
Cubic Regularized ADMM with Convergence to a
Local Minimum in Non-convex Optimization

Zai Shi1 and Atilla Eryilmaz1

1The Ohio State University, Columbus, OH 43210, USA
1Email:{shi.960, eryilmaz.2}@osu.edu

Abstract—How to escape saddle points is a critical issue in non-
convex optimization. Previous methods on this issue mainly as-
sume that the objective function is Hessian-Lipschitz, which leave
a gap for applications using non-Hessian-Lipschitz functions. In
this paper, we propose Cubic Regularized Alternating Direction
Method of Multipliers (CR-ADMM) to escape saddle points
of separable non-convex functions containing a non-Hessian-
Lipschitz component. By carefully choosing a parameter, we
prove that CR-ADMM converges to a local minimum of the
original function with a rate of O(1/T 1/3) in time horizon T ,
which is faster than gradient-based methods. We also show that
when one or more steps of CR-ADMM are not solved exactly, CR-
ADMM can converge to a neighborhood of the local minimum.
Through the experiments of matrix factorization problems, CR-
ADMM is shown to have a faster rate and a lower optimality
gap compared with other gradient-based methods. Our approach
can also find applications in other scenarios where regularized
non-convex cost minimization is performed, such as parameter
optimization of deep neural networks.

I. INTRODUCTION

Non-convex optimization, which minimizes a non-convex
objective function, draws more and more attention in machine
learning community due to its wide application, such as matrix
completion, tensor decomposition, phase retrieval, and deep
learning [17]. In general, non-convex optimization is NP-hard
[17]. First order stationary points can be global minima, local
minima, local maxima and saddle points. Fortunately in most
cases, we are satisfied with the local minima of the original
problem. For example, in problems like matrix completion [12],
tensor decomposition [11], and phase retrieval [27], all local
minima are global minima. In deep neural networks, it is found
that the main bottleneck in optimization is not due to local
minima, but the existence of many saddle points [8]. Therefore,
we are more interested in the methods with convergence to
local minima for non-convex optimization problems.

The main focus of this paper is to obtain a local minimum
of non-convex problems with the following form:

min
x∈Rn

h(x) := f(x) + g(x). (1)

where h(x) is non-convex and f(x), g(x) possess different
properties that will be explained in more details later. In
machine learning practice, this form of problems is very

This paper is funded by the NSF grant CMMI-SMOR-1562065, CNS-
NeTS-1514260, CNS-NeTS-1717045, CNS-ICN-WEN-1719371, and CNS-
SpecEES-1824337; ONR Grant N00014-19-1-2621; and the DTRA grant
HDTRA1-18-1-0050.

common, such as a case where f(x) is a loss function and
g(x) is a regularization term. Broadly speaking, this problem
can be attacked in one of two ways.

The first one is to regard h(x) as one function and directly
apply a certain method with convergence to local minima. To
the best of our knowledge, previous works on this kind of
methods mostly assume that h(x) is Hessian-Lipschitz (See
details in Section I-A). So when g(x) or f(x) has no such
property, there exists no theoretical guarantee of reaching a
local minimum using these methods. Recently, Huang et al.
[15] proposed a Perturbed Proximal Descent method to escape
saddle points for non-convex and non-smooth functions, but
its convergence is only guaranteed with a certain probability
and one of their assumptions (Assumption 2 in [15]) is hard
to check.

The second way to solve (1) is to reformulate it as

min
x,y

f(x) + g(y)

s.t. x = y

and then apply ADMM [5] to it. Unfortunately, most previous
non-convex ADMM methods only converge to the first-order
stationary points of the original problem (See details in
Section I-A). Meanwhile, Hong et al. [13] proposed the
gradient ADMM algorithm which can converge to second-
order stationary points with probability one. But they assume
that both f and g are Hessian-Lipschitz and that the initial
point must be chosen randomly.

We can see that the Hessian-Lipschitz assumption is essential
for most of the existing methods. However, this property does
not hold in many scenarios whereby either the loss function
(e.g., huber loss [16]) or the regularizer (e.g., l1 regularizer
for LASSO [28]) is not twice differentiable everywhere. The
reader may refer to Section VI for a specific example.

In this paper, we use the second approach to obtain a local
minima of (1) when f or g is not Hessian-Lipschitz. The
contributions of the paper are summarized as follows:
• We propose a method called Cubic Regularized ADMM

(CR-ADMM) to get a local minimum of (1) globally
(i.e., regardless of where the initial point is) without the
assumption that f and g are all Hessian-Lipschitz. The
algorithm is shown in Section III and its convergence
result is proved in Section IV.

• When CR-ADMM is implemented in practice, one or
more steps may not be solved exactly. In this case we

prove that CR-ADMM can converge to a neighborhood
of a local minimum under mild conditions in Section V.
We also show that the convergence rate of CR-ADMM
is in the same order of Nesterov’s cubic regularization
method [23].

• Through the experiments of matrix factorization problems
in Section VI, we demonstrate the advantages of CR-
ADMM compared with other gradient-base methods,
including its faster rate and smaller optimality gap.

A. Related Works

For general non-convex optimization problems, there are
mainly three types of methods to escape saddle points: Hessian-
based, Hessian-vector-product-based and gradient-based. We
cannot detail all the works due to the fast development of this
area, so we only introduce the most classical and related ones
to our paper.

Hessian-based methods are the most natural way since
strict saddle points can be distinguishable using Hessian
information. Cubic regularization method [23] and trust region
method [9] are two typical Hessian-based methods requiring
the computation of the inverse of the full Hessian per iteration,
which can have a large cost.

In order to reduce the cost, a number of papers explore the
methods taking advantages of Hessian-vector product instead
of the inverse of Hessian. Since the Hessian-vector product
∇2f(x)v can be approximated by ∇f(x+δv)−∇f(x−δv)2δ , this
kind of methods is sometimes regarded as first-order methods.
Among them, Agarwal et al. [3] and Carmon et al. [6] proposed
different Hessian-vector-product-based subroutines to solve the
subproblem of the cubic regularization method [23]. For the
purpose of acceleration, Carmon et al. [7] and Xu et al. [31]
combined the accelerated gradient method [24] and negative
curvature exploitation to get a faster rate to reach a local
minimum.

Gradient-based methods for escaping saddle points is another
hot topic because of their low complexity. The basic principle
behind these methods is to add perturbation to gradient descent
(GD) so that the point can find a descent direction around
the saddle point with high probability. Ge et al. [11] first
proposed a gradient-based method called noisy gradient descent
(NGD) by adding noise to each iteration of gradient descent.
Afterwards Levy [20] improved the rate of NGD by normalizing
the gradient. Jin et al. [18] achieved a better rate by adding
noise to GD periodically only when the gradient is below
some threshold. Jin et al. [19] then proved that adding noise
to accelerated gradient descent [24] can escape saddle points
faster.

It must be noted that the above methods all require the
objective function to be Hessian-Lipschitz. Meanwhile, by
adding noise to proximal gradient descent, Perturbed Proximal
Descent [15] proposed by Huang et al. can escape saddle points
with a high probability, which has a similar setting to ours but
a more complex assumption .

Since our method is related to ADMM, we briefly introduce
previous works on non-convex ADMM. For non-convex non-

smooth optimization problems, Wang et al. [30] and Liu et
al. [21] proposed two different ADMM methods that converge
to a first-order stationary point. If both f and g are Hessian-
Lipschitz and the initial point is chosen randomly, the gradient
ADMM method [13] proposed by Hong et al. can get a second
order stationary point with probability one.

II. PRELIMINARIES

A. Notations

We use upper-case letters X to denote a matrix and lower-
case letters x to denote a vector. Particularly, I is an identity
matrix. X(i, j) is the (i, j)th entry of X and XT is the
transpose of X . We use || · || to denote l2 norm for vectors
and spectral norm for matrices. || · ||F is Frobenius norm for
matrices. λmin(X) means the smallest eigenvalue of X . 〈·, ·〉
denotes a vector inner product. ∇f and ∇2f are the gradient
and Hessian of the function f respectively. For a multivariate
function f , ∂xf |(xt,yt,zt) and ∂2xf |(xt,yt,zt) denote the first-
order and the second-order partial derivatives of f with respect
to x at (xt, yt, zt).

B. Definitions

In this subsection we give some definitions that will be used
in our paper.

Definition 1. An extended value function f : Rn → R ∪
{−∞,∞} is called coercive if f(x)→∞ as ||x|| → ∞

Definition 2. A differentiable function f is L-smooth if for
any x and y

||∇f(x)−∇f(y)|| ≤ L||x− y||

Definition 3. A twice differentiable function f is ρ-Hessian
Lipschitz if for any x and y

||∇2f(x)−∇2f(y)|| ≤ ρ||x− y||

Definition 4. x is a first-order stationary point of a function
f if ∇f(x) = 0. y is a second order stationary point of a
function f if ∇f(y) = 0 and ∇2f(y) is positive semidefinite.
z is a saddle point of f if z is a first-order stationary point of
f but not a local minimum of f .

In this definition, a saddle point can be a local maximum.
Meanwhile, a second order stationary point can still be a saddle
point where λmin(∇2f(x)) = 0. Here we define a strict saddle
point as

Definition 5. x is a strict saddle point of f if it is a first-order
stationary point of f and λmin(∇2f(x)) < 0.

It is easy to see that all the second order stationary points
will be local minima if all the saddle points are strict.

III. PROBLEM SETUP AND ALGORITHM

We consider an optimization problem with the following
form:

min
x∈Rn

h(x) := f(x) + g(x). (2)

Algorithm 1 Cubic Regularized ADMM

1: Initialize x0, y0, γ0, β, T .
2: for t = 0 to T − 1 do
3: xt+1 = arg minx f̄t(x)
4: yt+1 = arg miny ḡt(y)
5: γt+1 = γt + β(xt+1 − yt+1)
6: end for

This form incorporates many problems that appear in machine
learning community. In these problems, f(x) is a loss function
of a regression problem or a representation function formed
by a neural network, and g(x) is a regularization term. Our
aim is to find a local minimum of (2) because in many tasks,
obtaining a local minimum is a satisfying result as mentioned
in Section I. Meanwhile, we have the following assumptions
for (2):

Assumption 1. f(x) + g(x) is lower-bounded and coercive;

Assumption 2. f(x) is ρ-Hessian Lipschitz, probably non-
convex;

Assumption 3. g(x) is Lg-smooth and convex. Meanwhile,
g(x) is twice differentiable in some neighborhood of the first-
order stationary points of h(x);

Assumption 4. h(x) is ζ-strict saddle, i.e., all its saddle points
satisfy λmin(∇2h(x)) < −ζ for some ζ > 0.

Among these assumptions, Assumption 1-3 are common
ones in optimization literature. Assumption 4 states that the
saddle points of h are all strict saddle points, which means
the second order stationary points are the local minima of h.
Many problems we are interested in satisfy this property [26].
In fact, previous methods to escape saddle points mentioned in
Section I-A assume this property, so that Hessian information
can distinguish saddle points from local minima or gradient
descent with noise can find a descent direction around saddle
points in a probability related to ζ.

The separation of h as f and g is also flexible to satisfy
these assumptions. For example, if g is non-convex and Lg

2 -
smooth, we can reset f̃(x) = f(x)− Lg

4 ||x−x
′||2 and g̃(x) =

g(x) +
Lg

4 ||x − x′||2 for some x′. Then h = f̃ + g̃ with
Assumption 3 satisfied.

Previous methods mentioned in Section I-A cannot be
directly applied to h(x) (at least without theoretical guarantees)
when g(x) is not Hessian Lipschitz. To overcome this short-
coming, we proposed a new method called Cubic Regularized
ADMM which can converge to a local minimum of (2).

First, we transfer (2) to the equivalent problem with the
following form:

min
x,y

f(x) + g(y).

s.t. x = y
(3)

Now we present CR-ADMM in Algorithm 1 based on (3) and
its augmented Lagrangian function

Lβ(x, y, γ) = f(x) + g(y) + γT (x− y) +
β

2
||x− y||2. (4)

where γ ∈ Rn is the multiplier and β > 0 is a constant. In
this algorithm,

f̄t(x) = Lβ(xt, yt, γt) + 〈∇f(xt) + γt + β(xt − yt), x− xt〉

+
1

2

〈
(∇2f(xt) + βI)(x− xt), x− xt

〉
+
ρ

6
||x− xt||3

ḡt(y) = f(xt+1) + g(y) + γTt (xt+1 − y) +
β

2
||xt+1 − y||2

In fact, f̄t(x) is the upper second order approximation of
Lβ(x, yt, γt) because f is ρ-Hessian Lipschitz [23], and
ḡt(y) = Lβ(xt+1, y, γt).

In Step 3, we need to find the global minimum of f̄t(x).
The methods for implementing this step are well developed by
several papers. In [23], the authors transformed this step into
one-dimensional equation which can be solved by a technique
for the needs of trust region methods. In [6], gradient descent is
demonstrated to be an efficient method to find the approximate
global minimum with high probability. Besides, Agarwal et al.
[3] showed an accelerated method by applying fast approximate
matrix inverse and eigenvector computations. It is noted that
the later two methods only need to compute Hessian-vector
products ∇2f(x)v.

In Step 4, since ḡt(y) is strongly convex for β > 0, we only
need to find the first-order stationary point of ḡt(y), which
satisfies,

∇g(yt+1)− γt − β(xt+1 − yt+1) = 0. (5)

In practice, we prefer to choose g(y) that makes (5) easily
solved. For machine learning problems, we often regard the
regularizer as g(y) since it often takes a simple form. If (5)
cannot be solved directly, we can use the gradient descent
method as a subsolver.

The novelty of CR-ADMM is that by utilizing ADMM, we
can tackle the different properties of two components with their
suitable methods. Meanwhile, its performance is comparable
to Nesterov’s cubic regularization method [23], which will be
analyzed in the following two sections.

IV. CONVERGENCE ANALYSIS

First we give the convergence result of CR-ADMM by the
following theorem. Then we prove this theorem by showing
that each step of CR-ADMM gives the augmented Lagrangian
function (4) a sufficient descent.

Theorem 1. If Assumption 1, 2, 3 and 4 are satisfied
with 2Lg < ζ, then for CR-ADMM with 2Lg < β < ζ,
{(xt, yt, γt)}t is a bounded sequence and xt converges to
a local minimum of (2).

Remark 1. Sometimes the requirement 2Lg < ζ needs not be
strictly satisfied for the convergence to a local minimum. The
experiment of Figure 3a in Section VI is such an example and
the reason will be explained in the corresponding part.

To prove this theorem, we will present three lemmas related
to Step 3, 4 and 5 of our algorithm. Each lemma gives a bound
of the descent of (4) in the corresponding step.

Lemma 1. For Step 3 of CR-ADMM, we have

Lβ(xt, yt, γt)− Lβ(xt+1, yt, γt) ≥
ρ

12
||xt+1 − xt||3

Proof. It directly comes from Lemma 4 of [23] since f is
ρ-Hessian Lipschitz.

Lemma 2. For Step 4 of CR-ADMM, we have

Lβ(xt+1, yt, γt)− Lβ(xt+1, yt+1, γt)

≥ β − Lg
2
||yt+1 − yt||2.

Proof. See Proof of Lemma 2 in [1].

Lemma 3. For Step 5 of CR-ADMM, we have

Lβ(xt+1, yt+1, γt)− Lβ(xt+1, yt+1, γt+1)

≥ −
L2
g

β
||yt+1 − yt||2

Proof. See Proof of Lemma 3 in [1].

With these lemmas, we can turn to the proof of Theorem 1.

Proof. First we prove that the sequence {Lβ(xt, yt, γt)}t is
lower-bounded:

Lβ(xt, yt, γt)

= f(xt) + g(yt) + γTt (xt − yt) +
β

2
||xt − yt||2

= f(xt) + g(yt) +∇g(yt)
T (xt − yt) +

β

2
||xt − yt||2 (6)

≥ f(xt) + g(xt) +
β − Lg

2
||xt − yt||2 (7)

where (6) is from Proof of Lemma 3, (7) is from Lg-smoothness
of g (Lemma 2 of [21]). (7) is lower-bounded because of
Assumption 1 and β > 2Lg .

Denote the lower bound as L∗β . Based on Lemma 1, 2 and
3, we have

Lβ(xt, yt, γt)− Lβ(xt+1, yt+1, γt+1)

≥ ρ

12
||xt+1 − xt||3 + (

β − Lg
2

−
L2
g

β
)||yt+1 − yt||2 (8)

When β > 2Lg, (8) is nonnegative, which means
{Lβ(xt, yt, γt)}t is decreasing and upper-bounded by
Lβ(x0, y0, γ0). Therefore, f(xt) + g(xt) +

β−Lg

2 ||xt− yt||2 is
also upper-bounded by (7). From coerciveness of f(x) + g(x)
and Step 5 of CR-ADMM, {(xt, yt, γt)}t is a bounded
sequence. Now,

Lβ(x0, y0, γ0)− L∗β

≥
∞∑
t=0

{Lβ(xt, yt, γt)− Lβ(xt+1, yt+1, γt+1)}

Then when t→∞, ||xt+1−xt|| and ||yt+1−yt|| will converge
to 0 by (8). From Proof of Lemma 3 and Lg smoothness of g,
we have

||γt+1 − γt|| = ||∇g(yt+1)−∇g(yt)|| ≤ Lg||yt+1 − yt||

Then ||γt+1 − γt|| will also converge to 0. Define

pt = ∂xLβ |(xt+1,yt,γt) (9)

qt = λmin(∂2xLβ |(xt+1,yt,γt)) (10)

We have

||xt+1 − xt|| ≥ max

{√
1

ρ
||pt||,−

2

3ρ
qt

}
→ 0 (11)

||∂γLβ |(xt,yt,γt)|| = ||xt − yt|| =
1

β
||γt − γt−1|| → 0 (12)

||∂yLβ |(xt,yt,γt)|| = ||∇g(yt)− γt − β(xt − yt)|| → 0 (13)

where (11) is from Lemma 5 of [23], (12) is from Step 5 of
CR-ADMM, and (13) is from Proof of Lemma 3 and (12).
Denote (x∗, y∗, γ∗) as the limit point of {(xt, yt, γt)}t. Then

0 = ∂γLβ |(x∗,y∗,γ∗) = x∗ − y∗ (14)
0 = ∂xLβ |(x∗,y∗,γ∗) = ∇f(x∗) + γ∗ + β(x∗ − y∗) (15)

0 � ∂2xLβ |(x∗,y∗,γ∗) = ∇2f(x∗) + βI (16)
0 = ∂yLβ |(x∗,y∗,γ∗) = ∇g(y∗)− γ∗ − β(x∗ − y∗) (17)

From (14), (15) and (17), we know that x∗ is the first-order sta-
tionary point of h(x), i.e.,∇f(x∗)+∇g(x∗) = 0. If x∗ is a sad-
dle point of h(x), then λmin(∇2h(x∗)) < −ζ by Assumption
4. Since g is convex, we have λmin(∇2f(x∗)) < −ζ by Weyl’s
theorem [14]. Since β < ζ , we have λmin(∇2f(x∗)+βI) < 0,
which contradicts (16). Meanwhile, if x∗ is a local minimum
(i.e., ∇2f(x∗) + ∇2g(x∗) � 0), (16) will be satisfied given
that g is Lg-smooth (i.e., ∇2g(x∗) � LgI) and β > 2Lg. So
x∗ is a local minimum of h(x).

From the proof, we can see that if Assumption 4 is not
satisfied or ζ is unknown, CR-ADMM with β = 2Lg + δ can
escape saddle points satisfying λmin(∇2h(x)) < −2Lg − δ
for any δ > 0. In machine learning practice, the coefficient of
the regularizer is usually very small (like 0.25 in [22]), which
leads to a small Lg if we treat the regularizer as g.

V. PRACTICAL IMPLEMENTATION ISSUES

In this section, we will discuss the performance of CR-
ADMM when Step 3 or 4 is not solved exactly in the
implementation of CR-ADMM. It often happens when we
use a subsolver for Step 3 or 4, or we make a approximation
of f or g. First we give our definition of an ε-inexact output
for one iteration of CR-ADMM.

Definition 6. (xt, yt, γt) is called an ε-inexact output for t-th
iteration of CR-ADMM if Lβ(xt, yt, γt) is lower-bounded by
some value Λ and

Lβ(xt, yt, γt)− Lβ(xt+1, yt+1, γt+1) ≥ ρ

12
||xt+1 − xt||3

+ (
β − Lg

2
−
L2
g

β
)||yt+1 − yt||2 − ε (18)

for some ε > 0.

We can see that the above inequality is the same with (8) if
ε = 0, which is satisfied for an exact output. We will show later
that for a wide range of inexact subsolvers and approximations
of CR-ADMM, their outputs satisfy the above definition. But
first we present the convergence result of CR-ADMM when
each iteration of CR-ADMM has an ε-inexact output.

Theorem 2. If Assumption 1, 2, 3 and 4 are satisfied with
2Lg < ζ and (xt, yt, γt) is an ε-inexact output for each t,
then for CR-ADMM with 2Lg < β < ζ , we have the following
bounds after T iterations:

||∂γLβ |(xt′ ,yt′−1,γt′−1)
|| ≤ c1(Lg + β)

β
Π

1
2

||∂yLβ |(xt′ ,yt′−1,γt′−1)
|| ≤ c1(Lg + β)Π

1
2

max

{√
1

ρ
||pt′−1||,−

2

3ρ
qt′−1

}
≤ c2Π

1
3 ,

where pt is defined in (9), qt is defined in (10), and

t′ = arg min
1≤t≤T

θt,

θt =
ρ

12
||xt − xt−1||3 + (

β − Lg
2

−
L2
g

β
)||yt − yt−1||2,

c1 =

√√√√ 1
β−Lg

2 − L2
g

β

, c2 = 3

√
12

ρ
,

Π =
εT + (Lβ(x0, y0, γ0)− Λ)

T
.

Proof. See Proof of Theorem 2 in [1]

From (14), (15), (16), (17) and the above theorem, we know
that xt′ or yt′−1 is in a small neighborhood of a local minimum
of h(x) when ε sufficiently small and T sufficiently large. If
ε = 0, CR-ADMM will reach a local minimum when T →∞,
as proved in Theorem 1. In this case, Π = O(1/T) and we
can get the convergence rate of CR-ADMM as follows.

Corollary 1. If Assumption 1, 2, 3 and 4 are satisfied with
2Lg < ζ, then for CR-ADMM with 2Lg < β < ζ, after T
iterations, we have

||∂γLβ |(xt′ ,yt′−1,γt′−1)
|| = O(1/T 1/2)

||∂yLβ |(xt′ ,yt′−1,γt′−1)
|| = O(1/T 1/2)

max

{√
1

ρ
||pt′−1||,−

2

3ρ
qt′−1

}
= O(1/T 1/3)

with the same notations in Theorem 2.

The O(1/T 1/3) rate is in the same order with Nesterov’s
cubic regularization method (please refer to Theorem 1 of [23]),
so CR-ADMM conserves the advantages of cubic regularization,
which has a faster rate than gradient-based methods [19] .

Now we present some cases where Definition 6 is satisfied.

A. Gradient Descent as a Subsolver

As mentioned in Section III, Step 3 or 4 can be solved via
gradient descent. If this subsolver is running for a finite time
horizon, we may get an inexact output for the corresponding
step. Take Step 3 for example. Carmon et al. [6] proved
that gradient descent approximates the global minimum of
f̄t to within ε accuracy in O(log(1/ε)) steps for small ε. If
f̄t(xt+1) − f̄t(x

∗
t+1) < ε where xt+1 is the output of this

subslover for Step 3 and x∗t+1 is the global minimum of f̄t,
then

Lβ(xt, yt, γt)− Lβ(xt+1, yt, γt)

≥ Lβ(xt, yt, γt)− f̄t(xt+1) (19)
= Lβ(xt, yt, γt)− f̄t(x∗t+1) + f̄t(x

∗
t+1)− f̄t(xt+1)

≥ ρ

12
||xt+1 − xt||3 − ε (20)

where (19) is from the fact that f̄t(xt+1) is the upper second
order approximation of Lβ(xt+1, yt, γt) and (20) is from
Lemma 4 of [23]. Meanwhile, the inequalities in Lemma 2 and
Lemma 3 remain intact. Then we can check that (18) is satisfied.
Using the same proof in (7), we can check that Lβ(xt, yt, γt)
is lower-bounded. Then Definition 6 can be applied to this
case.

B. Stochastic Approximation of f̄t

In machine learning practice, we often encounter the problem
where f(x) = 1

n

∑n
i=1 fi(x; ξi) or f(x) = Eξ∼D[f(x; ξ)] for

some distribution D. The former is often called empirical risk
and the latter called population risk [4]. In this case, we can
use stochastic cubic regularization method proposed in [29] to
reduce computation cost, where f̄t(x) is replaced by

f̃t(x) = Lβ(xt, yt, γt) + 〈dt + γt + β(xt − yt), x− xt〉

+
1

2
〈(Bt + βI)(x− xt), x− xt〉+

ρ

6
||x− xt||3

where dt = 1
|S1|

∑
ξi∈S1

∇fi(x; ξi), Bt =
1
|S2|

∑
ξi∈S2

∇2fi(x; ξi), and S1, S2 are two independent
minibatch samples from data points at each iteration. It can be
proved that when |S1|, |S2| are sufficiently large, (20) holds
in high probability with small ε by a similar proof in Section
4.1 of [29]. Then same with Section V-A, we can prove that
Definition 6 is satisfied for this case in high probability.

C. Smooth Approximation of g

In some applications such as LASSO [28], the regularizer
(often regarded as g) is non-smooth. In this case, we can use
a smooth approximation of g to run our algorithm. We call a
non-smooth function g(x) (a, b)-smoothable, if we can find a
smooth approximation gµ(x) with the following properties:

gµ(x) ≤ g(x) ≤ gµ(x) + bµ,∀x; (21)

gµ(x) is
a

µ
-smooth. (22)

For example, for l1 regularizer g(x) =
∑n
i=1 |xi|, we can

approximate it by gµ(x) =
∑n
i=1 l(xi) where l(·) is called a

huber function [16] formulated as

l(xi) =

{
x2i /(2µ) if |xi| < µ

|xi| − µ/2 else
(23)

For this approximation, we have gµ(x) ≤ g(x) ≤ gµ(x)+nµ/2
and gµ is 1

µ -smooth. So l1 regularizer is (1, n/2)-smoothable.
The readers may refer to [2] for more examples.

When g is (a, b)-smoothable and gµ is convex, we can
replace g(y) with gµ(y) in Step 4 of CR-ADMM. Then Lemma
2 changes to

Lβ(xt+1, yt, γt)− Lβ(xt+1, yt+1, γt)

= g(yt)− g(yt+1)− 〈γt, yt − yt+1〉

− 〈yt − yt+1, β(xt+1 − yt+1)〉+
β

2
||yt+1 − yt||2

≥ gµ(yt)− gµ(yt+1)− bµ− 〈∇gµ(yt+1), yt − yt+1〉

+
β

2
||yt+1 − yt||2 (24)

≥ β − a/µ
2

||yt+1 − yt||2 − bµ. (25)

where (24) is from (21) and ∇gµ(yt+1) = γt+β(xt+1−yt+1),
and (25) is from (22). Meanwhile, Lemma 1 and Lemma 3
remain the same with Lg = a/µ. So (18) is satisfied with
ε = bµ. f(xt) + gµ(yt) + γTt (xt− yt) + β

2 ||xt− yt||
2 is lower-

bounded with the same argument of (7), so with (21) we
know that f(xt) + g(yt) + γTt (xt − yt) + β

2 ||xt − yt||
2 is also

lower-bounded. Then Definition 6 is satisfied.

VI. EXPERIMENTS

In this section, we use the example of symmetric matrix
factorization to demonstrate the advantages of our algorithm.
Symmetric matrix factorization is a standard technique in
clustering by providing low-rank decompositions of matrices
[10]. With an l1 regularizer for the purpose of regularization
[25], the problem can be formulated as:

min
X∈Rn×k

1

2
||XXT − Z||2F + λ

n∑
i=1

k∑
j=1

|X(i, j)| (26)

where Z ∈ Rn×n is a symmetric matrix. We denote the
above objective function as h(X). Meanwhile we regard
1
2 ||XX

T−Z||2F as f(X) and λ
∑n
i=1

∑k
j=1 |X(i, j)| as g(X).

Since it is not easy to identify saddle points in large scale
matrix factorization, we first consider a low dimensional case,
where the saddle points can be shown in a 3-dimensional plot.
Particularly, we let X ∈ R2, and Z ∈ R2×2 is a matrix with
all entries equal to 1. Additionally, we set λ = 0.1.

Before we use our algorithm, we need to smoothen g(X).
As mentioned in Section V-C, we can use the huber function
defined in (23) as a smooth approximation and then (26)
becomes

min
X∈Rn×k

1

2
||XXT − Z||2F + λ

n∑
i=1

k∑
j=1

l(X(i, j)) (27)

Fig. 1: 3-dimensional plot of hµ(X) with µ = 0.01

Now we define hµ(X) as the above objective function and
gµ(X) = λ

∑n
i=1

∑k
j=1 l(X(i, j)). For hµ(X), it is easy to

see that Assumption 1 is satisfied. For Assumption 2, we
know that f(X) is 12Γ

1
2 -Hessian Lipschitz inside the region

{X|||X||2 < Γ} when Γ is sufficiently large by Lemma 6 of
[18]. Intuitively, Step 3 of our algorithm will constrict {Xt}t
inside a certain area such that ||Xt||2 < Γ for each t. Since
it is not the focus of the paper, we omit the detailed proof.
Figure 2 presented later will also justify this claim. It is easy to
check Assumption 3 for gµ(X). To check whether Assumption
4 are satisfied, we need to identify the local minima and saddle
points of hµ(X). Figure 1 shows the 3-dimensional plot of
hµ(X) where g is approximated by the huber function (23)
with µ = 0.01. We can see that there exists two local minima
[0.98, 0.98]T , [−0.98,−0.98]T and one saddle point [0, 0]T .
With careful calculations, hµ(X) is ζ-strict with ζ = 3.8.

In the following part, four algorithms will be used to solve
(27): gradient descent (GD), noisy gradient descent (NGD) [11],
normalized noisy gradient descent (NNGD) [20] along with
our proposed CR-ADMM. Even though there is no theoretical
guarantee of escaping saddle points when hµ is not Hessian-
Lipschitz, we still use NGD and NNGD as a benchmark because
of their low complexity. Meanwhile, since g(X) and gµ(X)
are neither twice differentiable everywhere, we cannot use
Hessian-based or Hessian-vector-product-based methods. We
choose X0 = [−2, 2]T as the initial point for all these four
methods. Constant stepsizes are adopted for GD, NGD and
NNGD. The parameters (such as β in CR-ADMM, stepsize in
gradient descent) of each method are chosen to achieve its best
performance. For CR-ADMM, we run the method proposed
in [6] as a subsolver to solve Step 3, so we only need the
gradient information in CR-ADMM. While two variables X
and Y are used in CR-ADMM, we only choose the X value
to plot the figures.

First, we plot the trajectories of CR-ADMM and GD in
the contour lines of hµ(X) with µ = 0.01 to compare their
behaviors around the saddle point in Figure 2. We can see that
for GD, {Xt}t is trapped at the saddle point, while for CR-
ADMM, {Xt}t escapes the saddle point with few iterations.
Additionally, because of low gradient values, GD makes {Xt}t
move very slowly near the saddle point. CR-ADMM avoids
this situation by utilizing the cubic regularization.

(a) GD in the contour lines of hµ(X) with µ = 0.01

(b) CR-ADMM in the contour lines of hµ(X) with µ = 0.01

Fig. 2: Comparison of GD and CR-ADMM around the saddle
point

In Figure 3 we compare the rates of CR-ADMM, GD, NGD
and NNGD applied to (27). For NGD, we run it two times with
different noise levels: 0.01N (0, 1) and 0.0001N (0, 1), where
N (0, 1) is a standard normal random variable. For NNGD,
the noise is 0.0001N (0, 1). Meanwhile, Figure 3a and 3b
correspond to hµ(X) with µ = 0.01 and 2 respectively. The
optimality gap is defined as h(Xt)− h(X∗) where h(X∗) is
the value of the global minimum of (26).

For µ = 0.01, CR-ADMM has the fastest rate and the lowest
final optimality gap. Interestingly, 2Lg < ζ is not satisfied as
required in Theorem 2 in this case (ζ = 3.8 and Lg = 10), but
CR-ADMM still convergences to a small neighborhood of a
local minimum. It is because in the most area of the trajectory
of CR-ADMM, Lg is actually 0 where gµ is locally a linear
function. Lg is large only when any entry of X is close to
0. It happens only in few iterations of CR-ADMM with little
impact. For GD, the iterations are trapped at the saddle point
of hµ(X), resulting in the largest optimality gap. For NGD,
we can see that a greater noise level will help escape the saddle
point more quickly, but meanwhile yield a greater optimality
gap. For NNGD, we can see that it escapes the saddle point
more quickly than NGD with the same noise level. But it is
unstable with a large optimality gap.

For µ = 2, the final optimality gaps are the same for
CR-ADMM and NGD. In fact, as we can see in Figure
2, the trajectories of the algorithms are within the region
{X||X(1, 1)| ≤ 2, |X(1, 2)| ≤ 2}. In this region, hµ(X) is
Hessian Lipschitz when µ = 2, and NGD is proved to have
a good performance [11]. Meanwhile, CR-ADMM is still the
fastest to achieve the final gap. There is little change for GD

0 10 20 30 40 50 60 70 80 90 100

iterations

10-15

10-10

10-5

100

105

op
tim

al
ity

 g
ap

NGD with 0.01N(0,1)
NNGD with 0.0001N(0,1)
NGD with 0.0001N(0,1)
GD
CR-ADMM

(a) µ=0.01

0 10 20 30 40 50 60 70 80 90 100

iterations

10-6

10-4

10-2

100

102

op
tim

al
ity

 g
ap

NGD with 0.01N(0,1)
NNGD with 0.0001N(0,1)
NGD with 0.0001N(0,1)
GD
CR-ADMM

(b) µ=2

Fig. 3: Optimality gap v.s. iterations for GD, NGD, NNGD
and CR-ADMM applied to hµ(X) in low dimension

and NNGD.
Now we experiment CR-ADMM when Z in (26) has a high

dimension. Particularly, we set Z as a 100×100 matrix of rank
10. We aim to find a 100× 10 matrix X to minimize h(X) in
(26). Similar to the proof of Lemma 7 in [18], we can show
that h(X) has multiple local minima and strict saddle points.
Same with the experiments in Figure 3, we first smoothen
g(X) and then apply CR-ADMM, GD, NNGD and NGD with
two noise levels to (27). All the parameters in these algorithms
are chosen to achieve their best performance. Meanwhile, the
initial point of X is the same for all these algorithms, which
is a 100× 10 matrix with all entries equal to 1. Since we do
not know the local minima they may reach, we use the value
of h(Xt) as the performance metric.

In Figure 4a and 4b, we plot the rates of the algorithms
applied to hµ(X) with µ = 0.01 and µ = 1. Similar
phenomena can be observed compared with Figure 3, except
NNGD has a comparable rate with CR-ADMM. But NNGD
is not stable and has a larger objective value than CR-ADMM.
Note that since the values are in the level of 102, the differences
are not as obvious as Figure 3, but they are actually much
larger than the previous low dimensional case. We can see that
CR-ADMM achieves the lowest value among these methods.

VII. CONCLUSION

We consider the fast solution of a class of non-convex
optimization problems that accommodates many machine
learning applications, most notably regularized cost mini-
mization. In view of the commonly used regularizers, we
released the Hessian-Lipschitz requirement of existing designs

0 100 200 300 400 500 600 700 800 900 1000

iterations

100

102

104

106

ob
je

ct
iv

e
va

lu
e

NGD with 0.01N(0,1)

NNGD with 0.0001N(0,1)

NGD with 0.0001N(0,1)

GD

CR-ADMM

720 725

102104106108110112

(a) µ = 0.01

0 100 200 300 400 500 600 700 800 900 1000

iterations

100

102

104

106

ob
je

ct
iv

e
va

lu
e

NGD with 0.01N(0,1)
NNGD with 0.0001N(0,1)
NGD with 0.0001N(0,1)
GD
CR-ADMM

725 730

110
120
130

(b) µ = 1

Fig. 4: Objective value v.s. iterations for GD, NGD, NNGD
and CR-ADMM applied to hµ(X) in high dimension

to develop a novel cubic regularized alternating direction
method of multipliers (CR-ADMM) algorithm. We proved
that our algorithm converges to a local optimum in a rate
comparable to Nesterov’s cubic regularization method. We
also considered an imperfect variation of our algorithm that
accommodates errors in its steps, and proved its convergence
to a small neighborhood of a local minimum. We tested
our algorithms comprehensively for the well-known matrix
factorization problem, and observed its fast convergence as
well as accuracy compared to the state-of-art gradient-based
methods. It remains for future research whether CR-ADMM
can be accelerated using Nesterov’s technique [24].

REFERENCES

[1] Cubic regularized admm with convergence to a local minimum in
non-convex optimization. https://www.dropbox.com/s/b592dnq3orgt860/
allertonZai.pdf?dl=0.

[2] Smoothing for nonsmooth optimization. http://www.princeton.edu/∼yc5/
ele522 optimization/lectures/smoothing.pdf. Accessed: 2018-10-02.

[3] N. Agarwal, Z. Allen-Zhu, B. Bullins, E. Hazan, and T. Ma. Finding
approximate local minima for nonconvex optimization in linear time.
arXiv preprint arXiv:1611.01146, 2016.

[4] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for
large-scale machine learning. Siam Review, 60(2):223–311, 2018.

[5] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al. Distributed
optimization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends R© in Machine learning, 3(1):1–
122, 2011.

[6] Y. Carmon and J. C. Duchi. Gradient descent efficiently finds the cubic-
regularized non-convex newton step. arXiv preprint arXiv:1612.00547,
2016.

[7] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Accelerated methods
for nonconvex optimization. SIAM Journal on Optimization, 28(2):1751–
1772, 2018.

[8] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun.
The loss surfaces of multilayer networks. In Artificial Intelligence and
Statistics, pages 192–204, 2015.

[9] F. E. Curtis, D. P. Robinson, and M. Samadi. A trust region algorithm
with a worst-case iteration complexity of O(ε−3/2)for nonconvex
optimization. Mathematical Programming, 162(1-2):1–32, 2017.

[10] C. Ding, X. He, and H. D. Simon. On the equivalence of nonnegative
matrix factorization and spectral clustering. In Proceedings of the 2005
SIAM International Conference on Data Mining, pages 606–610. SIAM,
2005.

[11] R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle points-online
stochastic gradient for tensor decomposition. In Conference on Learning
Theory, pages 797–842, 2015.

[12] R. Ge, J. D. Lee, and T. Ma. Matrix completion has no spurious local
minimum. In Advances in Neural Information Processing Systems, pages
2973–2981, 2016.

[13] M. Hong, J. D. Lee, and M. Razaviyayn. Gradient primal-dual algorithm
converges to second-order stationary solutions for nonconvex distributed
optimization. arXiv preprint arXiv:1802.08941, 2018.

[14] R. A. Horn, R. A. Horn, and C. R. Johnson. Matrix analysis. Cambridge
university press, 1990.

[15] Z. Huang and S. Becker. Perturbed proximal descent to escape saddle
points for non-convex and non-smooth objective functions. arXiv preprint
arXiv:1901.08958, 2019.

[16] P. J. Huber et al. Robust estimation of a location parameter. The annals
of mathematical statistics, 35(1):73–101, 1964.

[17] P. Jain and P. Kar. Non-convex optimization for machine learning.
Foundations and Trends R© in Machine Learning, 10(3-4):142–336, 2017.

[18] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan. How to
escape saddle points efficiently. arXiv preprint arXiv:1703.00887, 2017.

[19] C. Jin, P. Netrapalli, and M. I. Jordan. Accelerated gradient descent
escapes saddle points faster than gradient descent. arXiv preprint
arXiv:1711.10456, 2017.

[20] K. Y. Levy. The power of normalization: Faster evasion of saddle points.
arXiv preprint arXiv:1611.04831, 2016.

[21] Q. Liu, X. Shen, and Y. Gu. Linearized ADMM for non-convex
non-smooth optimization with convergence analysis. arXiv preprint
arXiv:1705.02502, 2017.

[22] J. Mairal, F. Bach, J. Ponce, et al. Sparse modeling for image and vision
processing. Foundations and Trends R© in Computer Graphics and Vision,
8(2-3):85–283, 2014.

[23] Y. Nesterov and B. T. Polyak. Cubic regularization of newton method
and its global performance. Mathematical Programming, 108(1):177–205,
2006.

[24] Y. E. Nesterov. A method for solving the convex programming problem
with convergence rate O(1/k2). In Dokl. Akad. Nauk SSSR, volume
269, pages 543–547, 1983.

[25] A. P. Singh and G. J. Gordon. A unified view of matrix factorization
models. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 358–373. Springer, 2008.

[26] J. Sun, Q. Qu, and J. Wright. When are nonconvex problems not scary?
arXiv preprint arXiv:1510.06096, 2015.

[27] J. Sun, Q. Qu, and J. Wright. A geometric analysis of phase retrieval.
In Information Theory (ISIT), 2016 IEEE International Symposium on,
pages 2379–2383. IEEE, 2016.

[28] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society. Series B (Methodological), pages 267–288,
1996.

[29] N. Tripuraneni, M. Stern, C. Jin, J. Regier, and M. I. Jordan. Stochastic
cubic regularization for fast nonconvex optimization. arXiv preprint
arXiv:1711.02838, 2017.

[30] Y. Wang, W. Yin, and J. Zeng. Global convergence of ADMM in
nonconvex nonsmooth optimization. Journal of Scientific Computing,
pages 1–35, 2015.

[31] Y. Xu, R. Jin, and T. Yang. NEON+: Accelerated gradient methods for
extracting negative curvature for non-convex optimization. arXiv preprint
arXiv:1712.01033, 2017.

