xi(t), ξi(t), θi(t), zi(t), u1t, u2t)

u2t
zi(t) (7)

where

∆(·) = Fi (xi(t) + u1tθi(t) + u2tzi(t); ξi(t))

− Fi (xi(t) + u1tθi(t); ξi(t))

Here u1t and u2t are two scalars. θi(t) ∈ Rk and zi(t) ∈ Rk
are two random variables sampled from two distributions µ1

and µ2, respectively. Here θi(t) is used to smoothen Fi by
convolution:

Fui (x; ξi) = Eθ[F (x+ uθ; ξi)]

because convolution is a smoothing operation [9]. For this
estimator, we need the following two assumptions to get the
convergence rates:

Assumption 6. dom Fi ⊃ X + u11· supp µ1 + u21· supp µ2

for any i, where supp µ is the support of distribution µ.

Assumption 7. µ1 and µ2 are one of the following pairs: (1)
both µ1 and µ2 are standard normal with identity covariance;
(2) both µ1 and µ2 are uniform on the surface of the Euclidean-
ball of radius

√
k + 2

Now we can present the convergence rates of DS-ADMM
with a general gradient estimator (7).

Theorem 3. Under Assumption 1, 2, 3, 6 and 7, if us-
ing the gradient estimator (7), then DS-ADMM with ηt =
1/
√
k log(2k)t, u1t = 1/t and u2t = 1/(k2n2t2) can

achieve E[
∑n
i=1 fi(x̄i(T)) −

∑n
i=1 fi(x

∗) + ||Qx̄(T)||22] =
O(n

√
k log(2k)/T). Additionally, if Assumption 4 is satisfied,

then DS-ADMM with ηt = α/(σt), u1t = 1/t and u2t =
1/(k2n2t2) can achieve E[

∑n
i=1 fi(x̄i(T)) −

∑n
i=1 fi(x

∗) +
||Qx̄(T)||22] = O(nk log(2k) log(T)/T).

Proof. See Appendix D.

Still, if Step 1 is included, we have convergence rates of
E[
∑n
i=1 fi(x̄j(t))−

∑n
i=1 fi(x

∗)] for any j ∈ {1, ..., n}.

Corollary 3. Under Assumption 1, 2, 3, 6 and 7, if
including Step 1 and using the gradient estimator (7),
then DS-ADMM with ηt = 1/

√
k log(2k)t, u1t = 1/t

and u2t = 1/(k2n2t2) can achieve E[
∑n
i=1 fi(x̄j(T)) −∑n

i=1 fi(x
∗)] = O(n

√
k log(2k)/T) for any j ∈ {1, ..., n}.

. Additionally, if Assumption 4 is satisfied, then DS-ADMM
including Step 1 with ηt = α/(σt), u1t = 1/t and u2t =
1/(k2n2t2) can achieve E[

∑n
i=1 fi(x̄j(T))−

∑n
i=1 fi(x

∗)] =
O(nk log(2k) log(T)/T) for any j ∈ {1, ..., n}. .

Proof. Similar to Corollary 1 and omitted here.

To the best of our knowledge, this is the first convergence
result given to a distributed stochastic optimization method for
general convex functions. The O(n

√
k log(2k)/T) matches

the optimal O(
√
k/T) bound [10] of zeroth-order methods up

to a
√

log 2k factor.

VI. NUMERICAL RESULTS

In this section we use the two examples mentioned in Section
II to show the performance of DS-ADMM using zeroth-order
information. We assume that the communication costs are neg-
ligible, so Step 1 of DS-ADMM is excluded. The simulations
are applied to one network and the network topology is a
connected Erdős-Renyi graph ER(100, 0.2), meaning that 100
nodes connect with each other with probability 0.2.

A. Distributed Online Least Square

Recall that in the setting of distributed online least square
(OLS), each sensor in the network aims to estimate a signal x̂
and receives a loss function Fi(x; ξi(t)) = ||HT

i x− ξi(t)||22 at
time t, where ξi(t) = HT

i x̂+wi(t) and {wi(t)}t are i.i.d Gaus-
sian noise. We want to minimize

∑n
i=1 Eξi∼Di ||HT

i x− ξi||22
and it is easy to know that Di is a Gaussian distribution with
unknown mean. In this experiment, we assume Hi ∈ R10×10 is
different for each sensor. Meanwhile, HiH

T
i is positive definite

so that Fi is strongly convex. wi(t) ∼ N (0,Vari · I10), and

0 20 40 60 80 100 120 140 160 180 200

Iterations

10-2

100

102

104

Av
er

ag
e

O
pt

im
al

ity
 G

ap
Zeroth-order DS-ADMM

Zeroth-order Method Benchmark

(a) Comparison of average optimality gaps

0 20 40 60 80 100 120 140 160 180 200

Iterations

10-1

100

101

102

103

104

Zeroth-order DS-ADMM

Zeroth-order Method Benchmark

(b) Comparison of node disagreements

Fig. 1: Experiments for distributed OLS

Vari ∈ R is also different for each sensor. The true signal is
x̂ = 1 ∈ R10 and unknown to sensors. The constraint set is
a box constraint where each coordinate of xi is between -10
and 10.

In Figure 1a, we compare average optimality gaps of
DS-ADMM and the benchmark method in [26]. The aver-
age optimality gap is defined as: 1

n

∑n
j=1[

∑n
i=1 fi(x̄j(t)) −∑n

i=1 fi(x
∗)], where we also use x̄j(t) ∈ Rk to represent the

output of the benchmark method. The initial xi(1) are set to
0 for the two methods and other parameters are chosen to
achieve their good performance. From the figure, we can see
that DS-ADMM has a faster convergence rate than the zeroth-
order method in [26] after 60 iterations. Meanwhile, Figure
1b shows the comparison of ||Qx̄(t)||22 of the two methods.
As mentioned in Section IV, ||Qx̄(t)||22 can measure the node
disagreement of the algorithm. So Figure 1b actually shows the
consensus rates of the methods. We can see that DS-ADMM
has a better consensus rate than the method in [26]. So DS-
ADMM is the best option as a zeroth-order method in this
experiment.

B. Distributed Support Vector Machine

For Distributed Support Vector Machine (SVM), Fi is
in the form of (2), where (γi(s), ϕi(s)) is the sth data
point in Server i. In this experiment, each server has 100
data points and randomly choose one data point to use at
each iteration of the optimization process to reduce com-
putation cost. The objective is to minimize the training
loss 1

10000

∑100
i=1

∑100
s=1 Fi(xi; γi(s), ϕi(s)). Obviously Fi is

a function without strong convexity and Lipschitz gradients.
So the gradient estimator (7) is used for DS-ADMM. In this
experiment, we assume γi(s) ∈ R8 and ϕi(s) ∈ {1, 2, 3, 4}.

First Element of γ̌i(s) + + - -
Fourth Element of γ̌i(s) + - + -
Class ϕi(s) 1 2 3 4

TABLE II: Relation between γ̌i(s) and ϕi(s). Other elements
of γ̌i(s) have no impact on ϕi(s)

0 50 100 150 200 250 300 350 400 450 500

Iterations

0

0.2

0.4

0.6

0.8

1

Gl
ob

al
Cl

as
sif

ica
tio

n
Er

ro
r

Zeroth-order DS-ADMM
Zeroth-order Method Benchmark

(a) Comparison of classification errors

0 50 100 150 200 250 300 350 400 450 500

Iterations

10-2

100

102

104 Zeroth-order DS-ADMM
Zeroth-order Method Benchmark

(b) Comparison of node disagreements

Fig. 2: Experiments for distributed SVM

Meanwhile, γi(s) = γ̌i(s) + wi(s) where wi(t) is the noise
modeled as N (0, I8) for all i. The class ϕi(t) is related to γ̌i(t)
in the way shown as Table II, where + means nonnegative and
− means negative. Still, the constraint set is a box constraint
where each coordinate of xi is between -10 and 10. Since
there is no previous work on distributed stochastic optimization
using zeroth-order information for general convex functions, we
replace the stochastic gradient used in the first-order method of
[28] with the estimator (7) and regard this modified algorithm
as the benchmark. Note that the method in [28] has the optimal
convergence rate for general convex functions among existing
first-order methods.

In Figure 2a, we compare the global classification error of
DS-ADMM and the benchmark given by the output of one
node in each iteration. The node is randomly chosen from
the total nodes before the start of the experiment and kept
tracked afterwards for both methods. The global classification
error is defined as the classification error when we test the
whole training set consisting of 10000 (100× 100) data points
using the output parameter. In Figure 2a, we can see that DS-
ADMM has a faster convergence rate and converges to a lower
classification error than the benchmark. In Figure 2b, we still
compare the consensus rates of the two methods like Figure
1b. We can see that their consensus rates are close to each
other. Again, DS-ADMM has a better performance.

VII. CONCLUSION

This work is motivated by the need to develop fast
converging zeroth-order (a.k.a., non-derivative or derivative-
free) methods for large-scale machine learning problems in
distributed processing networks. We tackled this challenge
by developing Distributed Stochastic Alternating Direction
Method of Multipliers (DS-ADMM) that extends a recently
proposed Distributed ADMM method to the zeroth-order design
through a sequence of nontrivial modifications both to the
design and the analysis. We achieved this by first proposing
a novel first-order DS-ADMM method that not only yields
desirable convergence rate characteristics, but is also amenable
to zeroth-order implementation. Then, we investigated the
zeroth-order version of the DS-ADMM algorithm to derive its
convergence rate for convex, strongly convex, and Lipschitz-
gradient functions. In all case, we showed that our zeroth-order
design has the fastest convergence rate guarantee of all prior
works. We also demonstrated these gains in numerical studies
for two machine learning application, related to an estimation
and a classification problem.

APPENDIX

A. Proof of Theorem 1

Define x(t) = (x1(t)T , ..., xn(t)T)T , y(t) =
(y1(t)T , ..., yn(t)T)T , p(t) = (p1(t)T , ..., pn(t)T)T ,
B = D−1 ⊗ Ik, P = A⊗ Ik.

Under Assumption 1, we can write Step 4 of Algorithm 1
as

y(t) = BPx(t) (8)

because Aij = 0 when (i, j) /∈ E′ and i 6= j. Since p(0) = 0,
we have

p(t) = c

t∑
s=1

y(s) = cBP

t∑
s=1

x(s) (9)

by the iteration of Step 5.
Meanwhile, since X is convex, the optimality condition [3]

for Step 6 is

〈
∑

j∈N(i)

(Ajipj(t) + cAjiyj(t) + cA2
ji(xi(t+ 1)− xi(t)))

+ gi(t) +
Gi(t)(xi(t+ 1)− xi(t))

ηt
, x̃i − xi(t+ 1)〉 ≥ 0

(10)

for any x̃i ∈ X , ∀i ∈ {1, ..., n}.
Now define M = diag(

∑
j∈N(1)A

2
j1Ik, ...,

∑
j∈N(n)A

2
jnIk),

G(t) = diag(G1(t), ..., Gn(t)) and F (x(t); ξ(t)) =∑n
i=1 Fi(xi(t); ξi(t)) : Rnk → R and g(t) ∈ ∂F (x(t); ξ(t)).

Based on (8) and (9), we can write (10) in a compact form:

〈g(t) + cPTBP

t∑
s=1

x(s) + cM(x(t+ 1)− x(t))

+ cPTBPx(t) +
G(t)

ηt
(x(t+ 1)− x(t)), x̃− x(t+ 1)〉 ≥ 0

(11)

where x̃ := (x̃T1 , ..., x̃
T
n)T .

Using a similar proof to Lemma 9 in [20], we can prove that
PTBP is positive semidefinite. Define Q = (PTBP)

1
2 = L⊗

Ik, r(t) =
∑t
s=1Qx(s) and x̃∗ = ((x∗)T , ..., (x∗)T)T ∈ Rnk.

Since null(L)=span(1) for connected graphs [5], Qx̃∗ = 0.
Now suppose that Assumption 4 is satisfied with σ ≥ 0. Note
that Fi is just convex if σ = 0. For any r ∈ Rnk, we have

F (x(t); ξ(t))− F (x̃∗; ξ(t)) + crTQx(t+ 1)

≤ g(t)T (x(t)− x̃∗) + crTQx(t+ 1)− σ

2
||x(t)− x̃∗||22

(12)

= g(t)T (x(t+ 1)− x̃∗) + crTQx(t+ 1)

+ g(t)T (x(t)− x(t+ 1))− σ

2
||x(t)− x̃∗||22

≤ 〈cPTBP
t∑

s=1

x(s) + (cM +
G(t)

ηt
)(x(t+ 1)− x(t))

+ cPTBPx(t), x̃∗ − x(t+ 1)〉+ g(t)T (x(t)− x(t+ 1))

+ crTQx(t+ 1)− σ

2
||x(t)− x̃∗||22 (13)

= c(x̃∗ − x(t+ 1))TQT r(t+ 1) + crTQx(t+ 1)

+ (x̃∗ − x(t+ 1))T (cM +
G(t)

ηt
− cPTBP)(x(t+ 1)− x(t))

+ g(t)T (x(t)− x(t+ 1))− σ

2
||x(t)− x̃∗||22 (14)

= c(r(t+ 1)− r(t))T (−r(t+ 1) + r)

+ (x̃∗ − x(t+ 1))T (cM +
G(t)

ηt
− cPTBP)(x(t+ 1)− x(t))

+ g(t)T (x(t)− x(t+ 1))− σ

2
||x(t)− x̃∗||22 (15)

where (12) is from Assumption 4 (including the case when
σ = 0), (13) is from (11), (14) is from cPTBP (

∑t
s=1 x(s) +

x(t)) = cQT r(t+ 1)− cPTBP (x(t+ 1)− x(t)) and (15) is
from rTQx(t+1) = (Qx(t+1))T r, Qx(t+1) = r(t+1)−r(t)
and Qx̃∗ = 0

Define Λ(t) = cM + G(t)
ηt
− cPTBP . From Lemma 10 of

[29], we have

(x̃∗ − x(t+ 1))T (cM +
G(t)

ηt
− cPTBP)(x(t+ 1)− x(t))

=
1

2
||x(t)− x̃∗||2Λ(t) −

1

2
||x(t+ 1)− x̃∗||2Λ(t)

− 1

2
||x(t+ 1)− x(t)||2Λ(t)

≤ 1

2
||x(t)− x̃∗||2Λ(t) −

1

2
||x(t+ 1)− x̃∗||2Λ(t)

− 1

2
||x(t+ 1)− x(t)||2G(t)

ηt

(16)

c(r(t+ 1)− r(t))T (−r(t+ 1) + r)

=
c

2
||r(t)− r||22 −

c

2
||r(t+ 1)− r||22 −

c

2
||r(t+ 1)− r(t)||22

≤ c

2
||r(t)− r||22 −

c

2
||r(t+ 1)− r||22

g(t)T (x(t)− x(t+ 1))

≤ ||g(t)||G(t)−1 ||x(t)− x(t+ 1)||G(t) (17)

≤ 1

2ηt
||x(t+ 1)− x(t)||2G(t) +

ηt
2
||g(t)||2G(t)−1 (18)

where (16) is because M−PTBP is positive semidefinite by a
similar proof to Lemma 9 in [20], (17) is from Cauchy–Schwarz
inequality and (18) is from 2ab ≤ a2 + b2.

Apply the above three inequalities to (15), telescope from
t = 1 to T and take expectations to all random variables. Then
we have
T∑
t=1

{E[F (x(t); ξ(t))− F (x̃∗; ξ(t))] + E[crTQx(t+ 1)]}

≤ c

2
||r(1)− r||22 +

1

2
||x(1)− x̃∗||2Λ(1)

+

T∑
t=2

(
1

2ηt
E||x(t)− x̃∗||2G(t) −

1

2ηt−1
E||x(t)− x̃∗||2G(t−1)

− σ

2
E||x(t)− x̃∗||22) +

T∑
t=1

ηt
2
E||g(t)||2G(t)−1

By the form of Gi(t) used in Assumption 1, we have
1

2ηt
E||x(t)− x̃∗||2G(t) −

1

2ηt−1
E||x(t)− x̃∗||2G(t−1)

= (
α

2ηt
− α

2ηt−1
)E||x(t)− x̃∗||2

So by Assumption 1, 2 and 3
T∑
t=1

{E[F (x(t); ξ(t))− F (x̃∗; ξ(t))] + E[crTQx(t)]}

≤ c

2
||r(1)− r||22 +

1

2
||x(1)− x̃∗||2Λ(1)

+

T∑
t=2

max(
nα

2ηt
− nα

2ηt−1
− nσ

2
, 0)R2 +

T∑
t=1

ηt
2
nβ2

+ 2c||rTQ||22R′ (19)

where R′ < ∞ is the bound of ||x(T + 1)||2 since X is
bounded.

Meanwhile, for any j ∈ {1, ..., n} we have

E{ξ(1),...,ξ(T)}[

n∑
i=1

fi(x̄i(T))−
n∑
i=1

fi(x
∗) + ||Qx̄(T)||2]

≤ E{ξ(1),...,ξ(T)}[
1

T

T∑
t=1

Eξi [
n∑
i=1

Fi(xi(t); ξi)−
n∑
i=1

Fi(x
∗; ξi)]

+ ||Qx̄(T)||2] (20)

= E[
1

T

T∑
t=1

[F (x(t); ξ(t))− F (x̃∗; ξ(t))] + E[(Qx̄(T))TQx̄(T)]

where (20) is from the convexity of Fi. Setting r = Qx̄(T)
c in

(19), we can see that ||r||22 is bounded since X is bounded.
Define

C = c||rTQ||22R′ +
c

2
||r(1)− r||22 +

1

2
||x(1)− x̃∗||2Λ(1)

when r = Qx̄(t)
c . Then

E{ξ(1),...,ξ(T)}[

n∑
i=1

fi(x̄i(T))−
n∑
i=1

fi(x
∗) + ||Qx̄(T)||22]

≤ C

T
+

1

T

T∑
t=2

max(
nα

2ηt
− nα

2ηt−1
− nσ

2
, 0)R2 +

T∑
t=1

ηt
2T

nβ2

(21)

Meanwhile,
∑T
t=1

1√
T

= O(
√
T) and

∑T
t=1

1
T = O(log T).

Therefore, when σ ≥ 0 (first case of Theorem 1), we can get
the convergence rate of O(n/

√
T) if we choose ηt = 1/

√
t;

When σ > 0 (second case of Theorem 1), we can get the
O(n log(T)/T) rate if we choose ηt = α/(σt).

B. Proof of Corollary 1
From graph theory [5], Q = L⊗ Ik = (W ⊗ Ik)(W ⊗ Ik)T ,

where W ∈ Rn×m is the oriented incidence matrix of G′ and
m is the number of edges in G′. When G′ is a tree, W has
linearly independent columns [1] and then has a Moore-Penrose
inverse C+ such that W+W = In−1 [15]. So (W ⊗ Ik)T =
W+ ⊗ IkQ.

By the definition of oriented incidence matrix and triangle
inequality, we have

max
i
||x̄i(T)− x̄j(T)||2 ≤ (n− 1)||(W ⊗ Ik)T x̄(T)||2

≤ (n− 1)||W+ ⊗ Ik||2||Qx̄(T)||2
for any j. Meanwhile,

E[

n∑
i

fi(x̄j(T))−
n∑
i

fi(x
∗)]

= E[

n∑
i

fi(x̄i(T))−
n∑
i

fi(x
∗)] + E[

n∑
i

fi(x̄j(T))−
n∑
i

fi(x̄i(T))]

≤ 1

T

T∑
t=1

{E[F (x(t); ξ(t))− F (x̃∗; ξ(t))] + E[crTQx(t)]}

+ nβE[max
i
||x̄i(T)− x̄j(T)||2]− E[crTQx̄(T)] (22)

where (22) is from Assumption 3. Now

nβE[max
i
||x̄i(T)− x̄j(T)||2]− E[crTQx̄(T)]

≤ E[(nβ(n− 1)||W+ ⊗ Ik||2
Qx̄(T)

||Qx̄(T)||2
− cr)TQx̄(T)]

Letting cr = nβ(n− 1)||W+ ⊗ Ik||2 Qx̄(T)
||Qx̄(T)||2 , we have

c||r||2 ≤ nβ(n− 1)||W+ ⊗ Ik||2 (23)

Now we have

E[nβmax
i
||x̄i(t)− x̄j(t)||2 − crTQx̄(T)] ≤ 0 (24)

Combine (19) with (24) for (22) using the above r and define
C ′ as the terms not related to ηt in these two inequalities.
C ′ <∞ because of (23). Now we have

E[

n∑
i

fi(x̄j(T))−
n∑
i

fi(x
∗)]

≤ C′

T
+

1

T

T∑
t=2

max(
nα

2ηt
− nα

2ηt−1
− nσ

2
, 0)R2 +

1

T

T∑
t=1

ηt
2
nβ2

Similar to Proof of Theorem 1, we can get the convergence
rates in Corollary 1 with appropriate stepsizes.

C. Proof of Theorem 2

Define g̃(t) = (g̃1(t)T , ..., g̃n(t)T)T , e(t) = g(t)− g̃(t). We
have

F (x(t); ξ(t))− F (x̃∗; ξ(t)) + crTQx(t+ 1)

≤ g̃(t)T (x(t)− x̃∗) + crTQx(t+ 1)− σ

2
||x(t)− x̃∗||22

+ e(t)T (x(t)− x̃∗)

Compared with (12), the above inequality changes g(t) to g̃(t)
and has one more term e(t)T (x(t) − x̃∗). Meanwhile, since
Zeroth-order DS-ADMM run Step 9 instead of Step 7, (11) is
changed to

〈g̃(t) + cPTBP

t∑
s=0

x(s)

+ c(PTBPx(t) +M(x(t+ 1)− x(t)))

+
G(t)

ηt
(x(t+ 1)− x(t)), x̃− x(t+ 1)〉 ≥ 0 (25)

where g̃(t) replaces g(t). Following the similar proof in
Appendix A and taking expectations to both sides with regard
to all random variables in the algorithm, we have

E[

n∑
i=1

fi(x̄i(T))−
n∑
i=1

fi(x
∗) + ||Qx̄(T)||2]

≤ C ′′

T
+

1

T

T∑
t=2

max(
nα

2ηt
− nα

2ηt−1
− nσ

2
, 0)R2

+
1

T

T∑
t=1

ηt
2
E||g̃(t)||2

G−1
t

+
1

T
E[

T∑
t=1

e(t)T (x(t)− x̃∗)]

(26)

where C ′′ represents terms not related to ηt. Here we need a
lemma to bound the moments of the estimator:

Lemma 1. (Lemma 3 of [19]) Under Assumption 2, 3, 5, 6
and 7, the deterministic estimator satisfies

E[||g̃i(t)− gi(t)||22] ≤ L2k2u2
t

4

From Lemma 1, we have

E[||g̃(t)||22] =

n∑
i=1

E[||g̃i(t)||22]

≤
n∑
i=1

[2E[||g̃i(t)− gi(t)||22] + 2E[||gi(t)||22]]

≤ nL2k2u2
t

2
+ 2nβ2

E[e(t)T (x(t)− x̃∗)] ≤ ||e(t)||2 · ||x(t)− x̃∗||2 ≤ n
√
nLkutR

2

where e(t) = g(t)− g̃(t). Apply the above inequalities to (26)
and then we can get the final result by choosing corresponding
parameters.

D. Proof of Theorem 3

First we need the following lemma for the gradient estimator:

Lemma 2. (Lemma 2 of [10]) Under Assumption 1, 2, 3, 8
and 9, the general gradient estimator satisfies

E[g̃i(t)] = gu1t
i (t) +

u2t

u1t
βvi(t)

E[||g̃i(t)||22] ≤ bβ2k(

√
u2t

u1t
k + 1 + log k)

where gu1t
i (t) ∈ ∂Fu1t

i (xi(t); ξi(t)), Fu1t
i (xi(t); ξi(t)) :=

Eθi(t)[F (xi(t) + u1tθi(t); ξi(t))] is the smoothened function
by convolution operation, vi(t) is a term with ||vi(t)||2 ≤
1
2E[||zi(t)||32], and b is a constant.

Meanwhile, from Lemma E.2, E.3 of [9] and
√
k + 2 ≤√

3k, we have Fi(xi(t); ξi(t)) ≤ Fu1t
i (xi(t); ξi(t)) ≤

Fi(xi(t); ξi(t)) + u1tβ
√

3k. Now defining Fu1t(x(t); ξ(t)) =∑n
i=1 F

u1t
i (xi(t); ξi(t)) and e′(T) = gu1t(t)− g̃(t), we have

F (x(t); ξ(t))− F (x̃∗; ξ(t)) + crTQx(t+ 1)

≤ Fu1t(x(t); ξ(t))− Fu1t(x̃∗; ξ(t)) + nu1tβ
√

3k

+ crTQx(t+ 1)

≤ gu1t(t)T (x(t)− x̃∗) + crTQx(t+ 1)− σ

2
||x(t)− x̃∗||22

+ nu1tβ
√

3k

≤ g̃(t)T (x(t)− x̃∗) + crTQx(t+ 1)− σ

2
||x(t)− x̃∗||22

+ e′(t)T (x(t)− x̃∗) + nu1tβ
√

3k

Based on Lemma 2 and following a similar proof to Appendix
C, we have

E[

n∑
i=1

fi(x̄i(T))−
n∑
i=1

fi(x
∗) + ||Qx̄(T)||22]

≤ C ′′′

T
+

1

T

T∑
t=2

max(
α

2ηt
− α

2ηt−1
− σ

2
, 0)nR2

+
1

T

T∑
t=1

ηt
2

(
bρβ2kn(

√
u2t

u1t
k + log(2k))

)

+

√
3kkn

√
n

2T
Rβ

T∑
t=1

u2t

u1t
+

1

T

T∑
t=1

√
3nβ
√
ku1t

where C ′′′ is the terms not related to ηt. For any σ ≥ 0,
we can get the O(n

√
k log(2k)/

√
T) rate if we choose ηt =

1/
√
k log(2k)t and u1t = 1/t, u2t = 1/(k2n2t2). When σ >

0, then we can get O(nk log(2k) log(T)/T) if we choose
ηt = α/(σt) and u1t = 1/t, u2t = 1/(k2n2t2).

REFERENCES

[1] Graph matrices. http://compalg.inf.elte.hu/∼tony/Oktatas/TDK/FINAL/
Chap%2010.PDF. Accessed: 2018-12-12.

[2] A. Agarwal, O. Dekel, and L. Xiao. Optimal algorithms for online
convex optimization with multi-point bandit feedback. In COLT, pages
28–40. Citeseer, 2010.

[3] D. P. Bertsekas. Nonlinear programming. Athena scientific Belmont,
1999.

[4] L. Bottou, F. Curtis, and J. Nocedal. Optimization methods for large-scale
machine learning. SIAM Review, 60(2):223–311, 2018.

[5] F. R. Chung and F. C. Graham. Spectral graph theory. Number 92.
American Mathematical Soc., 1997.

[6] K. Crammer and Y. Singer. On the algorithmic implementation of
multiclass kernel-based vector machines. Journal of machine learning
research, 2(Dec):265–292, 2001.

[7] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[8] J. C. Duchi, A. Agarwal, and M. J. Wainwright. Dual averaging for
distributed optimization: Convergence analysis and network scaling. IEEE
Transactions on Automatic control, 57(3):592–606, 2012.

[9] J. C. Duchi, P. L. Bartlett, and M. J. Wainwright. Randomized smoothing
for stochastic optimization. SIAM Journal on Optimization, 22(2):674–
701, 2012.

[10] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono. Optimal
rates for zero-order convex optimization: The power of two function
evaluations. IEEE Transactions on Information Theory, 61(5):2788–2806,
2015.

[11] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning, volume 1.
2016.

[12] A. Gosavi et al. Simulation-based optimization. parametric optimization
techniques and reinforcement learning, 2003.

[13] D. Hajinezhad, M. Hong, and A. Garcia. Zeroth order nonconvex multi-
agent optimization over networks. arXiv preprint arXiv:1710.09997,
2017.

[14] E. Hazan et al. Introduction to online convex optimization. Foundations
and Trends R© in Optimization, 2(3-4):157–325, 2016.

[15] R. A. Horn, R. A. Horn, and C. R. Johnson. Matrix analysis. Cambridge
university press, 1990.

[16] D. Jakovetic, D. Bajovic, A. K. Sahu, and S. Kar. Convergence rates for
distributed stochastic optimization over random networks. arXiv preprint
arXiv:1803.07836, 2018.

[17] G. Lan, S. Lee, and Y. Zhou. Communication-efficient algorithms for de-
centralized and stochastic optimization. arXiv preprint arXiv:1701.03961,
2017.

[18] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu. Can
decentralized algorithms outperform centralized algorithms? a case study
for decentralized parallel stochastic gradient descent. In Advances in
Neural Information Processing Systems, pages 5330–5340, 2017.

[19] S. Liu, B. Kailkhura, P.-Y. Chen, P. Ting, S. Chang, and L. Amini.
Zeroth-order stochastic variance reduction for nonconvex optimization,
2018.

[20] A. Makhdoumi and A. Ozdaglar. Convergence rate of distributed admm
over networks. IEEE Transactions on Automatic Control, 62(10):5082–
5095, 2017.

[21] A. Nedić and A. Olshevsky. Stochastic gradient-push for strongly
convex functions on time-varying directed graphs. IEEE Transactions
on Automatic Control, 61(12):3936–3947, 2016.

[22] A. Nedić, A. Olshevsky, and M. G. Rabbat. Network topology and
communication-computation tradeoffs in decentralized optimization.
Proceedings of the IEEE, 106(5):953–976, 2018.

[23] H. Ouyang, N. He, L. Tran, and A. Gray. Stochastic alternating direction
method of multipliers. In International Conference on Machine Learning,
pages 80–88, 2013.

[24] S. Pu and A. Nedic. A distributed stochastic gradient tracking method.
2018.

[25] G. Qu and N. Li. Accelerated distributed nesterov gradient descent.
arXiv preprint arXiv:1705.07176, 2017.

[26] A. K. Sahu, D. Jakovetic, D. Bajovic, and S. Kar. Distributed zeroth
order optimization over random networks: A kiefer-wolfowitz stochastic
approximation approach. arXiv preprint arXiv:1803.07844, 2018.

[27] M. O. Sayin, N. D. Vanli, S. S. Kozat, and T. Ba?ar. Stochastic subgradient
algorithms for strongly convex optimization over distributed networks.
IEEE Transactions on Network Science and Engineering, 4(4):248–260,
Oct 2017.

[28] B. Sirb and X. Ye. Decentralized consensus algorithm with delayed and
stochastic gradients. SIAM Journal on Optimization, 28(2):1232–1254,
2018.

[29] T. Suzuki. Dual averaging and proximal gradient descent for online
alternating direction multiplier method. In International Conference on
Machine Learning, pages 392–400, 2013.

[30] J. Tsitsiklis, D. Bertsekas, and M. Athans. Distributed asynchronous
deterministic and stochastic gradient optimization algorithms. IEEE
transactions on automatic control, 31(9):803–812, 1986.

[31] W. Zhong and J. Kwok. Fast stochastic alternating direction method of
multipliers. In International Conference on Machine Learning, pages
46–54, 2014.

